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ABSTRACT The study in [2, 3], based on the Adaptive Projected Sub-

radient Method [4, 5], derived a convex analytic approach

This paper presents a new sparsification method for a ve , 7] for the online kernel-based classification. Given the

recen_t!y in_troduceq projection-_based algor_ithm for théren parametersx, y, p), the set of all classifiers that do not com-
classification task in Reproducing Kernel H|IbertSpacés+ﬂB).mit a margin error, i.edlt = {4 = (f.0) € H xR :

To accommodate limited computational resources, sparsifi- 9 iy, = 1= (f, _) €Tk
cation is achieved by a sequence of finite dimensional sub(/ () +b) = p}, was shown to be a special closed convex
spaces, with dimensions upper bounded by a predefined bufféft (& closed halfspace) of the Hilbert space< R. As a
length. In the case of a buffer overflow, the term that conJesult, the pnllne clgssmcatlon task was V|.ewed as_the-prob
tributes the least to the kernel series expansion is removelgM Of finding a point that belongs to the intersection of an
Such a sparsification scheme shows strong similarities witifinite sequence of closed halfspa¢as..,, I, . ,.. for

the classical sliding window adaptive schemes. We validat§®Meno € Z>o [3]-

the proposed design by considering the adaptive equaiizati /N short, the algorithmic solution developed in [3] is as
problem of a nonlinear communication channel. Since thdollows: for anyn € Z, consider the index sef,, C 0, n,
fundamental tool of metric projections is used, and altimoug Such thate € 7,,, and wherejy, jo == {ji,j1 +1,...,j2}

a classification problem is considered here, the methodean #or any integers; < j,. An example of such an index set, to
readily extended to regression tasks, and to cost functimts b€ used below, is

are in general non-differentiable.

0,n ifn<g—1
Ty = {"1 _f" ! | ez ()
1. INTRODUCTION n—q+1Ln, tnz=qg-1,
whereq € Z~ is a predefined constant denoting the number
quentially ¢n € Z-o, with R andZ-, denoting the set of of closed halfspaces to be concurrently processed at eaeh ti

real numbers and positive integers respectively). Timé willnStantn = ¢ — 1. In other words,7, gives the freedom to
be denoted by, which takes values from the set of all non- process halfspaces corresponding to time instants prewou

negative integersn € Z=,. Thus, the sequence of vectors (N€ Currents, showing thus the same principle as in Affine
(Zn)nez., C R™ is assumed. Each data vector is drawnPrc(;Jectlon Algonthmsl (Apﬁ‘) FS]' Hence, for any ¢ ‘77
from two classes and is thus associated to a lgbel {1}, ~and foranyn € Zzo, letlly, == {i = (f,b) € H xR :
n € Z>o. Hence, the training sequen®e:= (z,, yn)nez.,  ¥i(f(x;) +0) = pgn)}. Let also the weigh&;](.") > 0 such
is formed. Theclassification problem in the RKHE is de-  that s w§n) — 1. In other words, in order to assign

fined as selecting a point € H and anoffsetb € R such gifferent significance to every closed halfspace, we aaseci
thaty(f(z) +b) = p, V(x,y) € D, for somemarginy > 0 45 gach one of them a weight”. For an arbitrary initial
[1]. Define now the function s (2) := f(#) +b, V& € R™,  ofset < R, consider as an initial classifier the poing :—
V(f,b) € H x R (wherex denotes product space). (If,b)  (0,4,) € H x R and generate the following point sequence
is such thatyg; ;(x) < p, then theclassifier(f,b) fails to v, := (f,,,b,), n € Z, in H x R as follows;¥n € Zx,
achieve the margip at (x,y) and we say that the classi-

fier committed amargin error. A misclassificatioroccurs at Unt1 i= Un + fn Z w(")pm (tn) = un), (2a)
(z,y) if ygs ;(x) <O0. jez. "

We consider thenline settingvheredatax € R™ arrive se-
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where theextrapolation parameter., lies in the range.,, €  problem of a nonlinear communication channel, when com-
[0,2M,,], with M,, > 1, as can be seen in [3] and (2e) be- pared to stochastic gradient descent approaches likedke cl

low. If we use the closed form expressions for the projestionsical kernel perceptron method as well as its soft margin gen
PHL [3], (2a) breaks down to the following relations. Define eralization NORMA [9]. Since the above approach is based

Vi € T, Vn € Ty, on the fundamental notion of (metric) projections, it can be
B straightforwardly extended to cover also regression tasks
(n) (n) (pg,") —yign(z;))*T This paper introduces a new sparsification method for (3)
B = wiyi T Fr(mnm) (2b) by the construction of a sequence of subspddds),,, and
7 by an upper bound.;, on their dimensiong.,, := dim(M,,),
where we letg, := gy, 5,, and where(-)t := max(0, -). i.e., L, < Ly, Vn € Z>¢. It will be seen that such an upper
Then the algorithmic process (2a) can be written equivlent bound is equivalent to a buffer of length, which contains
as follows;vn € Z, the coefficients of the kernel series expansion in (4). When-
ever a buffer overflow occurs, the coefficient that contelgut
far1 = Futpn > B s, ), (2c)  the least in (4) is removed. It turns out that such a sparsi-
€T fication scheme shows strong similarities with the classica
- (n) sliding window adaptive schemes [8].
bnt1 = bn + pin j; B (2d) In this paper we will construct a sequence of ba8gs=

{1/)1(”)}1@1, Vn € Z>o, which will provide us with a sparsifi-
The parametei,, takes the following form after the proper cation of the series expansion in (3) as
algebraic manipulations:

Lyp—1
() 16§ —vgon (2 )+ o= 3o ATV € My, Vnelx, (&)
Y jedn ¥ Trr(e) ®;) if u, ¢ . I+ =1 a
M =S, 0, 8087 (n(iay)) T e T
1, otherwise where, in order to avoid any ambiguity, we €t ; := {0},

(2¢) M_,:={0},andL_; := 1.
An algorithm to dynamically control the margin parameters

(p)), § € Jn, n € Ty, Was also proposed in [3]. This 2. MATHEMATICAL PRELIMINARIES

approach will also be followed for the present work, but with

the simplification thatp,, := pg-"), Vi € Jn, Vn € Z>o, 2.1. Reproducing Kernel Hilbert Space (RKHS).

i.e., the margin parameters corresponding to the condiyren ) o .
processed closed halfspaces are equal to each other. In this paper, the symb@{ stands for an infinite dimensional,

It was shown in [3] that under mild conditions, the point " 9eneral, real Hilbert space equipped with an inner prod-

sequencéf, ), associated with recursion (2a), (strongly) con-Uct denoted by, ). The induced norm becoméd| :=

i - (f, )2, Vf € H.
verges to ary, expressed by a kernel series expansion ) o )
Assume a real Hilbert spaéé consisting of functions de-

> fined onR™, i.e., f : R™ — R, for somem € Z-o. The
fo=2_ mhiln,) EH, (3)  functions(-,-) : R™ x R™ — R is called areproducing ker-
n=1 nelof H if Y& € R™ andVf € H, f(x) = (f,k(x,")).
where (y,,),, are real numbers, ane(z,,, ) stands for the In this case} is called aReproducing Kernel Hilbert Space
kernel function of the RKH${ parameterized by the datg,.  (RKHS)[1]. ) ) .
The point sequence in (2a) asymptotically minimizes algo th Celebrated examples are i) the I|netar kernel, and ii) the
sequence of cost functiorf, ), j € Jn, 1 € Zxo, Gaussian kernek(z,y) = em#%), Ve,y €
M R™, wheres > 0 (here the associated RKHS is of infinite

where thesoft margin loss function is a standard penalty .
dimension [1]).

function for classification problems [1]: given a pé&it, y) €
D and the margin, let

— +

Lowo((£:0)):= (o —wgrpl@)™, V(f,0) € H xR Given a pointf € H and a closed convex s€t C H, a way
Note that the soft margin loss function is a non-negative; co to move fromf to a point inC' is by means of thenetric pro-
vex, and non-differentiable function. jection mappingP- onto C, which is defined as the mapping

To accommodate sparsification in (3), an additional closethat takesf to the uniquelyexisting pointPq(f) of C' such
convex constraint (a closed ball) was imposed on the norm dhat|| f — Pc(f)|| = inf{||f — f'|| : /' € C}[7] (see Fig. 1).
the estimatesf,,),, [3]. The method in [3] produced superior A well-known example of a closed convex set islased
results, withlinear complexity for an adaptive equalization linear subspacé/ [7]. The metric projection mapping,, is

2.2. Metric and orthogonal projection mappings.
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3.2. Timeinstant n — 1 € Zx.

We assume, now, that at time- 1 € Z> the basiss,,_, :=

{wl(”’l) lL:"fl is available, wherd.,, | € Z~(. Define also
the linear subspacg/,,_; := span(%,_1), which is of di-
mensionL,, 1.

Attimen—1, the index se{/,,_, = n — q,n — 1is avail-
able (for simplicity we consider here only the case> ¢ in
(1)). Available are also the kernel functiofss(x;, ) }je 7, _, -
From now and on, to each(x;,-), we associate a vector
65" e RE»—1, which gives us a pointy " of M, ,
that approximates(x;,-): Vj € Jn—1,

Fig. 1. Anillustration of the orthogonal projection mappitigy; onto the
closed subspac®/ of 7, and of the metric projectiof’;+ onto the closed

halfspacell™ := {f : (f, fo) > ~0}, for some givenf, € H and some

Lnfl

7 € R. A closed halfspace, thus, stands for all those pointd ¢hat lie in . (n—1) ._ (n—1) ,(n—1)

the “nonnegative” side of{ defined by the boundaryf : (f, fo) = 10} K(:BJ’ ) = k‘m]_ T Z ewj»l z/Jl € My (5)
=1

Since our approach here is inductive, we assume that the vec-

called noworthogonal projectiorsince(f — Pu(f), f) =0, tors {65V}, are also available. Their construction will

VfeMVferTl be made clear in the next section. At tim,elcé%) = EO), S0

thatol?) = 1.

Consider also the matri¥X,,_; € RIn-1*Ln-1 whose
(i, j)-th componenti§fc, _1);,; := (wi" ", w!" V), vi, j e
1,L, 1. By our hypothesis thafy" "} """ constitute a
basis, and are thus linearly independent, it can be vertfied t
K, is a positive definite Gram matrix [11]. As such, the
existence of its invers&, ', is guaranteed. The availability
of K !, is also assumed here.

We assume, also, the existence of the set of coefficients
ﬁl") ZL:”fl which define our estimatg, by (4). Available is

3. SPARSIFICATION BY A SEQUENCE OF FINITE
DIMENSIONAL SUBSPACES

The following methodology is in the same line with the study
in [10], where a monotonically increasing chain of linean-su
spacegM,,), is derived:M,, C M, 1, Vn. If the sequence
of data vectorgx,), lies in a compact set dR"™, then it
was shown in [10] that the dimensions @¥/,,),, are upper
bounded by some positive integer, which is not available a
priori. In what follows, and to accommodate limited compu-2lS0 the offseb,,.

tational resources, we a-priori set a boungdfor the dimen-

sions, leading thus to a sequeridé,,),, which may notbe in  3.3. At timen, a new data vector x,, is available.

eneral monotonically increasing, i.e., we may have sdine . .
9 y g y i At time n, a new elemenk(x,,, -) of H becomes available.

sueh thaM.NO & Mygs1. L _ SinceM,,_, is a finite dimensional linear subspacetofthe

We will introduce now the sparsification method by usingorthogonal projection of (z,, -) onto M,,_; is well-defined
the constructive approach of mathematical induction on th%nd iven byP (5(2n, ")) = L1 C(n) ¢(n—1) where
time indexn € Z~,. 9 My \F\Tns 7)) = 2=1 Sa, 11 '

the vectorcl”) € RL»-1 satisfies the normal equations
Kpo1CS9 = e with (") given by [7]

C(mrz) = [(k(xn, ), 5"—1)>7 o (B, ), gi—_i)”t

SinceK !, was assumed available, we can compute

3.1. Initialization (n = 0).

At the starting timen. = 0, our basis®, consists only of
the vectorp\”) := k(xo, ) € H, i.e., By = {\”}. De-
fine alsolM, := span(B,), wherespan stands for the linear Cé:) = K;EIC(E?. (6)
span of a collection of vectors. The description of the eleme

k(z0, -) by the basigB, is obvious herek(z,-) = 1-¢”.  The distancel,, of x(z,, ) from M, _, can be calculated as
Hence, we can associatert6z,, -) the one-dimensional vec- follows:

tor 0;%) = 1. LetalsoKy := k(xg,xo) > 0, so that d2 = ||k(xp, ) — P, (K(x0, )|

Kyt =1/k(z0,x0). " ’ (:L)_lt (n) 7
_ As for the initial classifieriiy == (fo,bo), we start with = K@, Tn) = (€2,)) Ca

fo := 0, and with an arbitrary offsefiy € R. We let thus where the proof of the second equality is omitted due to lack
%0) :=0in (4). of space. To visualizd,,, refer to Fig. 1 and considef as
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k(xyn, ) andM asM,_,. Then,d,, becomes|f — Py (f)].
Recall that ifd,, = 0, thenk(x,,, ) € M,,_1, andx(x,, ) is
linearly dependent or{nbl("’l)}f:’”‘fl. Fix, now, ana > 0.

3.3.1. Approximate linear dependendy, (< «).

If the distance satisfie$, < «, then we say that(x,, ) is

approximately linearly dependeob®s,,_; = {w(" 2 lL:"fl,
and that it is not necessary to inseft,,, -) into the new ba-
sis®B,,. Thatis, we keefB,, := B,,_1, which clearly implies
that L, := L, 1, and™ = """ vi € T,L,,. More-
over,M,L := span(B,,) = M,,_1. We also IetK,L = K,_1,
andK;':= K !

Since the current time instant ig the definition of the
index set7, in (1) suggests that we need the kernel func-

tions{x(x;,)};es,, and the vectorséec(c’j }J'L by (5). Till

now, all of the information was contained in the subspacenemory of the bufferL,, := L,_; + 1 andB,,

M, _1. To transfer all of our information to the newly ob-
tained subspac#/,,, we notice thatV/,, = M,, 11, SO we let

00" .= 65"V vj € 7, \ {n}. This implies thatc{") —
KD V5 € T\ {n}. As for kY we definek{) =
PM,H( (xn,-)), such that the correspondnﬂén becomes
the vectorc™) given in (6).
As in [3], the coefficients which realize the metric projec-
tion mappings onto the closed halfspaces are

(04" = 3G (;))*
1+ (scj,a:])

(n)

J

BJ(. Vj € Tn,Vn € Zxo,
(7a)
with g, := 95, b and the functiory is defined is Section 1.

The extrapolation coefficiert, € [0, 2.M,,], where

J

)y g () 12

[(p>
Yiea, ‘*’J('n) : T+r(m; o)) f
v L 1% if w, o TIf
Mo= 1§ Toremn BB wntonay 1 E ez,

1, otherwise

(70)

fn+1 = fn + fin Z Bj(n)kgj)
= fn + ,an Z Bj(n)

]ejn
JETn

Ly
Z e 30 e 2 B | el
=1

JE€EITn
(7c)

where the vectoreegj))jejn, Vn € Z>( are calculated as in
the previous section, and the offsets

Bn+1 = Bn + fin Z @J(n)’

JETn

Vn € Zso.  (7d)
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By (7¢), if we define

F = A i > B, Ve T L, (8)
JEITn
we finally obtain
s = Z%““ ©)

3.3.2. Approximate linear independency, (> «), and no
buffer overflow {,,_1 + 1 < Ly).

On the other hand, ifl, > «, thenk(x,,-) is declared as
approximately linearly independeotn %5,,_;, and we add it
to our new basi®s,,. If we also havel,,_1 < L, —1, thenwe
can increase the dlmenS|on of the basis Wlthout exceedig th
=%, 1U
{k(x,,)}, such that the elemen(sbl")}l:"1 of %n become
o = W e T Ly, andy ) = k().

We also update the Gram matrix by

Koo Kot o (10)
(ca,))t K(Tn, Tn)

The factd,, > « > 0 guarantees that the vectorsh, are
linearly independent. In this way, the Gram matf, is
positive definite. It can be verified by simple algebraic ma-
nipulations that
o lKn e
! 1/d3,

1 +C:cn ( fcn )t /dz

—(¢&y /a2

SinceB,,_1 € B,,, we immediately obtain that/,,_, C
M,,. Again the available information has to be transfered to
the new subspac¥/,, : Vj € 7, \ {n}, k:g(,]j) = kfc’j’l). Since
the cardinality ofB,, is larger than the cardinality ¢B8,,_;
by one, therﬂé’j) = [(0&’;’1))20]2 foranyj € J, \ {n}.
The new vectok(x,, -), being a basis vector itself, satisfies
K(xn,) € M, so thatkl” := k(z,,-). Hence, it has the
following representation with respect to the new basis:
05 = [0',1]" € RL»,

We reproduce the formulas given in (7), but with

~(n+1
o 1

in order to obtain the estimafg _; as in (9).

] EEY

:Yl(n) + ﬂ” Z]EJL 6

nﬁ(n)o(n)

T,

5(m ()

@,

Viel, L, —1,

Ly’ l = Ln7

(12)

3.3.3. Approximate linear independendy, > «) and buffer
overflow (U,,_1 + 1 > L;). The sliding window effect.

Now, assume thatf,, > « and thatl,,_; = L;. According
to the above methodology, we still need to ada,,, -) to our



. : n)yLy+1 0.45 T T T
new basis; defing’, := {¢™ e = B, U {k(my, )} T e @

Since we have inserted a new vector in our basis, the Gram | —— Concurrent APSH (a)
matrix and its inverse are updated according to (10) and (11) ARSI (b)

—+— Concurrent APSM (b)

However, note that the cardinality of the augmerfi&d be- omf
comesL,,_1 +1 = Ly + 1, which exceeds our buffer's mem-
ory Ly,

As we did above, levj € J, \ {n}, k&) = kY,
andky = k(. -). Thus,e(m’j) = [(9,(,,2_1))20?, for any
j € J,\ {n},and6l” = [0, 1]t. Form the sum in (7c), and
define

Misclassification Rate

~(n ~ 2(n) p(n) —
) {w( i Y jeq, B0, V€T T,
{ T ) 5 pm)pn) _
HnPn ewn7Lb+1’ = Lb + 1’ 0.05 ! ; ==
0 50 100 150 200 250 300 350 400 450 500
Introduce then, Number of Training Samples
Ly+1 - . .
= _(n+1) , (n) Fig. 2. Tracking performance for the channel when the LTI systeifiis
Jr1 = Z Wi I (13)  The variance of the Gaussian kernel takes the valueZof= 0.5. The
=1 APSM(a) refers to (2a) with the closed ball sparsificationtradblogy, i.e.,

. . . . [3], while APSM(b) refers to the present design. The bufeergthL, :=
Since this expansion has, + 1 terms, we have to discard 500 anda := 0.5.

one of them in order to comply with the memory limitations,
i.e., with the lengthl; of the buffer. Note that all the terms
in (13) are linearly independent by definition. We decide t
remove the term with the smallest contribution to the estma
f’ﬂ. However, to prevent the removal of the term that corre

n

sponds to the currently received elemefit,,, -), we exclude {

giogether with its corresponding permutation matfix [11]
whose(i, j)-th element is given by ;) ;, with ¢ being the
Kronecker’s delta. Then, let

rn  h

the indexL; + 1 from our search: h, Hn:| = PLK, P,

. ~(n+1 n T 7
L, = argmin{|7" V| |lp| 1 e Ly}, (14) and sinceP, is orthogonal,

. . (n) ; . ) "
No(t:ge that since every, . is some poink(x,,, ), the norm sn Ph] _ (PLE,P) ' = PLEP,.
||4;™|| above can be easily calculated g&: (.., , .., )- w Pn
Among the indexeg£ .., we choose to discard the one that o ) _
is located the furthest from the current time instant The K, ' was updated at the beginning of this section by (11),
so that the above matrix can be easily computed. Since we
l, :=min{l : | € L,}. (15)  remove the term that contributes the least in our estimate, w

- . . . __have to re-updaté&’,, := H,,. It can be verified then by some
In such a way, we stay in line with the basic strategy of time- . . - 1 1 ;
. . . - algebra (proof is omitted) thdt,,* = H, " = P, — —p,p.,.
adaptive algorithms, where focus is put on data that desscrib . Sn.
Note that the proposed algorithm shoggadratic com-

the recent signal changes. Form then the estimate, plexity, with respect to the dimensiah,,, due to the calcula-

~ ~ Ly tion of the orthogonal projection onto a subspddg in (6).
Fot1 o= flopr — ﬁl(f“)wl(f) = Z ﬁl(:;“)wlz), (16)  Another quadratic complexity calculation, but with resytec
m=1 the parameted, is given in (7b). Since howevel,, is usu-

ally considered much larger thanand since we have upper-
boundedL,, < Ly, Vn € Z>¢, the overall complexity of our
algorithm is bounded bg)(L3).

where the index seftl,, } 2*_, was obtained by removing the
indexl, from T, Ly + 1,i.e.,{l,m} 2, := 1, Ly + 1\{l.}. In

such away, we can introduce the coefficie{r’figfrl)}#’:1 =

{7\ (i}, and the basiss,, = 37, \ {v;™}. 4. NUMERICAL RESULTS

By a simple re-enumeration of these coefficients and of the

new basis vectors, we obtain an estimate as in (9). The adaptive equalization problem for the nonlinear channe
It remains to update the inverse of our Gram matrix. Firstjn [3] is chosen for validation. The sparsification scheme of

define the permutation, Section 3 was applied also to the stochastic gradient descen

B methods of kernel perceptron and NORMA [9]. The method
Tl = Lol 1 Ly +1) in [3] will be denoted by APSM(a), while the present one by
= (l*,l,...,l*—1,l*+1...,Lb+1), a7) APSM(b).
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0.45 T

—e— Perceptron

—— NORMA

—— APSM

—— Concurrent APSM

0.4

Misclassification Rate

1(;00
Number of Training Samples

500 1500

Fig. 3. A channel switch occurs at time = 500, from H; to Ha, for the
LTI system. The buffer lengtth, := 150, with « := 0.9. The variance of
the Gaussian kernel functiondg := 0.5.

A sequence of numbers taking values frgm1} with
equal probability is fed into a Linear Time Invariant (LTI)
channel producing the signéb,,),,. Two transfer functions
for the LTI channel are availablé{;(z) := %(1—1—{2)—&-

cos(0;)z71,Vz € C, 1 = 1,2, where; := 29.5° andfs :

—35°. In such a way, we can test our design under a sud-
den system change. We chose this example so that to stu
not only the convergence properties but also the trackimng pe
formance of the algorithm, and this is in line with the set of [2]
examples used in adaptive filtering. The transfer functions

Hy(2) == Y27 yhuz"% 2 € C, 1 = 1,2, were chosen as
above in order to simplify computations, singéfzo hi =1,

I = 1,2. The nonlinearity is given by,, := w,, + 0.2w? —
0.1w?, Vn. Gaussian i.i.d. noise with zero mean and SNR
10dB with respect tdp,, )., is added to give the received sig-
nal (z,),. As in [3], the data space is the EuclideRf. In

order to work in an infinite dimensional RKHS, the Gaussian
(RBF) kernel was used (cf. Section 1). A number of 100 test
data were used for validation. We performed 100 realization

and uniformly averaged the results.

In Fig. 2, we compare the methods APSM(a) and APSM(b).
The parameters were chosen such that corresponding curvé€
produce the same misclassification rate level. For both real

izations, the concurrent APSM used a 16 for the index set

Jn, 1 € Z>o. The variance of the Gaussian kernel is set to

o2 := 0.5, the radius of the closed ball in [3] to:= 2, the pa-
rametery := 0.5, and the buffer lengtli;, := 500. The buffer

associated with the sparsification method APSM(a) was se{ ]

to 500. Also the extrapolation parameters = i, = 1,

i, = 1, Vn, for all the proposed here APSM versions. We
observe in this figure that the non-concurrent version of the
proposed method performs worse than NORMA. However, it
is clear that concurrent processing remains by far the most
robust approach since it achieves fast convergence as svell a
low misclassification rate level; something also obsenad f
the sparsification scheme in [3].

5. CONCLUSIONS

A novel sparsification scheme was introduced for a very re-
cently developed projection-based online classifica@sk tn
Reproducing Kernel Hilbert Spaces. The algorithm is devel-
oped by using projection mappings onto special convex sets,
namely closed halfspaces and subspaces. Sparsification is
achieved via a sequence of finite dimensional subspacés, wit
dimensions upper bounded by a buffer length. In the case
of a buffer overflow, we remove the term that contributes the
least in the resulting kernel series expansion. When applied
the adaptive equalization problem of a communication chan-
nel, the concurrent proposed scheme exhibited the best per-
formance when compared to its non-concurrent version, as
well as to classical and very recently introduced stocbasti
gradient descent techniques.
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