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Abstract—In this work we roughly estimate if compressed 

sensing framework can serve the purpose of energy saving in a 

frequency modulated continuous wave radar.  As a target 

application we use the classification by neural network. For the 

particular classification task and different configurations we 

compare the amount of energy saved by using less ramps, 

increase in energy consumption induced by extra signal 

processing and decrease in classification accuracy. 
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I.  INTRODUCTION 

The core feature of Compressed Sensing (CS) is the ability 
to recover signals sampling them at the rate lower than the 
Nyquist rate. The recovered signals have to be sparce or 
compressible in one domain and spread out in the domain in 
which they are acquired [1]. Advances in CS algorithms 
provide means to develop energy efficient solutions in different 
applications [2-4] using this feature. 

There exists a number of approaches to implement CS in 
radar applications [5]. From an energy saving point of view in 
case of pulse-Doppler radar CS allows us to reduce the number 
of pulses per frame. In case of multiple-input multiple-output 
radar CS enables the decrease in the number of channels. In 
case of frequency modulated continuous wave (FMCW) radar 
one can either use the CS-based analog to digital converters 
(ADCs) [6, 7] or reduce the number of chirps per frame. 

Among other advantages, FMCW radars are being 
implemented either as a single-chip sensor [8] or as a system 
based on single-chip radio frequency (RF) transceiver [9]. Both 
implementations have quite low power consumption, especially 
the former. However, for battery powered radar applications it 
would be useful to have the minimum possible power 
dissipation. 

The aim of this paper is to roughly estimate whether the 
amount of energy, which could be saved by sending less ramps, 
exceeds the amount of energy required to recover the Doppler 
profiles. We are particularly interested if the recovered profile 
can be used for the classification purpose and what is the 
influence of the undersampling on classification performance. 
As a classification algorithm we use a simple neural network 

with one hidden layer, which has to decide between two 
classes. Namely, if the rotating fan is balanced on unbalanced. 

The paper is organized as follows. In Section II we describe 
a target application, which we use as an example. In Section III 
we estimate complexity of the algorithms and the amount of 
energy required for calculations. In Section IV we show under 
which conditions the energy saving is possible. In Section V 
we analyse the undersampling influence on the classification 
performance. 

II. CLASSIFICATION TASK 

The target application is the moving objects classification 
based on their Doppler profiles. In this work we want to make 
a rough estimation if the energy saving by CS in such an 
application is possible in principle. Because of that and in order 
to make reproducible experiments we use a rotating fan with 
two states: balanced and unbalanced. The fan is unbalanced by 
a peace of duct tape placed on one of the blades. 

The training set consists of the Doppler profiles in the range 
cell corresponding to the fan distance. The Doppler profiles are 
measured for both states while the angle between the aperture 

plane and the plane of rotation equals 0, ±4 and ±10. The 
fan supply voltage for every angle and state is 10V, 12V and 
14V. 

For the test purpose we use two sets. The first one is 
collected in the same way as the training set. The second one is 

collected with the angles equal ±2 and ±6, and the voltages 
equal 9V and 11V. Thus the classification of the second test set 
is a more difficult task, since the data are measured under the 
conditions that differ from the training ones. The 
corresponding spectra are shown in Fig. 1. One can notice that 
the spectra for balanced and unbalanced states and the same fan 
parameters differ not drastically, but for the same state and 
different fan parameters the difference in spectra is significant. 
That makes the classification task challenging. 
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Fig. 1.  Typical spectra used in the classification task. (a) – balanced and 

unbalanced states for the same fan parameters. (b) – both spectra for 

balanced state, the blue one from training set, the red one from the 

second test set. 

 

III. RECOVERING COMPLEXITY 

Conventional FMCW radar sends a set of equally spaced 
chirps [8]. This set of chirps is called a chirp frame. The 
discrete Fourier transform (DFT) of each chirp contains range 
information. Further it will be called range-DFT. The DFT of 
each range cell over the chirp frame corresponds to the Doppler 
profile of the range cell (Doppler-DFT). 

If we denote the vector of ith range-DFT samples as a 

complex yCM, where M is the number of chirps per frame, 

and the Doppler profile in ith range cell as xCN , where N is 
the number of Doppler-DFT samples, then the acquisition of 
the Doppler profile can be represented as 

yx,

where CMxN. In case M = N, represents the inverse DFT 
matrix, that corresponds to the traditional acquisition process 
with equidistant chirps. 

If x is sparse or compressible, i.e. the Doppler profile has 
only some nonzero entries or its entries rapidly decay to zero, 
CS framework allows us to recover x even when M << N [10]. 
Thus from an implementation point of view radar have to send 
M chirps chosen from N equidistant ones uniformly at random; 
from a mathematical point of view the inverse DFT matrix is 
reduced to the non-square matrix by choosing M respective 
rows. 

In this work we consider two recovering algorithms: the 
Basis Pursuit Denoising (BPD) minimizing ||x||1 subject to ||y- 

x||2≤where is the measurement noise norm, and the 
Orthogonal Matching Pursuit (OMP). As an implementation of 
the BPD we use the MATLAB package called l1-magic. 

The complexity of the algorithms can be estimated as the 
number of floating point operations (FLOPs). As the 
calculations are made over complex numbers, we take into 
account that one complex multiplication requires 6 real FLOPs 
and one complex sum requires 2 real FLOPs.  

The range-DFT and the Doppler-DFT can be evaluated by 
the fast Fourier transform (FFT). Its complexity is given 

FLOPFFT = 2.5nlog2n, 

where n is the number of FFT points. 

In order to estimate the BPD complexity we use empirical 
approach, since the number of iterations during the recovering 
process can vary. Namely, the number of calls of each line is 
counted and multiplied by its complexity. In our experiments 
about 85 percent of the FLOPs fall on solving systems of linear 
equations during the newton steps. 

As an implementation of the OMP algorithm we use 
LSQR-based one proposed in [11]. The OMP complexity can 
be estimated analytically. It depends on the initial number of 

chirps N, the number of sent ramps M and the number of 
samples to recover S. Thus the OMP complexity is given 

FLOPOMP = S(10Nlog2N + 16M + 17) + 

 + S(S + 1)(5Nlog2N + 12M + 67 + 28(2S + 1)/3)/2. 

IV. ENERGY COMPARISON 

The energy required to get the Doppler profile E0 is a sum 
of the acquisition energy Ea and the processing energy Ep. 

The acquisition energy is the energy consumed by a RF-
frontend and ADC: 

Ea = Pata, 
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Fig. 2.  Energy efficiency gain against the undersampling factor for N=128, 

one recovered Doppler profile and different algorithm and radar power 

combinations as indicated in the legend. Chirp durations: (a) – 10 µs, (b) – 

50 µs, (c) – 150 µs. The number of recovered samples for the OMP 

algorithm is M/4. 

where Pa and ta are corresponding power and operating time 
respectively. The power consumption depends on a number of 
parameters. Therefore we consider the range of possible values. 
For example, the claimed power consumption of the modern 
single-chip sensor from Texas Instrument IWR1443 is 1.73 W 
with 1 active transmitter and 1.88 W with 2 active transmitters. 
Thus we assume that reasonable acquisition power lies in the 
range of 0.1 W to 2 W. The operating time is the product of the 
chirp duration tchirp and the number of chirps per frame. Hence 
the acquisition energy per frame is given 

Ea = M Patchirp

We assume that the processing energy is the sum of two 
components: 

• The energy consumed while evaluating range-DFTs 
for M chirps. 

• The energy required evaluating Doppler-DFTs in case 
of conventional radar or the energy required recovering 
Doppler profiles in case of reduced number of chirps. 

The energy required for detection is independent of the 
number of chirps and is negligible. 

The energy required for processing can be evaluated as the 
algorithm complexity divided by the power efficiency of the 
processing unit. The power efficiency is measured in the 
number of FLOPs per second per Watt (FLOPS/W). It depends 
on the processing unit and the algorithm. Most of the 
operations are made over vectors, therefore the algorithms can 
be implemented using a digital signal processor (DSP), a 
graphics processing units (GPU) or a field-programmable gate 
array (FPGA). GPUs are power inefficient [12, 13] and are not 
considered in this work. 

In accordance with the power models of the modern C66x 
DSPs from Texas Instruments their power efficiency lies in the 
range of 4 to 8 GFLOPS/W. FPGA power efficiency cannot be 
estimated using claimed peak performance [14]. FPGA power 
measurements using development boards show 5-6 
GFLOPS/W for algorithms such as Cholesky and QRD, and 
about 10 GFLOPS/W for simpler algorithms such as FFT [13]. 
In the previous section we mentioned that about 85 percent of 
FLOPs fall on linear solver, moreover other operations can be 
partially grouped and evaluated in parallel. Therefore for non-
FFT processing we assume the power efficiency of 5 
GFLOPS/W, for FFT processing – 10 GFLOPS/W. 

Fig. 2–4 exhibit the ratio between the energies required for 
conventional processing and for the CS-based approach, i.e. the 
possibility of energy saving. The results for different chirp 
durations are shown in Fig. 2; for different number of Doppler 
profiles, i.e. for different number of range cells, in which the 
classification is carried out – in Fig. 3; for the OMP algorithm 
with different N – in Fig. 4. The x-axis represents the 
undersampling factor, i.e. M/N.  
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Fig. 3.  Energy efficiency gain against the undersampling factor for N=128, 

chirp duration 150 µs and different algorithm and radar power combinations 

as indicated in the legend. The number of recovered Doppler profiles: (a) – 

4, (b) – 8. The number of recovered samples for the OMP algorithm is M/4. 

 

Fig. 4.  Energy efficiency gain against the undersampling factor for the OMP 

algorithm, chirp duration 150 µs and different N and radar power 

combinations as indicated in the legend. The number of recovered Doppler 
profiles: (a) – 1, (b) – 4. The number of recovered samples for the OMP 

algorithm is M/4. 

From Fig. 2 and 3 we observe that the energy saving by 
using BPD is possible but is significantly limited in contrast to 
OMP. By the most of presented parameters BPD has negative 
impact on the energy efficiency, since the processing energy 
prevails over the acquisition energy.  

The dashed green and blue lines in Fig. 2 exhibits the 
energy saving gain by using OMP and almost coincide, since 
the processing energy is much smaller than the acquisition 
energy and, hence, the energy saving gain approaches its limit. 
The limit is equal to N/M under assumption of zero processing 
cost. The number of recovered samples S in case of using OMP 
is 4 times less than the number of sent chirps. 

V. CLASSIFICATION TEST 

To solve the classification task mentioned in Section II we 
use a simple neural network with one hidden layer. The size of 

the input and hidden layers is equal to 128. The activation 
function is the rectifier. Dropout rate is 0.5. 

The results of classification depend on many parameters, 
e.g. data preprocessing, optimizer, regularization and so on. 
The aim of this work is to estimate if the classification of 
recovered Doppler profiles is possible, whereas the profiles are 
not artificially sparse, rather real signals. Therefore we present 
the best results we achieved after tuning some parameters. We 
suppose that better results are achievable but it is a task for a 
future work. 

Fig. 5 exhibits classification results for two test sets. 
Namely, 

 one with the same fan voltages and orientations as in 
training set (Fig. 5a), let us call it set 1; 
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Fig. 5.  Classification accuracy and potentially achievable energy efficiency 

gain against the undersampling factor. Chirp duration is 150 µs. The number 

of recovered Doppler profiles is 1. (a) – set 1, (b) – set 2. The number of 

recovered samples for the OMP algorithm is M/3. 

 another with the fan voltages and orientations lying 
between the corresponding values of training set 
(Fig. 5b), let us call it set 2. 

Fig. 5 shows also the energy saving gain for a 1W-radar. 
The right most values correspond to non-CS approach 
(undersampling factor equals 1), which as expected provides 
better classification accuracy. The classification of the 
reconstructed spectra is more affected by the difference 
between training set and test set. 

Reducing the number of sent chirps one loses on 
classification performance due to decreased amount of 
information about weak Doppler parts. For set 2 this effect is 
more noticeable but the accuracy decreases non-monotonically. 
From our point of view this shows the existence of 
improvement room. 

VI. CONCLUSION 

In this work we showed that the energy saving through the 
use of CS in FMCW radars is possible. The claimed effect is 

achieved by sending less ramps and following recovering of 
Doppler profiles. By some parameters the amount of energy, 
which could be saved while RF fronted is sleeping, exceeds the 
amount of energy required to recover the Doppler profiles. 

The profiles recovered under these parameters can be used 
to solve a classification task. But in this case the neural 
network is more sensitive to the difference between a training 
set and a test set. 

The presented results can serve as a start point for future 
work, where it should be cleared which combination of CS 
algorithm, data preprocessing and neural network parameters 
provides higher accuracy and allows saving more energy. 
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