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Abstract—Time-of-Flight is an active depth imaging moda-
lity based on the emission of modulated light and the reception
of the corresponding bounce. A common modulation scheme
for ToF systems operating in Amplitude Modulated Continu-
ous Wave (AMCW) mode, such as those based on the Photonic
Mixer Device (PMD), is using periodic signals that are consi-
dered close-to-sinusoidal. Unfortunately, the non-sinusoidality
of the signals yields a distortion in the measurements that has
a systematic effect in the phase estimation. Furthermore, such
systems expect a single bounce per ToF pixel and the phase
estimation fails when two or more returning paths are present,
as it is the case in many real-life scenes.

In this work we study up to which extent a simple spectral
estimation method can be used to accurately resolve more than
a single path per pixel using a reduced set of measurements at
different frequencies. We also study the effect of including a
harmonic cancellation (HC) technique on the feasibility of such
method. Simulation results show that HC has a great effect
in this regard and that using an HC scheme at sensing allows
for multiple path separation from a number of frequency
measurements that tightly approaches the theoretical lower
bound. Path separation is shown to be possible in a real
system with HC for phase separation as low as 2π/27 rad
at 10MHz base frequency. Simulations in presence of realistic
measurement noise witness that the method can successfully
separates two paths in 80 − 90% of the cases using only 5
nonzero frequencies.

I. INTRODUCTION

Time-of-Flight imaging is a depth imaging technique

whose global impact has been continuously growing in the

last years. This is probably both due to the growth of

the number of pixels in the array and due to a dramatic

cost reduction. Nowadays stand-alone ToF depth imaging

systems, such as the Kinect sensor (the so-called second-

generation Kinect, Kinect v2, or Xbox One sensor [1])

and the CamBoard pico flexx [2] from pmdtechnologies,

came to the market with prices in the 200-300$ range and

offer relatively large resolutions (512× 424 and 224× 171,

respectively) for this type of sensors. Furthermore, the very

low size of the ToF sensor in [2] promotes a spread of the

technology to further application areas.

In very short terms, ToF depth imaging systems are active

systems that emit light to the scene to sense and estimate

the distance from the sensor to each scene point from the

time the corresponding echo needs to reach the camera.

Sensu stricto, ToF sensors measure the time the light needs

to travel from the illumination system to the scene and

from the scene to the camera. Unfortunately, due to the

large magnitude of the speed of light, fine depth resolution

translates into very demanding time resolution. For instance,

1mm translates into 6.67 ps resolution in a reflective setup.

Building large arrays of photodetectors with picosecond

resolution is a challenging task and the common workaround

is periodically modulating the amplitude of the emitted light

and measuring phase shift instead of time. In this work we

focus exclusively on ToF systems operating in Amplitude

Modulated Continuous Wave (AMCW) mode, such as those

based on the Photonic Mixer Device (PMD) [3] and related

technologies.

Despite the considerable increase in lateral resolution and

depth accuracy of recent ToF sensors w.r.t. previous gene-

rations, several open issues still remain to be addressed. In

PMD sensors, like in most ToF sensors operating in AMCW

mode, the shape of both the illumination signal (optical)

and the effective PMD pixel control signal are supposed to

be close to sinusoidal. Unfortunately, it has been shown

that none of them is purely sinusoidal in practice. The

illumination signal exhibits a shape that depends on the

specific rising and falling characteristics of the light emitters

and the effective PMD pixel control signal has been shown

to be closer to trapezoidal [4], [5]. This translates into

the so-called wiggling effect in the measurements, due to

the existence of harmonics in the cross-correlation between

illumination signal and (effective) PMD pixel control signal.

As pointed out in [4], it would be sufficient that any of both

signals is purely sinusoidal to avoid the distortion due to the

harmonics present in the other.

Another main limit of most ToF systems is their intrinsic

inability to resolve more than one path per pixel, that is, the

system expects a single bounce of the illumination signal

per pixel. If two or more optical signals that are not in

phase, i. e., arising from different reflections, reach the ToF

pixel simultaneously, the so-called multipath interference
(MPI) occurs. Clearly, single-frequency AMCW ToF sys-

tems relying on sinusoidal modulation are unable to cope

with this phenomenon, provided that the sum of two or more

interfering sinusoidal signals of equal frequency results in

another sinusoidal of the same frequency and a posteriori
phase separation becomes impossible. Multipath can be

classified between diffuse and reflective. The first occurs

due to light scattering, e. g., due to Lambertian-reflective

objects that are too close to the camera, in combination with

low-quality optics. Scattering media, such as turbid water

or translucent objects, may also produce diffuse multipath.
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In this work we focus on the second type, which arises

from strong secondary reflections, caused by a shiny floor

or walls, which produce a secondary illumination front for

the rest of the scene. Methods with different degrees of

complexity exist that aim to compensate the MPI of each

nature. Unfortunately, these methods require measurements

at different frequencies, with a bandwidth that should be

as large as possible. In this scenario, the effect of harmo-

nic distortion becomes even more relevant and limits the

applicability of MPI compensation techniques in practice.

In this work we show how, taking profit of the capabilities

of a recent PMD ToF sensor prototype, such as native

harmonic cancellation (HC), one can use classical spectral

estimation methods to resolve more than a single path per

pixel. More specifically, we evaluate the performance of the

so-called matrix pencil method for estimating the reflectance

of two or more interfering targets per pixel and their corre-

sponding distances to the camera from very few frequency

measurements, for different number of frequencies. We also

study the effect of measurement noise. Realistic simulation

results show the feasibility of resolving more than a single

path per pixel, with an accuracy that is boosted if HC is

enabled at the sensor.

II. RELATED WORK

A. Harmonic Cancellation

There are two fundamentally different ways of elimina-

ting the effect that the harmonic content present in the cross-

correlation between received light signal and control signal

produces in the measurements. This harmonic contents is

due to both signals not being perfectly sinusoidal and, as

commented in Section I, results in a wiggling effect in the

phase (thus depth) estimation. The two ways of compensa-

ting this wiggling differ from each other in whether they

are an a posteriori wiggling compensation or an actual

harmonic cancellation (HC) during acquisition.

The first option is conceptually the simplest one, since it

is nothing else than a system calibration in phase domain.

The naı̈vest approach is constructing a look-up table (LUT)

establishing correspondences between measured distance

and real distance [6], [7]. The true depth can be calculated

from the measured depth by interpolation. This method

requires both a large calibration data set and an amount

of memory that grows with the desired calibration quality.

A more elegant solution is that provided by [8], which takes

profit of the oscillating shape of the depth error curves to fit

a cubic B-spline to it. Retrieving the real depth only requires

evaluating a cubic polynomial.

The second option can be implemented either by acqui-

ring more measurements with different phase delays of, e. g.,

the illumination signal, or by bracketing the exposure time

and using different phase delays in the different time slots.

Both the exact values of the delays and the duration of the

corresponding time slot need to be accurately adjusted, so

that the targeted harmonics get canceled when aggregating

the signal. The first flavor is easier to implement, since it

only requires performing additional measurements and can

be readily implemented in any system with phase shifting

capabilities. The order up to which harmonics are canceled

relates directly to the number of cross-correlation samples

acquired. The second flavor, proposed in [9], [10], requires

specific hardware capabilities for custom bracketing of the

exposure time and custom phase shifting, different at each

bracket. As before, the order of the HC is given directly

by the number of phase shifts (brackets) applied during the

exposure time, more specifically, canceling harmonics up

to order n requires 2n + 1 shifts: one of 0◦ and the rest

equidistant and symmetrically distributed at both sides of

0◦. Our novel PMD ToF sensor prototype natively enables

this second flavor of HC at acquisition and thus this is the

HC option we contemplate in this paper.

B. Multipath Compensation

It is out of the scope of this paper providing a literature re-

view on multipath estimation and compensation. We restrict

our attention exclusively to reflective multipath, arising from

translucent objects and shiny surfaces, such as floors, mir-

rors, whiteboards, walls, windows, tables, metallic surfaces,

etc. Note that these objects are ubiquitous in human-made

environments. Similarly to HC, in the case of MPI one can

either aim to compensate its effect a posteriori after (single)

depth estimation or to directly resolve several paths per

pixel. The former is a challenging computational problem,

while the latter shifts the pressure to the sensor and the

sensing scheme, since it necessarily requires measurements

at different frequencies. Most multipath-removal methods

of the first type aim to jointly estimate the scene structure

and the multiple paths followed by the illumination beam,

normally in an iterative fashion.

In this work we are interested in estimating several

paths per pixel, thus eliminating the need for a subse-

quent computationally-expensive multipath-removal proce-

dure. The method in [11] and the first method in [12]

provide closed-form solutions for the two-path case. Alter-

natively, in [13] the multiple paths are retrieved by means

of an optimization process. The methods in [13], [12],

and [11] cope with only two paths per pixel and require

two, three and five frequencies, respectively. If more than

two bounces interfere within the same pixel, none of the

previous approaches apply. Note that if the phase or depth

domain is finely discretized, the few targets producing the

MPI can be modeled as a sparse vector of reflectances

and the multipath estimation problem can be attacked from

a compressive sensing (CS) perspective [14]–[16]. This

is the focus adopted in [17], where this sparse vector is

recovered from partial Fourier measurements in a classical

CS framework. Unfortunately, the method seems to require

a large number of modulation frequencies in practice (77 for

known sparsity of 3). A more feasible approach is provided

in [18], where k interfering paths are estimated from 2k+1
frequency measurements in a closed-form manner. In an

evaluation with real data from an Xbox One sensor this

method required 21 measurements to separate only two

paths. The frequency-domain framework in [19] allows

separating multiple paths at the cost of an unaffordable

modulation bandwidth of the illumination system (e. g.,

10GHz for 3.6 cm depth resolution).

One can also profit from existing transient imaging and

light transport approaches to solve the MPI in ToF imaging

systems. For further literature in this regard we refer to the

multipath part of the paragraph on “Interference Between

Optical Signals” in [20, Section 2.4].
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III. PROBLEM STATEMENT

In this work we focus on PMD (or similar) systems

operating in AMCW mode with quasi-sinusoidal signals and

we restrict our attention to reflective MPI. The light signal

reaching a PMD pixel is supposed to be the superposition

of few bounces and can be, therefore, represented as a

finite sum of shifted and damped versions of the periodic

illumination signal. The corresponding phase-domain scene
response function reads:

e(φ) =

P∑

k=1

akδ(φ− φk) (1)

where δ(φ − φk) denotes a Dirac delta function centered

at φk, which is the phase shift that the illumination signal

undergoes when following the path k ∈ [1, P ], and ak is the

attenuation factor due to non-unit reflectance of the surface

point that produced that reflection. The number of paths P
is assumed to be low. Making use of Eq. (1), the periodic

light signal received by a PMD pixel can be expressed as:

r(φ) = (i ∗ e)(φ) (2)

where i(φ) denotes the real periodic illumination signal, in

phase domain. At the PMD pixel r(φ) is cross-correlated

with a (close-to-trapezoidal) control signal, yielding the

measurements:

m(φ) = pA−B ⊗ r(φ) = pA−B ⊗ (i ∗ e)(φ)
= (i⊗ pA−B) ∗ e(φ)

(3)

where pA−B(φ) denotes the PMD (A-B) effective control

function. This notation relates to the PMD operation prin-

ciple itself, since the so-called PMD demodulation process

actually means that the photogenerated carriers are shifted to

one of two integration areas, typically named A and B, being

the selection controlled by the complementary (ideally)

binary signals pA and pB. Provided that the measurements

are differential (i. e., A-B), the effective PMD control signal

is pA−B = pA − pB, up to scaling factors. If we now

substitute Eq. (1) in Eq. (3), we obtain

m(φ) =

P∑

k=1

ak(i⊗ pA−B)(φ− φk). (4)

As pointed out before, if either i(φ) or pA−B(φ) (or both)

are sinusoidal, then the cross-correlation i⊗pA−B(φ) is also

sinusoidal. If this is not the case and there is a harmonic

overlap between them, harmonic content will be present in

i⊗pA−B, yielding the known wiggling effect in the measu-

rements m(φ). We suppose that the signals are close enough

to sinusoidal, so that we can use this hypothesis to justify the

use of spectral estimation techniques. Provided that pA−B is

a zero-mean signal, the cross-correlation exhibits no offset

and there are only two free parameters, namely, amplitude

and phase. Consequently, two (real) measurements m(φ)
per frequency are sufficient. Note that two measurements

with π/2 phase shift yield Fourier coefficients of the scene

response:

x(j) = mj(0) + imj(π/2)

=
P∑

k=1

ak(cos (−jφk)− i sin (−jφk)) =

P∑

k=1

ake
ijφk ,

(5)

where i denotes the imaginary unit and j the frequency

index, i. e., f = jf0, for some base (nonzero) frequency f0,

which in turn determines the unambiguous range:

dmax =
c

2f0
, (6)

where the factor 2 in the denominator is due to the reflective

mode in which ToF cameras operate. The challenge is to

estimate the set of unknown target parameters {ak, φk}Pk=1

from frequency measurements of the shape given in Eq. (5).

Commercial PMD ToF cameras, as well as other ToF

sensors, use the so-called four phases algorithm to calculate

a single value of amplitude and phase per frequency, given

four measurements of the shape in Eq. (4) acquired at

φ ∈ {0◦, 90◦, 180◦, 270◦}. Under ideal conditions these four

measurements do not convey any further information than

a single complex measurement from Eq. (5) at the same

frequency. The four phases algorithm [21], [22] is a special

case of the so-called synchronous detection algorithm or

diagonal least-squares algorithm, which retrieves the phase

from measurements taken at equally spaced intervals in

phase domain. Clearly, the four phases algorithm only

delivers acceptable results in presence of MPI when a

single dominant bounce exists and akmax
� ak, ∀k �= ak,

since the algorithm only makes sense under the single-path

hypothesis. If this is not the case, as it occurs in presence

of strong reflective multipath, large depth errors appear,

seriously compromising the reliability of the ToF system.

We seek a method that retrieves {ak, φk}Pk=1 from a set of

measurements that are sums of complex exponentials at dif-

ferent frequencies. Since we target cameras, i. e., real-time

systems with restricted processing capabilities, approaches

based on a fine discretization of the depth domain, such

as the CS framework in [17], are considered unfeasible.

This is not only due to the unaffordable RAM requirements

needed to store the corresponding measurement matrix,

but also due to the fact that sparse recovery algorithms

exhibit a computational complexity that depends (at least

linearly) on n. Furthermore, it is a known problem that a

fine discretization, which is required to attain an accepta-

ble depth resolution, leads to highly-coherent measurement

matrices, compromising the feasibility of a classical CS

framework, where coherence plays a central role in ensu-

ring correct signal reconstruction. Fortunately, the matrix
pencil method [23] provides a simple way of estimating the

set of unknown parameters {ak, φk}Pk=1 in a closed form

from few frequency measurements (Eq. (5)). The method

has already been successfully demonstrated as parametric

recovery method in [18], [24] for solving fundamentally

the same inverse problem. The main advantages of using

closed-form parametric approaches like this one w.r.t, e. g.,

a classical CS framework are:

• Negligible RAM requirements.
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• Very low computational complexity, yielding an extre-

mely low execution time.

• Improved stability.

Unfortunately, the use of spectral estimation methods

like the matrix pencil method excludes the possibility of

modeling cross-correlation signals of custom (e. g., non-

sinusoidal) shape, differently from more flexible estimation

frameworks. This grants additional relevance to HC, since

the success of this method or, equivalently, the minimum

number of measurements that ensure the satisfaction of

some given error requirements, depends on the harmonic

distortion of the cross-correlation function.

IV. REALISTIC SIMULATION RESULTS

In this section we present the results of a series of

experiments focused on evaluating the performance of the

matrix pencil method [23] as parametric multipath estima-

tion algorithm for PMD and related ToF imaging sensors.

The simulation framework includes blocks for realistic

signal generation. This means that the illumination and pixel

control signals (i, pA, pB) used to obtain the samples of the

cross correlation function i⊗pA−B, i. e., the measurements,

are faithful to the real signal shapes in a recently-developed

PMD ToF sensor prototype. This prototype features the HC

scheme proposed in [9], [10]. Throughout the experiments

three different signal models are considered, namely:

• Ideal: illumination and control signals are sinusoidal.

• Realistic: illumination and control signals exhibit rea-

listic shapes based on our own hardware characteriza-

tion.

• Realistic with HC: based on the previous, with the pe-

culiarity that the illumination signal is now the effective
signal obtained when using HC up to the harmonic

order immediately below the actual bandwidth of our

system (100MHz).

Fig. 1 provides plots of some signals extracted from our

simulation framework, for frequencies of 10 and 20MHz,

which are relatively low in comparison to the system band-

width. For this reason, the effect of the HC is remarkable

(cf. Fig. 1c to Fig. 1b). As a consequence of HC, the cross-

correlation function is practically a pure sinusoidal function

(Fig. 1f), instead of a smoothed triangular function (Fig. 1e).

In our first series of experiments we set the number of

nonzero frequencies to acquire to a realistic value nfreq = 6
and consider all feasible number of paths to recover, namely,

1 ≤ P ≤ nfreq. For each case, statistics are computed

over 100 problem realizations, with ak and φk generated at

random. Due to the limited system bandwidth (100MHz)

we used a relatively low base frequency f0 = 10MHz. The

results of this experiment series are summarized in Table I.

Table I highlights the relevance of the HC for a correct

operation of the spectral method used to separate the in-

dividual paths. Using ideal signals, up to P = 3 paths

can be accurately separated, while using realistic signals

multipath estimation is not possible anymore. The use of HC

to obtain close-to-ideal illumination signals enables accurate

separation of up to P = 2 paths and a rough estimation

for P = 3. Since amplitudes and phases are randomly

generated, large errors in Table I aggregate many failure

cases, but also some successful path separations. Phases that
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Fig. 1: First row: simulated illumination signals obtained

for the ideal case (a) and the realistic cases without (b) and

with harmonic cancellation (c). Second row: realistically-

simulated PMD (A-B) control signal (d) and respective

cross-correlation functions without (e) and with harmonic

cancellation (f). Frequencies are 10 and 20MHz (legend in

(a)).

are well-separated are easier to retrieve, even in the presence

of large harmonic distortion. The remaining question is then

what is the minimum phase separation for which two paths

can still be separated. We study this in a second series of

experiments, in which we consider only P = 2 and generate

a1, a2 and φ1 at random, while the second phase is fixed

to φ2 = φ1 + 2π/2k, k ≥ 1. As before, we use nfreq = 6
and f0 = 10MHz. A statistical evaluation of the phase

error over 100 independent experiments in the shape of

histograms and survivor functions is given in Fig. 2, for

3 ≤ k ≤ 8. The cases k = 1 and k = 2 have been

omitted for brevity, but clearly the performance when using

HC tends to that registered for ideal signals as k → 1.

Note that using the ideal signal model yields successful

phase retrieval in all cases, regardless of the phase sepa-

ration, at least for Δφ ≤ 2π/28. The survivor functions in

the second row of Fig. 2 help identifying a phase separation

value for which a transition between successful separation

(up to some accuracy) and failure occurs. Note that for

k ≥ 5 this transition practically vanishes from the realistic

signal curves. Even for k < 5 both the histograms and sur-

vivor functions witness poor separation performance when

using the realistic signal model. Enabling HC extends the

multipath separation capability up to k = 7, for which the

histogram reveals a clearly inferior performance w.r.t. the

ideal case. For k ≥ 8 (Δφ ≥ 2.45×10−2 rad) using realistic

signals with HC still allows for certain concentration of the

phase error around zero, but errors are too large to consider

the path separation correct.

The third and last experiment series is intended to

evaluate the performance of the method in presence of

realistic noise in the measurements, for each of the signal

models considered. Furthermore, we compare the phase

errors obtained when applying the matrix pencil method to

estimate the individual paths to those obtained when using

the four phases algorithm to estimate a single (dominant)
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Signal
Model

# Paths
(P )

Norm. Reflectivity Errors Phase Errors [rad] Computation Time [s]
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Ideal
1 2.3592× 10−16 1.4544× 10−16 1.0381× 10−16 2.1081× 10−16 3.3214× 10−4 1.4182× 10−4

2 1.7050× 10−13 1.4179× 10−12 8.1683× 10−15 4.7195× 10−14 2.6477× 10−4 4.1051× 10−5

3 1.9324× 10−11 1.7638× 10−10 2.3593× 10−13 1.8790× 10−12 2.5079× 10−4 2.8764× 10−5

Real.
1 9.8342× 10−2 3.0739× 10−2 6.6168× 10−2 0.62732 1.6238× 10−4 6.3703× 10−5

2 7.8540 30.372 0.49378 0.90416 1.1596× 10−4 3.1017× 10−5

3 20.428 82.229 0.64092 0.70342 1.1499× 10−4 2.5671× 10−5

Real.
HC

1 8.8506× 10−4 5.2670× 10−4 1.0012× 10−4 4.5853× 10−5 1.5173× 10−4 6.4916× 10−5

2 1.3828 13.425 3.3164× 10−2 0.16927 1.0668× 10−4 2.8673× 10−5

3 26.658 2.1124× 102 0.10543 0.36812 1.0359× 10−4 2.0356× 10−5

TABLE I: Results of the multipath recovery experiments. The given errors are RMS values of (l2-normalized) reflectivity

errors and RMS values of phase errors, in radians. The last two columns provide computation time values. Mean and

standard deviations were computed over 100 independent experiments.

0 1 2 3
Phase Error [rad]

0

5

10

15

20

25

P
ro

ba
bi

lit
y

Ideal
Realistic
Realistic with HC

0 1 2 3 4
Phase Error [rad]

0

5

10

15

20

25

P
ro

ba
bi

lit
y

0 1 2 3 4
Phase Error [rad]

0

5

10

15

20

P
ro

ba
bi

lit
y

0 1 2 3 4
Phase Error [rad]

0

5

10

15

20

P
ro

ba
bi

lit
y

0 1 2 3 4
Phase Error [rad]

0

5

10

15

20

25

P
ro

ba
bi

lit
y

0 1 2 3 4
Phase Error [rad]

0

5

10

15

20

P
ro

ba
bi

lit
y

0 1 2 3 4
Phase Error [rad]

0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

l P
ro

ba
bi

lit
y

Ideal
Realistic
Realistic with HC

(a) Δφ = 2π/23

0 1 2 3 4
Phase Error [rad]

0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

l P
ro

ba
bi

lit
y

(b) Δφ = 2π/24

0 1 2 3 4
Phase Error [rad]

0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

l P
ro

ba
bi

lit
y

(c) Δφ = 2π/25

0 1 2 3 4
Phase Error [rad]

0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

l P
ro

ba
bi

lit
y

(d) Δφ = 2π/26

0 1 2 3 4
Phase Error [rad]

0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

l P
ro

ba
bi

lit
y

(e) Δφ = 2π/27

0 1 2 3 4
Phase Error [rad]

0

0.2

0.4

0.6

0.8

1

S
ur

vi
va

l P
ro

ba
bi

lit
y

(f) Δφ = 2π/28

Fig. 2: Statistical evaluation of the phase error for different phase separations between two paths, Δφ = 2π/2k, 3 ≤ k ≤ 8.

The first row contains the histograms of phase errors, while the second contains the corresponding survivor functions.

Legends in (a).

path. This is not a fair comparison, since the latter approach

is only valid under single-path hypothesis, but provides

a quantitative evaluation of the prospective phase error

reduction when substituting the latter algorithm by the mul-

tipath estimation method we consider in this work. In order

to take profit of the full bandwidth of our system and adopt

a more realistic setup, we set f0 = 20MHz and consider

P ∈ {1, 2} with nfreq ∈ {3, 5}. For each combination of

parameters, we consider, as before, 100 different realizations

of {ak, φk}Pk=1 and, for each of them, we compute statistics

over 105 measurement noise realizations of σ = 0.05, which

is realistic in the PMD case. We only present here results on

phase error statistics in Fig. 3. Mean values are represented

by stems, sorted in ascending order and the corresponding

standard deviation is encoded as the vertical radius of an

ellipse centered at the top of each stem. When the standard

deviation is larger than the mean the ellipse is not plotted.

Note that the matrix pencil method (first row of Fig. 3)

outperforms the classical four phases algorithm (second

row of Fig. 3) also in the single-path case, thanks to the

synergistic combination of measurements at different fre-

quencies. The four phases algorithm used a single frequency

(f0 = 20MHz). In the multipath case (P = 2) the four

phases algorithm exhibits a phase error that directly depends

on the separation between targets, since it has no path

separation capability. Differently, the matrix pencil method

succeed estimating the two interfering paths for 70 − 80%
of the cases for nfreq = 3 and 80 − 90% of the cases

for nfreq = 5 if HC is active. Without HC the results are

visibly inferior in all cases, even for the case P = 1, due

to uncorrected wiggling.

V. CONCLUSION

In this paper we have studied up to which extent a

simple spectral method such as the matrix pencil method
can be used to solve the (reflective) multipath estimation

problem in current PMD (and related) ToF imaging sensors.

We have studied the cases of measurements according to

ideal (sinusoidal) and realistic (non-sinusoidal) illumination

and control signals, including realistic effective illumination

signals resulting from an HC sensing scheme, which result

into almost ideal cross-correlation functions. This last signal

model is motivated by the development of a PMD ToF

sensor prototype with native HC capabilities and is of

relevance due to the fact that spectral methods are sensitive

to harmonic distortion.

Realistic simulations confirmed a large gap in the path

separation performance when HC is not active. Thanks to

HC, the spectral method considered is showed to allow

for very accurate estimation of P = 2 paths using as

few as 5 or 6 nonzero frequencies. This suggests that HC

plays a key role for the feasibility of this method as a

practical online MPI estimation tool in ToF cameras. This

number of frequencies is to be compared to the much

larger figures given in [17], [18]. Further simulations on

the minimum path separation for which two paths can be

successfully resolved showed that two paths with separation

as low as 2π/27 rad can still be successfully separated with
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(a) P = 1, nfreq = 3
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(b) P = 1, nfreq = 5
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(c) P = 2, nfreq = 3
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(d) P = 2, nfreq = 5

Fig. 3: Statistical evaluation of the effect of measurement noise in the phase calculus, both for the matrix pencil method (first

row) and the four phases algorithm (second row). Four different settings are considered, with f0 = 20MHz, P ∈ {1, 2}
and nfreq ∈ {3, 5}. For each setting, 100 parameter sets {ak, φk}Pk=1 are randomly generated. For each of them, statistics

over 105 measurement noise realizations of σ = 0.05 are computed. Mean values are given as stem height and standard

deviations as vertical radius of the ellipses at their top. Results are ordered from worst to best. Vertical scales are up to

π/2 for all cases except from those in (b), for which π/20 is used instead.

50% probability if HC is enabled. Disabling the HC leads

to much poorer phase resolution due to the effect of the

harmonics. In order to assess the feasibility of the method in

realistic operation conditions, one more series of simulations

was carried out to evaluate the behavior of the method in

the presence of realistic measurement noise. The results

showed that the matrix pencil method succeed estimating

two interfering paths for 70− 80% of the cases when using

only 3 nonzero frequencies and 80−90% of the cases when

using 5, if HC is active. Without HC transitions are observed

in the same ranges, but the accuracy of the phase estimation

gets largely degraded.
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