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ABSTRACT

This paper presents a new sparsification method for a very
recently introduced projection-based algorithm for the online
classification task in Reproducing Kernel Hilbert Spaces (RKHS).
To accommodate limited computational resources, sparsifi-
cation is achieved by a sequence of finite dimensional sub-
spaces, with dimensions upper bounded by a predefined buffer
length. In the case of a buffer overflow, the term that con-
tributes the least to the kernel series expansion is removed.
Such a sparsification scheme shows strong similarities with
the classical sliding window adaptive schemes. We validate
the proposed design by considering the adaptive equalization
problem of a nonlinear communication channel. Since the
fundamental tool of metric projections is used, and although
a classification problem is considered here, the method can be
readily extended to regression tasks, and to cost functionsthat
are in general non-differentiable.

1. INTRODUCTION

We consider theonline settingwheredatax ∈ Rm arrive se-
quentially (m ∈ Z>0, with R andZ>0 denoting the set of
real numbers and positive integers respectively). Time will
be denoted byn, which takes values from the set of all non-
negative integers:n ∈ Z≥0. Thus, the sequence of vectors
(xn)n∈Z≥0

⊂ Rm is assumed. Each data vector is drawn
from two classes and is thus associated to a labelyn ∈ {±1},
n ∈ Z≥0. Hence, the training sequenceD := (xn, yn)n∈Z≥0

is formed. Theclassification problem in the RKHSH is de-
fined as selecting a point̂f ∈ H and anoffset b̂ ∈ R such
thaty(f̂(x) + b̂) ≥ ρ, ∀(x, y) ∈ D, for somemarginρ ≥ 0
[1]. Define now the functiongf,b(x) := f(x) + b, ∀x ∈ Rm,
∀(f, b) ∈ H × R (where× denotes product space). If(f̂ , b̂)

is such thatygf̂ ,b̂(x) < ρ, then theclassifier(f̂ , b̂) fails to
achieve the marginρ at (x, y) and we say that the classi-
fier committed amargin error. A misclassificationoccurs at
(x, y) if ygf̂ ,b̂(x) < 0.

The study in [2, 3], based on the Adaptive Projected Sub-
gradient Method [4, 5], derived a convex analytic approach
[6, 7] for the online kernel-based classification. Given the
parameters(x, y, ρ), the set of all classifiers that do not com-
mit a margin error, i.e.,Π+

x,y,ρ := {û := (f̂ , b̂) ∈ H × R :

y(f̂(x) + b̂) ≥ ρ}, was shown to be a special closed convex
set (a closed halfspace) of the Hilbert spaceH × R. As a
result, the online classification task was viewed as the prob-
lem of finding a point that belongs to the intersection of an
infinite sequence of closed halfspaces

⋂

n≥n0
Π+

xn,yn,ρn
, for

somen0 ∈ Z≥0 [3].
In short, the algorithmic solution developed in [3] is as

follows: for anyn ∈ Z≥0, consider the index setJn ⊂ 0, n,
such thatn ∈ Jn, and wherej1, j2 := {j1, j1 + 1, . . . , j2}
for any integersj1 ≤ j2. An example of such an index set, to
be used below, is

Jn :=

{

0, n, if n < q − 1,

n− q + 1, n, if n ≥ q − 1,
∀n ∈ Z≥0, (1)

whereq ∈ Z>0 is a predefined constant denoting the number
of closed halfspaces to be concurrently processed at each time
instantn ≥ q − 1. In other words,Jn gives the freedom to
process halfspaces corresponding to time instants previous to
the currentn, showing thus the same principle as in Affine
Projection Algorithms (APA) [8]. Hence, for anyj ∈ Jn

and for anyn ∈ Z≥0, let Π+
j,n := {û = (f̂ , b̂) ∈ H × R :

yj(f̂(xj) + b̂) ≥ ρ
(n)
j }. Let also the weightω(n)

j ≥ 0 such

that
∑

j∈Jn
ω

(n)
j = 1. In other words, in order to assign

different significance to every closed halfspace, we associate
to each one of them a weightω(n)

j . For an arbitrary initial
offsetb0 ∈ R, consider as an initial classifier the pointu0 :=
(0, b0) ∈ H × R and generate the following point sequence
un := (fn, bn), n ∈ Z≥0, in H× R as follows;∀n ∈ Z≥0,

un+1 := un + µn(
∑

j∈Jn

ω
(n)
j PΠ+

j,n
(un) − un), (2a)
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where theextrapolation parameterµn lies in the rangeµn ∈
[0, 2Mn], with Mn ≥ 1, as can be seen in [3] and (2e) be-
low. If we use the closed form expressions for the projections
PΠ+

j,n
[3], (2a) breaks down to the following relations. Define

∀j ∈ Jn, ∀n ∈ Z≥0,

β
(n)
j := ω

(n)
j yj

(ρ
(n)
j − yjgn(xj))

+

1 + κ(xj ,xj)
, (2b)

where we letgn := gfn,bn
, and where(·)+ := max(0, ·).

Then the algorithmic process (2a) can be written equivalently
as follows;∀n ∈ Z≥0,

fn+1 = fn + µn

∑

j∈Jn

β
(n)
j κ(xj , ·), (2c)

bn+1 = bn + µn

∑

j∈Jn

β
(n)
j . (2d)

The parameterMn takes the following form after the proper
algebraic manipulations:

Mn :=











∑

j∈Jn
ω

(n)
j

[(ρ
(n)
j

−yjgn(xj))+]2

1+κ(xj ,xj)
∑

i,j∈Jn
β

(n)
i

β
(n)
j

(1+κ(xi,xj))
, if un /∈

⋂

j∈Jn
Π+

j,n,

1, otherwise.
(2e)

An algorithm to dynamically control the margin parameters
(ρ

(n)
j ), j ∈ Jn, n ∈ Z≥0, was also proposed in [3]. This

approach will also be followed for the present work, but with
the simplification thatρn := ρ

(n)
j , ∀j ∈ Jn, ∀n ∈ Z≥0,

i.e., the margin parameters corresponding to the concurrently
processed closed halfspaces are equal to each other.

It was shown in [3] that under mild conditions, the point
sequence(fn)n associated with recursion (2a), (strongly) con-
verges to anf∗ expressed by a kernel series expansion

f∗ =
∞
∑

n=1

γnκ(xn, ·) ∈ H, (3)

where (γn)n are real numbers, andκ(xn, ·) stands for the
kernel function of the RKHSH parameterized by the dataxn.
The point sequence in (2a) asymptotically minimizes also the
sequence of cost functions(l

xj ,yj ,ρ
(n)
j

), j ∈ Jn, n ∈ Z≥0,

where thesoft margin loss functionl is a standard penalty
function for classification problems [1]: given a pair(x, y) ∈
D and the marginρ, let

lx,y,ρ((f, b)) := (ρ− ygf,b(x))+, ∀(f, b) ∈ H × R.

Note that the soft margin loss function is a non-negative, con-
vex, and non-differentiable function.

To accommodate sparsification in (3), an additional closed
convex constraint (a closed ball) was imposed on the norm of
the estimates(fn)n [3]. The method in [3] produced superior
results, withlinear complexity, for an adaptive equalization

problem of a nonlinear communication channel, when com-
pared to stochastic gradient descent approaches like the clas-
sical kernel perceptron method as well as its soft margin gen-
eralization NORMA [9]. Since the above approach is based
on the fundamental notion of (metric) projections, it can be
straightforwardly extended to cover also regression tasks.

This paper introduces a new sparsification method for (3)
by the construction of a sequence of subspaces(Mn)n, and
by an upper boundLb on their dimensionsLn := dim(Mn),
i.e.,Ln ≤ Lb, ∀n ∈ Z≥0. It will be seen that such an upper
bound is equivalent to a buffer of lengthLb which contains
the coefficients of the kernel series expansion in (4). When-
ever a buffer overflow occurs, the coefficient that contributes
the least in (4) is removed. It turns out that such a sparsi-
fication scheme shows strong similarities with the classical
sliding window adaptive schemes [8].

In this paper we will construct a sequence of basesBn :=

{ψ
(n)
l }Ln

l=1, ∀n ∈ Z≥0, which will provide us with a sparsifi-
cation of the series expansion in (3) as

f̃n =

Ln−1
∑

l=1

γ̃
(n)
l ψ

(n−1)
l ∈Mn−1, ∀n ∈ Z≥0, (4)

where, in order to avoid any ambiguity, we setB−1 := {0},
M−1 := {0}, andL−1 := 1.

2. MATHEMATICAL PRELIMINARIES

2.1. Reproducing Kernel Hilbert Space (RKHS).

In this paper, the symbolH stands for an infinite dimensional,
in general, real Hilbert space equipped with an inner prod-
uct denoted by〈·, ·〉. The induced norm becomes‖f‖ :=
〈f, f〉1/2, ∀f ∈ H.

Assume a real Hilbert spaceH consisting of functions de-
fined onRm, i.e., f : Rm → R, for somem ∈ Z>0. The
functionκ(·, ·) : Rm × Rm → R is called areproducing ker-
nel of H if ∀x ∈ Rm and∀f ∈ H, f(x) = 〈f, κ(x, ·)〉.
In this case,H is called aReproducing Kernel Hilbert Space
(RKHS)[1].

Celebrated examples are i) the linear kernel, and ii) the

Gaussian kernelκ(x,y) := exp(− (x−y)t(x−y)
2σ2 ), ∀x,y ∈

Rm, whereσ > 0 (here the associated RKHS is of infinite
dimension [1]).

2.2. Metric and orthogonal projection mappings.

Given a pointf ∈ H and a closed convex setC ⊂ H, a way
to move fromf to a point inC is by means of themetric pro-
jection mappingPC ontoC, which is defined as the mapping
that takesf to theuniquelyexisting pointPC(f) of C such
that‖f − PC(f)‖ = inf{‖f − f ′‖ : f ′ ∈ C} [7] (see Fig. 1).

A well-known example of a closed convex set is aclosed
linear subspaceM [7]. The metric projection mappingPM is
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M

0

Π+

PΠ+(f)

f

H

PM(f)

Fig. 1. An illustration of the orthogonal projection mappingPM onto the
closed subspaceM of H, and of the metric projectionPΠ+ onto the closed
halfspaceΠ+ := {f̂ : 〈f̂ , f0〉 ≥ γ0}, for some givenf0 ∈ H and some
γ ∈ R. A closed halfspace, thus, stands for all those points ofH that lie in
the “nonnegative” side ofH defined by the boundary{f̂ : 〈f̂ , f0〉 = γ0}.

called noworthogonal projectionsince〈f − PM (f), f̂〉 = 0,
∀f̂ ∈M , ∀f ∈ H [7].

3. SPARSIFICATION BY A SEQUENCE OF FINITE
DIMENSIONAL SUBSPACES

The following methodology is in the same line with the study
in [10], where a monotonically increasing chain of linear sub-
spaces(Mn)n is derived:Mn ⊆ Mn+1, ∀n. If the sequence
of data vectors(xn)n lies in a compact set ofRm, then it
was shown in [10] that the dimensions of(Mn)n are upper
bounded by some positive integer, which is not available a-
priori. In what follows, and to accommodate limited compu-
tational resources, we a-priori set a boundLb for the dimen-
sions, leading thus to a sequence(Mn)n which may not be in
general monotonically increasing, i.e., we may have someN0

such thatMN0
* MN0+1.

We will introduce now the sparsification method by using
the constructive approach of mathematical induction on the
time indexn ∈ Z≥0.

3.1. Initialization (n = 0).

At the starting timen = 0, our basisB0 consists only of
the vectorψ(0)

1 := κ(x0, ·) ∈ H, i.e., B0 := {ψ
(0)
1 }. De-

fine alsoM0 := span(B0), wherespan stands for the linear
span of a collection of vectors. The description of the element
κ(x0, ·) by the basisB0 is obvious here:κ(x0, ·) = 1 · ψ

(0)
1 .

Hence, we can associate toκ(x0, ·) the one-dimensional vec-
tor θ

(0)
x0 := 1. Let alsoK0 := κ(x0,x0) > 0, so that

K−1
0 = 1/κ(x0,x0).

As for the initial classifier̃u0 := (f̃0, b̃0), we start with
f̃0 := 0, and with an arbitrary offset̃b0 ∈ R. We let thus
γ̃

(0)
1 := 0 in (4).

3.2. Time instant n− 1 ∈ Z≥0.

We assume, now, that at timen−1 ∈ Z≥0 the basisBn−1 :=

{ψ
(n−1)
l }

Ln−1

l=1 is available, whereLn−1 ∈ Z>0. Define also
the linear subspaceMn−1 := span(Bn−1), which is of di-
mensionLn−1.

At timen−1, the index setJn−1 = n− q, n− 1 is avail-
able (for simplicity we consider here only the casen ≥ q in
(1)). Available are also the kernel functions{κ(xj , ·)}j∈Jn−1

.
From now and on, to eachκ(xj , ·), we associate a vector

θ
(n−1)
xj ∈ RLn−1 , which gives us a pointk(n−1)

xj of Mn−1

that approximatesκ(xj , ·): ∀j ∈ Jn−1,

κ(xj , ·) 7→ k(n−1)
xj

:=

Ln−1
∑

l=1

θ
(n−1)
xj ,l ψ

(n−1)
l ∈Mn−1. (5)

Since our approach here is inductive, we assume that the vec-
tors{θ(n−1)

xj
}
Jn−1

j=1 are also available. Their construction will

be made clear in the next section. At time0, k(0)
x0 := ψ

(0)
1 , so

thatθ(0)
x0 := 1.

Consider also the matrixKn−1 ∈ RLn−1×Ln−1 whose
(i, j)-th component is(Kn−1)i,j := 〈ψ

(n−1)
i , ψ

(n−1)
j 〉, ∀i, j ∈

1, Ln−1. By our hypothesis that{ψ(n−1)
l }

Ln−1

l=1 constitute a
basis, and are thus linearly independent, it can be verified that
Kn−1 is a positive definite Gram matrix [11]. As such, the
existence of its inverseK−1

n−1 is guaranteed. The availability
of K−1

n−1 is also assumed here.
We assume, also, the existence of the set of coefficients

{γ̃
(n)
l }

Ln−1

l=1 which define our estimatẽfn by (4). Available is
also the offset̃bn.

3.3. At time n, a new data vector xn is available.

At time n, a new elementκ(xn, ·) of H becomes available.
SinceMn−1 is a finite dimensional linear subspace ofH, the
orthogonal projection ofκ(xn, ·) ontoMn−1 is well-defined
and given byPMn−1

(κ(xn, ·)) =
∑Ln−1

l=1 ζ
(n)
xn,lψ

(n−1)
l , where

the vectorζ(n)
xn ∈ RLn−1 satisfies the normal equations

Kn−1ζ
(n)
xn = c

(n)
xn , with c

(n)
xn given by [7]

c(n)
xn

:= [〈κ(xn, ·), ψ
(n−1)
1 〉, . . . , 〈κ(xn, ·), ψ

(n−1)
Ln−1

〉]t.

SinceK−1
n−1 was assumed available, we can compute

ζ(n)
xn

= K−1
n−1c

(n)
xn
. (6)

The distancedn of κ(xn, ·) fromMn−1 can be calculated as
follows:

d2
n := ‖κ(xn, ·) − PMn−1

(κ(xn, ·))‖
2

= κ(xn,xn) − (c(n)
xn

)tζ(n)
xn
,

where the proof of the second equality is omitted due to lack
of space. To visualizedn, refer to Fig. 1 and considerf as
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κ(xn, ·) andM asMn−1. Then,dn becomes‖f − PM (f)‖.
Recall that ifdn = 0, thenκ(xn, ·) ∈ Mn−1, andκ(xn, ·) is
linearly dependent on{ψ(n−1)

l }
Ln−1

l=1 . Fix, now, anα ≥ 0.

3.3.1. Approximate linear dependency (dn ≤ α).

If the distance satisfiesdn ≤ α, then we say thatκ(xn, ·) is
approximately linearly dependentonBn−1 = {ψ

(n−1)
l }

Ln−1

l=1 ,
and that it is not necessary to insertκ(xn, ·) into the new ba-
sisBn. That is, we keepBn := Bn−1, which clearly implies
thatLn := Ln−1, andψ(n)

l := ψ
(n−1)
l , ∀l ∈ 1, Ln. More-

over,Mn := span(Bn) = Mn−1. We also letKn := Kn−1,
andK−1

n := K−1
n−1.

Since the current time instant isn, the definition of the
index setJn in (1) suggests that we need the kernel func-
tions{κ(xj , ·)}j∈Jn

, and the vectors{θ(n)
xj }Jn

j=1 by (5). Till
now, all of the information was contained in the subspace
Mn−1. To transfer all of our information to the newly ob-
tained subspaceMn, we notice thatMn = Mn+1, so we let
θ

(n)
xj := θ

(n−1)
xj , ∀j ∈ Jn \ {n}. This implies thatk(n)

xj =

k
(n−1)
xj , ∀j ∈ Jn \ {n}. As for k(n)

xn we definek(n)
xn :=

PMn−1
(κ(xn, ·)), such that the correspondingθ(n)

xn becomes

the vectorζ(n)
xn given in (6).

As in [3], the coefficients which realize the metric projec-
tion mappings onto the closed halfspaces are

β̃
(n)
j := ω

(n)
j yj

(ρ
(n)
j − yj g̃n(xj))

+

1 + κ(xj ,xj)
,∀j ∈ Jn,∀n ∈ Z≥0,

(7a)
with g̃n := gf̃n,b̃n

, and the functiong is defined is Section 1.

The extrapolation coefficient̃µn ∈ [0, 2M̃n], where

M̃n :=











∑

j∈Jn
ω

(n)
j

[(ρ
(n)
j

−yj g̃n(xj))+]2

1+κ(xj ,xj)
∑

i,j∈Jn
β̃

(n)
i

β̃
(n)
j

(1+κ(xi,xj))
, if un /∈

⋂

j∈Jn
Π+

j,n,

1, otherwise.
(7b)

f̃n+1 := f̃n + µ̃n

∑

j∈Jn

β̃
(n)
j k(n)

xj

= f̃n + µ̃n

∑

j∈Jn

β̃
(n)
j

(

Ln
∑

l=1

θ
(n)
xj ,lψ

(n)
l

)

=

Ln−1
∑

l=1

γ̃
(n)
l ψ

(n−1)
l +

Ln
∑

l=1



µ̃n

∑

j∈Jn

β̃
(n)
j θ

(n)
xj ,l



ψ
(n)
l

(7c)

where the vectors(θ(n)
xj )j∈Jn

, ∀n ∈ Z≥0 are calculated as in
the previous section, and the offsets

b̃n+1 := b̃n + µ̃n

∑

j∈Jn

β̃
(n)
j , ∀n ∈ Z≥0. (7d)

By (7c), if we define

γ̃
(n+1)
l := γ̃

(n)
l + µ̃n

∑

j∈Jn

β̃
(n)
j θ

(n)
xj ,l, ∀l ∈ 1, Ln, (8)

we finally obtain

f̃n+1 =

Ln
∑

l=1

γ̃
(n+1)
l ψ

(n)
l . (9)

3.3.2. Approximate linear independency (dn > α), and no
buffer overflow (Ln−1 + 1 ≤ Lb).

On the other hand, ifdn > α, thenκ(xn, ·) is declared as
approximately linearly independenton Bn−1, and we add it
to our new basisBn. If we also haveLn−1 ≤ Lb−1, then we
can increase the dimension of the basis without exceeding the
memory of the buffer:Ln := Ln−1 + 1 andBn := Bn−1 ∪

{κ(xn, ·)}, such that the elements{ψ(n)
l }Ln

l=1 of Bn become

ψ
(n)
l := ψ

(n−1)
l , ∀l ∈ 1, Ln−1, andψ(n)

Ln
:= κ(xn, ·).

We also update the Gram matrix by

Kn :=

[

Kn−1 c
(n)
xn

(c
(n)
xn

)t κ(xn,xn)

]

. (10)

The factdn > α ≥ 0 guarantees that the vectors inBn are
linearly independent. In this way, the Gram matrixKn is
positive definite. It can be verified by simple algebraic ma-
nipulations that

K−1
n =

[

K−1
n−1 + ζ

(n)
xn (ζ

(n)
xn )t/d2

n −ζ
(n)
xn /d

2
n

−(ζ
(n)
xn )t/d2

n 1/d2
n

]

. (11)

SinceBn−1 ( Bn, we immediately obtain thatMn−1 (
Mn. Again the available information has to be transfered to
the new subspaceMn : ∀j ∈ Jn\{n}, k(n)

xj
:= k

(n−1)
xj

. Since
the cardinality ofBn is larger than the cardinality ofBn−1

by one, thenθ(n)
xj = [(θ

(n−1)
xj )t, 0]t, for any j ∈ Jn \ {n}.

The new vectorκ(xn, ·), being a basis vector itself, satisfies
κ(xn, ·) ∈ Mn so thatk(n)

xn := κ(xn, ·). Hence, it has the
following representation with respect to the new basisBn:
θ

(n)
xn = [0t, 1]t ∈ RLn .

We reproduce the formulas given in (7), but with

γ̃
(n+1)
l :=

{

γ̃
(n)
l + µ̃n

∑

j∈Jn
β̃

(n)
j θ

(n)
xj ,l, ∀l ∈ 1, Ln − 1,

µ̃nβ̃
(n)
n θ

(n)
xn,Ln

, l = Ln,
(12)

in order to obtain the estimatẽfn+1 as in (9).

3.3.3. Approximate linear independency (dn > α) and buffer
overflow (Ln−1 + 1 > Lb). The sliding window effect.

Now, assume thatdn > α and thatLn−1 = Lb. According
to the above methodology, we still need to addκ(xn, ·) to our
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new basis; defineB′
n := {ψ

(n)
l }Lb+1

l=1 := Bn−1∪{κ(xn, ·)}.
Since we have inserted a new vector in our basis, the Gram
matrix and its inverse are updated according to (10) and (11).
However, note that the cardinality of the augmentedB

′
n be-

comesLn−1 + 1 = Lb + 1, which exceeds our buffer’s mem-
oryLb.

As we did above, let∀j ∈ Jn \ {n}, k(n)
xj

:= k
(n−1)
xj

,

andk(n)
xn := κ(xn, ·). Thus,θ(n)

xj = [(θ
(n−1)
xj )t, 0]t, for any

j ∈ Jn \ {n}, andθ
(n)
xn = [0t, 1]t. Form the sum in (7c), and

define

η̃
(n+1)
l :=

{

γ̃
(n)
l + µ̃n

∑

j∈Jn
β̃

(n)
j θ

(n)
xj ,l, ∀l ∈ 1, Lb,

µ̃nβ̃
(n)
n θ

(n)
xn,Lb+1, l = Lb + 1,

Introduce then,

f̃ ′n+1 :=

Lb+1
∑

l=1

η̃
(n+1)
l ψ

(n)
l . (13)

Since this expansion hasLb + 1 terms, we have to discard
one of them in order to comply with the memory limitations,
i.e., with the lengthLb of the buffer. Note that all the terms
in (13) are linearly independent by definition. We decide to
remove the term with the smallest contribution to the estimate
f̃ ′n+1. However, to prevent the removal of the term that corre-
sponds to the currently received elementκ(xn, ·), we exclude
the indexLb + 1 from our search:

L∗ := arg min{|η̃
(n+1)
l |‖ψ

(n)
l ‖ : l ∈ 1, Lb}. (14)

Notice that since everyψ(n)
l is some pointκ(xnl

, ·), the norm

‖ψ
(n)
l ‖ above can be easily calculated as

√

κ(xnl
,xnl

).
Among the indexesL∗, we choose to discard the one that

is located the furthest from the current time instantn:

l∗ := min{l : l ∈ L∗}. (15)

In such a way, we stay in line with the basic strategy of time-
adaptive algorithms, where focus is put on data that describe
the recent signal changes. Form then the estimate,

f̃n+1 := f̃ ′n+1 − η̃
(n+1)
l∗

ψ
(n)
l∗

=

Lb
∑

m=1

η̃
(n+1)
lm

ψ
(n)
lm
, (16)

where the index set{lm}Lb

m=1 was obtained by removing the
indexl∗ from 1, Lb + 1, i.e.,{lm}Lb

m=1 := 1, Lb + 1\{l∗}. In

such a way, we can introduce the coefficients{γ̃
(n+1)
lm

}Lb

m=1 :=

{η̃
(n+1)
l }Lb+1

l=1 \ {η̃
(n+1)
l∗

}, and the basisBn := B
′
n \ {ψ

(n)
l∗

}.
By a simple re-enumeration of these coefficients and of the
new basis vectors, we obtain an estimate as in (9).

It remains to update the inverse of our Gram matrix. First,
define the permutation,

π(1, . . . , l∗ − 1, l∗, l∗ + 1, . . . , Lb + 1)

:= (l∗, 1, . . . , l∗ − 1, l∗ + 1 . . . , Lb + 1), (17)

0 50 100 150 200 250 300 350 400 450 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Number of Training Samples

M
i
s
c
l
a
s
s
i
f
i
c
a
t
i
o
n
 
R
a
t
e

APSM (a)

Concurrent APSM (a)

APSM (b)

Concurrent APSM (b)

Fig. 2. Tracking performance for the channel when the LTI system isH1.
The variance of the Gaussian kernel takes the value ofσ2 := 0.5. The
APSM(a) refers to (2a) with the closed ball sparsification methodology, i.e.,
[3], while APSM(b) refers to the present design. The buffer lengthLb :=

500, andα := 0.5.

together with its corresponding permutation matrixPπ [11]
whose(i, j)-th element is given byδπ(i),j , with δ being the
Kronecker’s delta. Then, let

[

rn ht
n

hn Hn

]

:= P t
πKnPπ,

and sincePπ is orthogonal,
[

sn pt
n

pn Pn

]

:= (P t
πKnPπ)−1 = P t

πK
−1
n Pπ.

TheK−1
n was updated at the beginning of this section by (11),

so that the above matrix can be easily computed. Since we
remove the term that contributes the least in our estimate, we
have to re-updateKn := Hn. It can be verified then by some
algebra (proof is omitted) thatK−1

n = H−1
n = Pn−

1
sn

pnpt
n.

Note that the proposed algorithm showsquadratic com-
plexity, with respect to the dimensionLn, due to the calcula-
tion of the orthogonal projection onto a subspaceMn in (6).
Another quadratic complexity calculation, but with respect to
the parameterq, is given in (7b). Since however,Ln is usu-
ally considered much larger thanq, and since we have upper-
boundedLn ≤ Lb, ∀n ∈ Z≥0, the overall complexity of our
algorithm is bounded byO(L2

b).

4. NUMERICAL RESULTS

The adaptive equalization problem for the nonlinear channel
in [3] is chosen for validation. The sparsification scheme of
Section 3 was applied also to the stochastic gradient descent
methods of kernel perceptron and NORMA [9]. The method
in [3] will be denoted by APSM(a), while the present one by
APSM(b).
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Fig. 3. A channel switch occurs at timen = 500, from H1 to H2, for the
LTI system. The buffer lengthLb := 150, with α := 0.9. The variance of
the Gaussian kernel function isσ2 := 0.5.

A sequence of numbers taking values from{±1} with
equal probability is fed into a Linear Time Invariant (LTI)
channel producing the signal(wn)n. Two transfer functions
for the LTI channel are available:Hl(z) := sin(θl)√

2
(1+z−2)+

cos(θl)z
−1, ∀z ∈ C, l = 1, 2, whereθ1 := 29.5◦ andθ2 :=

−35◦. In such a way, we can test our design under a sud-
den system change. We chose this example so that to study
not only the convergence properties but also the tracking per-
formance of the algorithm, and this is in line with the set of
examples used in adaptive filtering. The transfer functions
Hl(z) :=

∑2
i=0 hliz

−i, z ∈ C, l = 1, 2, were chosen as
above in order to simplify computations, since

∑2
i=0 h

2
li = 1,

l = 1, 2. The nonlinearity is given bypn := wn + 0.2w2
n −

0.1w3
n, ∀n. Gaussian i.i.d. noise with zero mean and SNR=

10dB with respect to(pn)n, is added to give the received sig-
nal (xn)n. As in [3], the data space is the EuclideanR4. In
order to work in an infinite dimensional RKHS, the Gaussian
(RBF) kernel was used (cf. Section 1). A number of 100 test
data were used for validation. We performed 100 realizations
and uniformly averaged the results.

In Fig. 2, we compare the methods APSM(a) and APSM(b).
The parameters were chosen such that corresponding curves
produce the same misclassification rate level. For both real-
izations, the concurrent APSM used aq = 16 for the index set
Jn, n ∈ Z≥0. The variance of the Gaussian kernel is set to
σ2 := 0.5, the radius of the closed ball in [3] toδ := 2, the pa-
rameterα := 0.5, and the buffer lengthLb := 500. The buffer
associated with the sparsification method APSM(a) was set
to 500. Also the extrapolation parametersµn = µ̃n = 1,
∀n, for all the APSM versions. We notice that the concurrent
APSM(b) converges faster than the APSM(a). Moreover, we
do not notice such big differences between the non-concurrent
versions of the APSMs for both types of sparsification.

In Fig. 3, α := 0.9, Lb := 150, q := 16, andµn =

µ̃n = 1, ∀n, for all the proposed here APSM versions. We
observe in this figure that the non-concurrent version of the
proposed method performs worse than NORMA. However, it
is clear that concurrent processing remains by far the most
robust approach since it achieves fast convergence as well as
low misclassification rate level; something also observed for
the sparsification scheme in [3].

5. CONCLUSIONS

A novel sparsification scheme was introduced for a very re-
cently developed projection-based online classification task in
Reproducing Kernel Hilbert Spaces. The algorithm is devel-
oped by using projection mappings onto special convex sets,
namely closed halfspaces and subspaces. Sparsification is
achieved via a sequence of finite dimensional subspaces, with
dimensions upper bounded by a buffer length. In the case
of a buffer overflow, we remove the term that contributes the
least in the resulting kernel series expansion. When appliedto
the adaptive equalization problem of a communication chan-
nel, the concurrent proposed scheme exhibited the best per-
formance when compared to its non-concurrent version, as
well as to classical and very recently introduced stochastic
gradient descent techniques.
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