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Abstract—Frequency agile radar (FAR) is known to have
excellent electronic counter-countermeasure performance [1].
Recently, compressed sensing (CS) based algorithms have been
developed for joint range and Doppler estimation in FAR. To fur-
ther improve the reconstruction performance, this paper suggests
a waveform based on FAR, which we refer to as multiple carrier
agile radar (MCAR). In MCAR, multiple carriers are transmitted
in each pulse. The mutual coherence of the measurement matrix
of MCAR is analyzed, and is shown to be better than the
counterpart of FAR. Numerical simulations also demonstrate the
performance improvement of MCAR over traditional FAR using
CS techniques in terms of probabilities of successful recovery.

I. INTRODUCTION

With the rapid development of electronic countermeasures
techniques as well as the booming quantity of commercial
electronic devices, the electromagnetic spectrum is increas-
ingly congested and constrained. Countering these threats of
complex electromagnetic environments has becomes a vital
issue in radar systems.

Frequency agile radars (FARs), which randomly change
the carrier frequencies of each pulse over time (see Fig. 1),
are known to have good electronic counter-countermeasures
(ECCM) performance [1] and have attracted considerable
attention [2]-[6]. Frequency agility makes the radar pulses
difficult to track and predict, and thus serves well in protecting
the radar.

To jointly estimate the high range resolution (HRR) profile
and Doppler of targets using FAR, compressed sensing (CS)
methods [10] are usually preferred rather than the simpler
matched filter. In matched filter, FAR suffers from sidelobe
pedestal problems and weak targets could be masked by the
sidelobe. By exploiting the sparsity of targets, CS methods
alleviate the sidelobe pedestal problem and better estimate
the range and Doppler parameters. In the noiseless case, CS

methods guarantee to reconstruct O ( %) scatterers [7],
where [V is the number of pulses and M is the number of HRR
bins inside a low range resolution (LRR) bin. However, in
complex electromagnetic environments, the radar encounters
severe jamming and many pulse returns are lost. The recovery
performance of FAR with a matched filter or CS decreases
significantly in this case.

In order to improve the reconstruction performance in
complex electromagnetic environments, this paper proposes a
new transmission approach referred to as multiple carrier agile
radar (MCAR). In this technique, multiple monotones (instead
of a single one in FAR) are transmitted in each pulse (see
Fig. 1). The echo of each monotone is received individually,
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which increases the number of measurements. When many
pulses are lost, MCAR has more available measurements
than FAR, and thus may improve the recovery performance.
Following [7], we derive theoretical estimation performance
guarantees for MCAR, and simulations are executed to validate
its advantages.

FAR

MCAR

Time

Fig. 1. An example of FAR/MCAR waveform. Filled blocks represent pulses
of FAR. Unfilled blocks sketch pulses of MCAR.

The rest of paper is organized as follows. Section II
introduces the signal model of MCAR. Section III briefly
reviews CS methods and theoretically analyzes performance
guarantees for MCAR. Numerical experiments are shown in
Section IV and Section V concludes the paper.

II. SIGNAL MODEL
A. Transmission Model

In each pulse of MCAR, multiple monotones are transmit-
ted. The w-th monotone of the n-th transmitted pulse is written
as

t —nT, )
Sn,w(t) = A, rect <Tn> eJwan,w(t—nT,.)’ (1)
p

where A, ,, is the amplitude, n = 0,1,...,N — 1, T}, is the
pulse duration, and 7, is the pulse repetition interval. The
envelope of the pulse is assumed to be a rectangular function

defined as
1, 0<z <1,

0, otherwise,

rect(z) := { (2)
and f, ., is the carrier frequency. The frequency is random in
a specific band, [f., f. + B], specifically,

fn,w = fc + dn,wBa 3)

where f. is the initial frequency, d, ., is the corresponding
frequency modulation code, which is a random variable,
dnw €10,1), and B is the synthetic bandwidth.

We assume that the code d,, ., is chosen from the discrete
set Dy :={ §7|m=0,1,..., M — 1}, and each element in Dy
has the same probability to be selected. We denote €2,, by the



set including the random modulation codes chosen for the n-th
pulse,

Q, ={dnwlw=0,1,... P}, 4)

where P is the number of carriers in each pulse, i.e., P :=
Q] =[] == [Qn-al.
Summing up all the monotones yields the n-th transmission

P—1
Sn(t) == Z Snw(t). 5)
w=0

For each pulse, the whole transmission power is constrained
and equally distributed to selected carriers. Thus

L
s

FAR is a special case of MCAR with P = 1.

Apw = (6)

B. Return Model of Single Scatterer

In MCAR, the returns of different monotones are received
and processed separately, and are assumed to be delays of
the transmitted pulses. Consider an ideal point scatterer with
scattering coefficient 8 € C, at range r. The return of the n-th
pulse, w-th carrier is

2
Roo(t) == Bsnw (t = T) . 7
c
If the scatterer is moving away from the radar with a relative
radial velocity v, then the range is a function of time ¢, r(t) =
r(0) 4+ vt, and (7) can be rewritten as

Ryu(t) = 5/\/13rect(§)ej2”f“v“(t*”T’"T*Q”t/C), (8)

where £ := (t — nT, — 7 — 2vt/c)/T, and 7 := 2r(0)/c for
brevity. After demodulation with e727f».«(*="T) and normal-
ization with 1/ V/P, the echo is represented by

Ry (t) = Brect(£)el 2 fnw(=T=2vt/c) )

We sample the echoes at the Nyquist rate of f; = 1/7}, so
that there is one sample for each pulse. Each sampling instant
corresponds to a LRR bin. Measurements in the same time
instance are then as

y(t) = [RO,O(t), Ro@(t), S

and processed to provide a refined range, i.e. HRR range,
and Doppler. In this paper, we focus on joint HRR range and
Doppler estimation.

The sampling instant ¢,; = n1, + [/ fs captures echoes
from scatterers located in the I-th LRR bin, r € [l — 1,1]Ay,
I =1,2,...,|Tfs], where A, := T,c/2 representing the
LRR. Since measurements from all LRR bins are processed
identically, without loss of generality, we can take any LRR
bin as an example. Assume that the [-th LRR bin contains the
scatterer and rect () = 1. Substituting ¢ = ¢,,; into (9),
we have

Rn w(tn l) — ﬁ€*j47"(fc+dn,wB)(T(O)+v(nTr'+l/fS))/c

R, (t+nT),...]5,  (10)

|t:tn’],

~ ’S/e_j47"d"vwBT(O)/Ce_j‘l“chTr"Cn,w/c’ (11D
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where 7 = Be-ddnfm L e 1 4 dywB/fe
and the approximation is based on the assumption that
e J4mdn . Bul/(f:¢) ~ 1  which means that the relative motion
of the scatterer during the wave propagation (I/ fs) is negligi-
ble, i.e. ;;l(/?’;;) < c/g%) ~ 0. ) N

For brevity, we introduce p := —4wBr(0)/(Mc), ¢ =

—4m fvT,/c, and omit the notation ¢,, ;. Then (11) becomes

Ry~ ,?ejﬁMdn,w""jann,w? (12)

where 7, p and ¢ are unknown. With the stacked measurements

forn=0,1,....,N -1, w=0,1,..., P — 1, we obtain the
estimates 4, p and ¢. We then infer |3| = |§|, #(0) = —ﬁcg

and § = — %, respectively.
Note that the HRR , Ay := ¢/(2B), relies on the synthetic
bandwidth. A LRR bin contains M, HRR bins, i.e.,

TPMBJ

= |T,B| € N. (13)

2 c
To avoid grating lobes of the HRR profiles [8], [9], the
minimum gap between frequency codes is required to satisfy
ming, 2w, |dnw, — dnw,| < 1/M,, which suggests a typical
choice of M = M.,.

i |

C. Return Model of Multiple Scatterers

Assume that there are K scatterers with parameters
(Y&, Pk, G ) corresponding to the same sampling instant (in
the same LRR bin), £ = 0,1,..., K — 1. Radar returns are
cast as a summation of returns from all scatterers,

Rn,w — I(Zl;?kejﬁkMdn,w“’jdknCn,w. (14)

k=0
We can rewrite the returns in matrix form. The mea-
surements are represented by a vector y € CNP with its
(nP +w)-th entry as R,,, n = 0,1,...,. N — 1, w =

0,1,...,P—1.

The coefficients 4 will also be presented by a sparse
vector. The resolutions of parameters p,¢ are 1/M and
1/N, respectively, and the unambiguous continuous region
is (p,q) € [0,27)%. The p,q parameters are divided into
discrete grids according to the resolutions, respectively. De-
note grid sets as P := {Z%|m = 0,1,...,M — 1} and
Q = {%T"m =0,1,...,N — 1}, respectively, and assume
that parameters of scatterers precisely match grids in the sets
P and Q. Then # can be included in the matrix X € CM*N

with entries
Xl = {

Vectorize X as z := vec(XT) € CMN with [2], 4 my =
[X]m.n, and we obtain a matrix-form signal model as

Vi, if 3k, (ﬁk»(jk) = (pqun),

0, otherwise. (15)

y = Px, (16)

where the (n.P 4w, +mN)-th element of & € CNP*XMN jg
given by

[(}] N = ejpm,Z\/Idn,w+qu77'<ﬂ,,w7 (17)

nP+w,l+m



w=201,...,.P—1,m = 0,1,...,.M — 1 and I,n =
0,1,...,N — 1. If there are noises w € CN?, (16) becomes
y=Pxr+ w, (18)

where y and ® are known, and x is to estimate. Since d, .,
involved in @ is random, ® is random. After we solve x, the
(p, q) parameters are then inferred from the support set of x.

III. ALGORITHMS AND PERFORMANCE

In this section, we will discuss algorithms to solve the
linear regression problems (16) and (18), and then theoretically
analyze the performance of the methods. The result shows that
MCAR has stronger performance guarantees than FAR.

A. Review of Compressed Sensing Algorithms

In there are only a few scatterers inside a LRR bin, which
means that x is sparse, and CS algorithms [10] can be used
to reconstruct x.

Basic pursuit finds the sparsest solution by

min ||z||1, s.t. y = Pa. (19)
x

To reduce computational burden, greedy methods are often
preferred. Typical examples include Subspace Pursuit and
Iterative Hard Threshold.

It has been an important topic to theoretically analyze
the conditions that guarantee correct recovery. Among these
conditions, mutual coherence of the measurement matrix ® is
easy to verify and widely used, and is defined as

max 7‘ QF Qk |
2k ([Pl ®xl2
Theorem 1 provides a performance guarantee in the noiseless

case.

Theorem 1 ( [10]). If the mutual coherence of ®, u(®) <
21{1—1’ then for any x with less than K nonzeros, x is the
unique solution to (19).

w(®) = (20)

The condition can be extended to robust recovery in noisy
cases and also recovery using different CS methods.

B. Performance Guarantee for MCAR

This subsection analyzes the mutual coherence of ® and
proposes theoretical bounds for MCAR to guarantee correct
recovery. The results show that it is easier for MCAR than
FAR to meet the mutual coherence condition in Theorem 1.
The mutual coherence relies on radar parameters, such as
the number of pulses N and choice of modulation code sets
Qo, 1, ..., Qn_1. Since the code d,, , is random, @ is a
random matrix. In the following, we will present a sufficient
condition for radar parameters such that u(®) < 52— with
high probability. We assume that the code sets {2,, of each
pulse are independent from each other, n = 0,1,..., N — 1.
Proofs are omitted due to space limitation.

Define the modulus G € RMNXMN with entries

Gla = |[®®],, | k1=0.1,. . MN -1 @1
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We then have the following result.
Lemma 2. The rows of G are permutations of each other.

Any row of G is therefore enough to analyze the mutual
coherence. Take the 0-th row for convenience. Consider the -
th entry, corresponding to the i-th column of ®, ®,. Recall that
each column of ® has distinct parameters (p, ¢). For brevity,
we simply use the notation (p, ¢) for ®;. Define

1 ] Noip-d
P Hge. — _— JjpMdy, . +jqn 22
Xi NPQO Q’L NP ngo C;O e ) ( )
1=1,2,..., M N — 1. The mutual coherence (20) becomes

pw=max|y;|,i=1,2,..., MN — 1. (23)

Generally, x; is random because d,, ., is random. However,

when p = 0 and ¢ # 0, or equivalently i € {1,2,..., N — 1},
i reduces to a constant variable,
| No1p-1
Y= 55 2 2O =0. 24)
n=0 w=0

In the rest of this subsection, we ignore these non-random Y,
which do not affect i Denote a set

Z={N,N+1,...,NM —1}, 25)

and we analyze x;, ¢ € Z, where non-random values are ex-
cluded. We obtain the asymptotic statistic behavior as follows.

Lemma 3. As N — oo, the real and imaginary parts of x;,
Re (x;) and Im (x;), ¢ € E, have a joint Gaussian distribution,

(R ([0] [ L) e

except in the special case that the corresponding parameters
p = q = m, where the joint Gaussian distribution becomes

]+ (2) [ 1))

I (x) @7

Lemma 3 is derived from the Lyapunov’s central limit
theorem. Since x; is an asymptotic Gaussian, the modulus
|xi| obeys a Rayleigh distribution and we have the following
corollary.

Corollary 4. When N — oo and i € Z,

P (|xi| > e) Se‘NPEz. (28)
Applying the union bound, we obtain Lemma 5.
Lemma 5. As N — oo, the maximum, [i,,, = max; | x|, ¢ € Z,
satisfies the following
P (i > €) < (MN — N)e NP, (29)

Lemma 5 shows that the mutual coherence can be bounded
with certain probabilities. Theorem 1 indicates that p(®) <
s leads to exact recovery. Substituting € = sq— into
(29), we obtain the following theorem.



Theorem 6. Given a constant § € (0, 1), the mutual coherence
satisfies j1(®) < 57— with probability no less than 1 — 0, if

K5;¢E;+17 @0)
where
N
fo = \/ln(MN—N) —Tno’ S

In noisy cases, assume that the noise disturbing R, ,, in (7)
obeys a circularly symmetric complex Gaussian CN'(0, o21).
After normalization with 1/ /P, the noise behaves as w ~
CN(0, Po?I). Assume that |[w|s < € := C;vV/NPo, and
solve (18) using

min [[2([1, 5.t [ly — x|, < e, (32)

with €5 := Cyv/N Po, where C; < Cy are constants that do
not depend on N, P or ¢. Combining with Theorem 6 and
Theorem 2.1 in [11], we have the following corollary.

Corollary 7. Let & be the solution of (32). Then the error is
bounded as

3 (1 +-\/?5u*)

1— (2K — 1)V Pp.
with probability no less than 1 — 6.

|& — x|, < (C1 + C.)VNPo, (33)

In noiseless cases, MCAR can recover at least K =
0] (1 / %) scatterers, while the counterpart of traditional

FAR is K/ = O ( ﬁ) Owing to the increased num-
ber of carriers of each pulse, there are more measurements
for MCAR than FAR, which suggests better reconstruction
performance. In noisy cases, the error bound is generally not
monotonically decreasing along with the increase of P. In the
next section, numerical experiments are executed to evaluate

the practical performance.

IV. SIMULATIONS

In this section, we perform simulations and compare the
reconstruction performance of both the proposed MCAR and
the traditional FAR.

Noiseless and noisy cases are considered. In each case, we
focus on the performance under jamming environments, where
partial returns are ruined. Assume that there are two kinds of
jams, wideband jam and narrowband jam, marked as ‘JamW’
and ‘JamN’, respectively. Wideband jam occupies a large band
such that returns of all carriers in a pulse are destroyed; see
Fig. 2. Narrowband jam aims at some certain carriers in each
pulse, so parts of returns in a pulse can survive; see Fig. 3.
Assume that both jams saturate the receiver and are detected
by the radar. It is known which pulse/carrier is ruined. Note
that for FAR with only one carrier in each pulse, these two
jam patterns are the same.

For the wideband jam, we define the pulse missing rate,
Tp, as the number of ruined pulses divided by the number
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Fig. 2. Wideband jam. Once a pulse is jammed, all the carriers are jammed
and ruined.
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Fig. 3. Narrowband jam. Once a pulse is jammed, parts of the carriers are
jammed and ruined.

of transmitted pulses, IN. For the narrowband jam, we define
carrier missing rate, 7., as the number of ruined carriers
divided by the number of transmitted carriers, N P.

A. Noiseless Cases

We set that the initial frequency as f. = 10 GHz, the
synthetic bandwidth B = 64 MHz, the number of pulses
N = 48 and the number of available carriers M = 8. For
MCAR, the number of monotones in a pulse is set as P = 3.
FAR can be considered as a special case of MCAR with
P = 1. The number of scatterers K are varied from 1 to 32.
In each trial, the support set of x, i.e. the set that indexes the
locations of the nonzeros in z, is randomly changed, which
means the range and Doppler parameters of the scatterers
are randomized. The amplitudes of scattering coefficients are
all set as 1 and the phases are random obeying uniform
distribution U ([0, 27)). One hundred Monte-Carlo trials are
performed. We recover x by ¢; optimization using CVX [12],
[13], and evaluate the probabilities of the event that the support
set of « is exactly recovered.

We also test the reconstruction performance of MCAR and
FAR under jamming environments. Assume under wideband
and narrowband jams, that some pulses and carriers are
randomly missed, respectively. The pulse missing rate and the
carrier missing rate are r, = 7, = 0.5.

The results are depicted in Fig. 4. Results show that MCAR
dramatically outperforms FAR, in both cases with and without
jams. The wideband and narrowband jams, which lead to the
same missing rate, have similar impact on MCAR. These
results indicate that the number of measurements play a key
role on the reconstruction performance. MCAR transmits mul-
tiple carriers in each pulse, which significantly increases the
number of measurements and the mutual coherence property of
the measurement matrix, and thus improves the reconstruction
performance of CS methods.



Pr of successful recovery
5
o

Fig. 4. Probabilities of support set exact recovery using (19) in noiseless
cases.

In noiseless cases, when the mutual coherence y < SR-1 Kl_l,

the scatterers’ parameters are exactly recovered. According to
(31), CS methods promise to recover at least K = 2.6 and
K = 1.7 scatterers with probability higher than 0.9 for MCAR
and FAR, respectively. However, compared with the simulation
results, the theoretical bounds are quite pessimistic.

B. Noisy Cases

The number of pulses is set to N = 48. The number
of scatterers K is fixed as 10, which is assumed known a
priori. The variance of the noise disturbing R,, ., in (7), o2,
is changed from -15 dB to 15 dB. Two thousand Monte-Carlo
trials are performed. The rest settings are the same as those
in previous subsection.

We use Subspace Pursuit to estimate x, and evaluate
whether the support set of x is exactly recovered. The prob-
abilities of exact recovery are shown in Fig. 5.
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Fig. 5. Probabilities of support set exact recovery using Subspace Pursuit in
noisy cases.

When there is no jam, the reconstruction performance of
MCAR is better than that of FAR, but the improvement is
not significant. When there are jams and missing pulses or
carriers, MCAR dramatically outperforms FAR. Performance
of MCAR under the two jamming patterns is very close. In
the case without jams, the number of measurements is enough,
and the signal to noise ratio (SNR, defined as >0 42 /o?)
rather than the number of measurements plays the key role.
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Compared with FAR, MCAR increases the number of mea-
surements while keeping the SNR maintained, and the benefit
of MCAR is limited. However, in the jamming cases, the
key issue that affects the reconstruction performance is lack
of measurements. So raising the number of measurements
enhances the recovery performance, and the improvement of
MCAR over FAR is remarkable.

V. CONCLUSION

This paper proposes a new frequency agile waveform and
theoretically analyzes its properties. Compared with the tradi-
tional FAR, the proposed waveform transmits multiple carriers
in each pulse, and the returns are received individually. By
exploiting the sparsity of the radar scene, CS methods are
applied to process the radar echoes. Based on CS theories,
the mutual coherence property of the measurement matrix is

analyzed. The result shows that the proposed radar scheme

NP
In MN

promises to recover at least K = O( ) scatterers,

which is larger than O( %), the counterpart of the

traditional FAR. Simulation results also validate the advantage
of MCAR, especially when radar encounters jams.
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