EXTENDED RECURSIVE LEAST SQUARES IN RKHS

Weifeng Liu and José C. Principe

Electrical and Computer Engineering, University of Florida

ABSTRACT

In this paper, a kernelized version of the extended recursive
least squares (Ex-RLS) algorithm, along with its Kalman filter
interpretation will be presented. The center piece of this de-
velopment is a reformulation of the Ex-RLS algorithm which
only requires inner product operations between input vectors.
Thus, the kernel trick can be readily applied to obtain non-
linear versions in reproducing kernel Hilbert spaces (RKHS).
In so doing, we arrive at extended RLS algorithms with ker-
nels that are better suited for tracking the state-vector of gen-
eral linear state-space models in the feature space, when com-
pared with a fixed state model in the standard recursive least
squares. The proposed kernel Ex-RLS is applied to a nonlin-
ear Rayleigh multipath channel tracking problem. We show
that the proposed algorithm is able to outperform the standard
kernel RLS in a fading environment.

Index Terms— Extended recursive least squares, Kalman
filter, kernel RLS, kernel Kalman filter.

1. INTRODUCTION

In recent years, there has been increasing interest to combine
kernel methods and adaptive filtering techniques to achieve

computationally efficient online extensions with nonlinear mod-

eling capabilities, such as kernel least-mean-square (LMS)
[1], kernel leaky LMS [2], kernel recursive least squares (RLS)
[3] and sliding-window kernel RLS [4].

In this paper, we present a general variant of the kernel
RLS, namely the kernel extended RLS (Ex-KRLS) with a
very appealing feature. Besides providing a generalization
of the KRLS and exponentially-weighted KRLS, the state-
vector model of the Ex-KRLS allows tracking variations in
the weight vector with linear state-space recursions. Due to
the close relationship between the Ex-RLS [5] and the Kalman
filter [6], it may be possible to derive a kernel Kalman filter,
which corresponds to a nonlinear state filter in the input space.
This possibility opens a new research line in the area of non-
linear Kalman filtering [7, 8, 9, 10].

This work is partially supported by NSF Grant ECS-0601271.

24

2. A REVIEW ON RLS AND KERNEL RLS

With a sequence of training data {u(t), d(t)}:Z1 up to time
i — 1, the recursive least squares algorithm estimates the op-
timal weight w(i¢ — 1) by minimizing the following cost

i—1
Jnin > ld(5) —u()”
j=1

Here u(t) is the L x 1 regressor input, d(t) is the desired
response, and A is the regularization parameter. When a new
input-output pair {u(¢), d(i)} becomes available, the optimal
weight w (i) which is the minimizer of

m1n2|d

can be calculated recursively from the previous estimate w (i—
1) without solving (2) directly. The standard recursive least
squares (RLS) is as follows [7]:

wli = D + Alw(i = DI (1)

Tw@)P + Aw@)* @

Algorithm 1 The RLS algorithm (RLS)

Start with w(0) = 0, P(0) = A™'1
iterate for7 > 1

roi) =1+ <>TP<z—1>u<>

Ky (i) = P(i — u(i)/r (i)

e(i) = d(i) - <> wii— 1)

w(i) = w(i — 1) + ky(i)e(i))
P(i) = [P(i — 1) — P(i — L)u(i)

u(i) P (i — 1)/re(i)]

Notice that the RLS distributes the computation load evenly
into each iteration, which is very appealing in applications
like channel equalization [5] where data is available sequen-
tially over time.

The conventional kernel methods such as regularization
networks [11], support vector machines [12] are formulated in
a batch mode and are computationally expensive. Therefore
efficient online alternatives are much needed to better address
the issue especially in applications of nonlinear adaptive fil-
tering and digital communications. Here, we mainly focus on

the kernel recursive least squares [3] and give a brief review
on it to better distinguish and appreciate our contribution in
this paper. Only the main idea is presented for simplicity and
please refer to [3] for details.

A kernel [13] is a continuous, symmetric, positive-definite
function x : U x U — R. U is the input domain, a compact
subset of R”. The commonly used kernels include the Gaus-
sian kernel (4) and the polynomial kernel (5):

“4)
®)

The Mercer theorem [13], [14] states that any kernel x(u, u’)
can be expanded as follows:

=3 G () (w)
=1

where ¢; and ¢; are the eigenvalues and the eigenfunctions
respectively. The eigenvalues are non-negative. Therefore, a
mapping can be constructed as

k(u,u’) = exp(—alju — u'[]?)

k(u, ') = (uTu’ +1)P

(6)

p:U—-TF
p(u) = [Vergr(a), Veaga(u), ..]
such that
k(u,u') = p(u) p(u'))

By construction, the dimensionality of F is determined by the
number of strictly positive eigenvalues, which can be infinite
in the case of the Gaussian kernel.

We utilize this theorem to transform the data u(z) into the
feature space F as p(u(7)) and interpret (7) as the usual dot
product. The feature space F is a reproducing kernel Hilbert
space (RKHS). Denoting (i) = ¢(u(i)), we now formu-
late the recursive least squares algorithm on the example se-
quence {d(1),d(2),...} and {p(1),©(2),...}. Ateach iter-
ation, the weight vector w(i), which is the minimizer of

EZW

needs to be solved recursively as in (3). However, (3) can not

be directly applied here because the dimensionality of ¢(j) is

so high (can be even infinite) that it is not feasible in practice.
Introducing

TP + Mw(@)]]*

min
w(i)

®)

d(i) = [d(1),...,d(i)]"
0(0) = [p(1), s (1))
one has
w(i) = AT+ @(0)®(i)"]~ (i)d(i) (10)
further by the matrix inversion lemma [5],
w(i) = @O+ (i) ®(i)]~'d(i) (11)

25

We have to emphasize the significance of the change from
(10) to (11) here. First, ®(i)7 ®(i) is computable by the ker-
nel trick (7) and second the weight is explicitly expressed as

a linear combination of the input data w(i) = ®(i)a(i).
Denote
Q(i) = (A\L+ @(i)" ®(i)) (12)
It is easy to see that
L [Qi-1D" hG- 1)
Q) { h(i— 1,07 A+ (i) (i) } (3

where h(i—1,i) = ®(i—1)T¢(i). Using this sliding-window
structure, the updating of the inversion of this growing matrix
can be quite efficient [5]

L[QG —=1)+z(i)z(i)Ts(i) —z(i)s(i)
aw = ¥ U] e
where
z(i) = Q@i — 1)h(i — 1,4) 15)

s(i) = 1/(A + 9(0)" (i) — 2(i) Th(i — 1,1))

Therefore the expansion coefficients of the weight are

a(i) = Q(i)d(i)
— [R50 (0] [a—]
(8)"s(i) s(i) d@i) | (16)
[[#6= 0 e |
s(i)e()

The KRLS is summarized in Algorithm 2.

Algorithm 2 The kernel RLS algorithm (KRLS)
Start with

Q(1) = (A + w(u(1),u(1)) "
a(1) = Q(1)d(1)
iterate for ¢ > 1:
h(i —1,i) = ®(i — 1) (1)
z(i) = Q(i — 1)h(i — 1,49
s(i) = 1/(A+ (i)TSD(Z) z(i)"h(i — 1,4))
i—1)+2z(i)z(i)Ts(i) —=z(i)s(i)
{ L2 s]
=d(i)—h(i—1,9)Ta(i—1)
_ [a(t — 1 —z(1)s(2)e(7) }
(i)e(i)

Given an input u’, the output of the system can be calcu-
lated by

= Z a;(i)k(u(j),u’)

which assumes a radial basis function network structure [15].
Here a; () is the jth component of a(¢).

3. THE EXTENDED RECURSIVE LEAST-SQUARES
ALGORITHM

The problem for the RLS (and the KRLS) is that it has a
poor tracking performance. From the viewpoint of state-space

model, the RLS implicitly assumes that the data satisfy [7]
x(1+1)=x(7
(i+1) T() (18)
d(i) = u(i)" x(i) + v(4)

i.e. the state x(¢) is fixed over time and with no surprise the
optimal estimate of the state w (i) can not track variations.
To improve its tracking ability, several techniques can be

employed. For example, the data can be exponentially-weighted

over time or a truncated window can be applied on the train-
ing data (which also can be viewed as a special weighting).
The work for a sliding-window KRLS has already be done in
[4] and this paper tries to derive an exponentially-weighted
KRLS and a step further.

For the exponentially-weighted scheme, the assumed state-
space model is'

x(i+ 1) = ax(i)
d(i) = u(i)Tx(i) + v(i)

where « is a scaling factor. As is known from the extended
RLS method, the most general state-space model would be

19)

x(i+1) = Ax(i) + n(i)
d(i) = u(i)Tx(i) + v(3)

with A as the state transition matrix. While it would be most

(20)

desirable to have such a general state-space model in the RKHS,

it turns out to be at best very difficult. In this paper we focus
on a special case of (20), i.e.,

x(i+ 1) = ax(z) + n(7)
d(i) = u(i)Tx(i) + v (i)

Kalman [6] proposed a two step sequential estimation al-
gorithm to update the state estimate. At the core of this pro-
cedure is the recursive least square update of the observa-
tion model. Indeed, the solution of this state-space estimation
problem amounts to solving the following least squares cost
function [5]:

21

min =Id(5) —u()Tx(5)?
ey n(i)}[;ﬁ ld(j) —u(j)"x(5)|

; (22)
AN ()P +q7 Y 57 n()][?)
j=1
subject to x(j + 1) = ax(j) + n(j). G is introduced to have

exponential weighting on the past data, A is the regulariza-
tion parameter to control the initial state-vector norm and ¢

I'This fact is nontrivial and please refer to [5] for details.

26

provides some trade-off between the modeling variation and
measurement disturbance. Observe thatif ¢ = 0, « = 1,
(22) reduces to the exponentially-weighted RLS. Further if
B =1, it reduces to the standard RLS. We have to emphasize
that (22) is a much harder quadratic optimization problem
with linear constraints compared to the constraint-free least
squares problem (2). When the input data are transformed
into a high dimensional feature space via a kernel mapping,
this problem gets just much harder.
The extended RLS recursions are given by [5]:

Algorithm 3 The extended RLS algorithm (Ex-RLS)

Start with w(0) = 0, P(0) = A™137 11
iterate for¢ > 1

re(i) = B +u(i) " P(i —)u(i)

k(1) = aP(i — 1)u(i)/re(i)

(i) = d(i) — (i) w(i — 1)

w(i) =aw(i—1) +k,(i)e(q)

P(i) = |a]*)[P(i — 1) — P(i — 1)u(4)
u(i) P (i — 1) /re(i)] + B4l

9]

(23)

—_—

4. THE KERNEL EXTENDED RLS ALGORITHM
In the feature space I, the model becomes

x(i+ 1) = ax(i) + n(7)

d(0) = ¢(0)x(9) + u(0) .
which is similar to (21) except that the input is ((4) instead
of u(i).

We can not use (23) directly because the input data and the
state vector now lie in a possibly infinite dimensional space.
We can not use the matrix inversion lemma either like in the
KRLS because of the complicated constrained least squares
cost function (22). The application of the kernel trick re-
quires the reformulation of the recursion solely in terms of
inner product operations between input vectors.

By carefully observing the recursion (23), one can con-
clude that all the calculations are based on u(j)TP(k)u(i)
for any k, i, j.

Theorem 4.1 The matrices P(j) in (23) assume the follow-
ing form

P(j) = p(j)I — H(j)Q(j)H(j)"

where p(j) is a scalar and H(j) = [u(1), ...,u(j)] and Q(j)
isan j X j matrix, forall j > 0.

(25)

Proof First notice that by (23)

P(0)=\"15711,

p(1) = joffpt gt - MOy
|a 2 |a‘2)\—25—2 T
[ﬁ + ﬁq]I - ll()[6 + A—lﬂ—lu(l)Tu(l)]u(l)

so the claim is valid for 5 = 1, namely,

1) = [aPA71671 + B,
a 2/_2ﬁ_2
Q) =
B+ A1 (1) u(1)
Then using the mathematical induction, the proof for all j
follows. Assume it is true for j =i — 1, i.e.,

P(i—1)=p(i—1)I-H@G—-1)Q(—)H@ - 1)T (26)

By substituting it into the last equation of (23), one has

P(i) = |a?[P(i — 1) — PU=LuOuUTPE0) 4 gigr
= (la?p(i — 1) + B'q)X — |a|?r (i) H(3)
Q@i — Dre(i) + z(0)z())T —p(i — 1)z(i) N
R 2i-1) |70
Therefore
p(i) = |af’p(i — 1) + B'q
o= 19 [Q = V(i) + 2(i)2(i)T —p(i — 1)z (i)
V=270 i ey P~ 1)
P(i) = p(i) - H(i)Q(i)H(i)"
where z(i) = Q(i —)H(i — D)7u(i). i

By theorem 4.1, the calculation u(j)”P(k)u(i) only in-
volves inner product operations between the input vectors,
which is the prerequisite to using the kernel trick.

Theorem 4.2 The optimal state estimate in (23) is a linear
combination of the past input vector, namely

(27)
Proof Notice that by (23)
w(0)=0

w(l) = A du()

B+ A"t B7u(1) u(1)

SO Lot
AT B7H(1
a(l) = ad— fd(l)
B+ A1 u(1) a(1)
Thus the claim is valid for j = 1. Then we use the mathemat-
ical induction to prove it is valid for any j. Assume it is true

27

for ¢ — 1. By the recursion (23) and the result from theorem
4.1, we have

W(Z aw(i— 1)+ ky(i)e(i)
=aH(i—Da(i — 1) + aP (i — Du(i)e(i)/re(7)
H(i — 1)a(i — 1) + ap(i — Du(i)e(i)/re(0)
—aH(i — 1)z(i)e(i)/re(7)
M aa(i—l)—az()()el(l)
“HOT - ety 6)
where z(i) = Q(i —)H(i — 1)Tu(i). |

Therefore, the recursion (23) is equivalent to the follow-
ing:

Algorithm 4 A novel variant of extended RLS (Ex-RLS-2)
Start with

 axlglaa)
all) = F 3 Ta()Tu(l)’
p(1) = [a]?A71 67 + g,

jaPA—25~"

Q) = T T
iterate for ¢ > 1:
h(i) = H(i — 1) u(i)
2(i) = Q(i — 1)h(i)
re(i) = B+ p(i — ()T u(s) — h(i)"2(i)
e(i) = d(i) —h@i)Ta(i — 1)
L Tali—1)—26)rs (i)eli)
a(?) —“{ pli = 1)rz 1 (i)eli) }
p(i) = af2p(i — 1) + Bq
ol QG — Dyre(i)+ (i)a(i)T —p(i — 1)a(i)
Q=170 { O) L T]

Notice that throughout the iteration, the input vector u(z)
is only in the calculation of h(7) and (%), both in the form
of inner product. The significance of this reformulation is its
independence on the data dimensionality. Comparing with
Algorithm 3, we replace the recursion on w(i) with the one
on a(4) in Algorithm 4. Further, we replace the recursion on
P(4) with the ones on p(i) and Q(i) where p(i) is a scalar
and Q(7) is ¢ x i. In a word, the dimension of a(¢), p(¢) and
Q(%) only depends on the size of training data i regardless of
the dimension of the input u.

Now the nonlinear extension of Algorithm 4 is straight-
forward by replacing u(i)Tu(j) with x(u(i), u(j)) (See Al-
gorithm 5).

Algorithm 5 The kernel extended RLS for model (21) (Ex-
KRLS)

Start with

_ aX~'p71d(1)

T B+ A1 Lk(u(l),u(1))’

p(1) = laPA7167 + g,
__laPA7p

Q1) = B+ A"13-1k(u(1),u(l))

a(1)

iterate for ¢ > 1:

h(i) = [s(u(i),u(1)), ..., s(u(i), u(@ — 1))]*
z(i) = Q(i — 1)h(i)
re(i) = 5" + p(i — Dr(u(i), u(i)) — h(i) " =(i)
e(i) = d(i) — h(i)Ta(i — 1)

N a(i—1) —z(i)r; 1(i)e(q)
a(i) =« [1 }

p(i) = |af?p(i = 1) + B'q

L el Qe - (i) +a(i
Qi) = re(d) [—p(i — Dz(i)T p*(i—1) }

5. SIMULATIONS

We consider the problem of tracking a nonlinear Rayleigh
fading multipath channel and compare the performance of
the proposed Ex-KRLS algorithm to the original KRLS. Also
performance of the normalized LMS, RLS and Ex-RLS are
included for comparison.

The nonlinear Rayleigh fading multipath channel employed
here is the cascade of a traditional Rayleigh fading multi-
path channel from [5] and a saturation nonlinearity. In the
Rayleigh multipath fading channel, the number of the paths
is chosen as M = 5, the maximum Doppler frequency fp =
50H z and the sampling rate Ts = 0.8us (so it is a slow fad-
ing channel with the same fading rate for all the paths). All
the tap coefficients are generated according to the Rayleigh
model but only the real part is used in this experiment. A
white Gaussian distributed time series (with unit power) is
sent through this channel, corrupted with the additive white
Gaussian noise (with variance o2 = 0.001) and then the sat-
uration nonlinearity y = tanh(x) is applied on it, where x
is the output of the Rayleigh channel. The whole nonlinear
channel is treated as a black box and only the input and out-
put are known.

The tracking task is tested on 5 methods. The first one
is the normalized LMS (regularization parameter ¢ = 1073,
step size n = 0.25); the second is the RLS (with regular-
ization parameter € = 1073); the third one is the Ex-RLS
(a = 0.999999984208, ¢ = 3.158 x 1078, B = 0.995,
€ = 1072 according to [5] (on page 759). The last two are

28

—LM32

5 : ; KRLS

Fig. 1. The ensemble-average learning curves for e-NLMS,
Ex-RLS, KRLS and Ex-KRLS in tracking a Rayleigh fading
multipath channel (noise variance 0.001 and fp = 50H 2).

nonlinear methods, namely the KRLS (regularization param-
eter A = 0.1) and the proposed Ex-KRLS (o = 0.999998,
q= 1075, 6 =0.995, A = 0.1). We use the Gaussian kernel
in both cases with kernel parameter a = 1. Notice that « is
very close to 1 and q very close to O since the fading of the
channel is very slow.

We generate 300 symbols for every experiment and per-
form independently 100 Monte Carlo experiments. The en-
semble learning curves are plotted in Figure 1. The last 100
values in the learning curves are used to calculate the final
mean square error (MSE), which is listed in Table 1.

In Table 1, it is seen that the nonlinear methods outper-
form the linear methods significantly, since the channel model
we use here is nonlinear. The Rayleigh channel is a slow fad-
ing channel in this problem, so the Ex-RLS performs almost
identically as the RLS. Nevertheless, we enjoy 0.33dB margin
by using the Ex-KRLS model. Further if we increase the max-
imum Doppler frequency to 200H z and increase the noise
variance to 0.01, the performance gap is enlarged to 1.3dB
between the Ex-KRLS and KRLS and the difference between
the Ex-RLS and RLS is also more visible.

6. DISCUSSION AND CONCLUSION

A kernel based version of the Ex-RLS (for tracking model)
was presented. Comparing with the existing KRLS algorithms,
it provides a more general state-space model, which is a step
closer to the possible kernel Kalman filters. Preliminary re-
sults of this algorithm are promising, which suggests it can
have a wide applicability in nonlinear extensions of most prob-
lems which is dealt with by the Ex-RLS.

The proposed algorithm is very appealing in applications
from digital communications where the training sequence is

Table 1. Performance Comparison in Rayleigh Channel
Tracking
Algorithm ~ MSE (dB) (62 = 0.001 MSE (dB) (¢ = 0.01
and fp =50Hz) and fp = 200Hz2)
e-NLMS -13.51 -11.93
RLS -14.25 -11.99
Ex-RLS -14.26 -12.43
KRLS -20.36 -15.79
Ex-KRLS -20.69 -17.09

usually finite and within each transmission frame. However it
is clear that Algorithms 2 and 5 have a growing network struc-
ture. The size of the network (also the dimension of a(¢) and
Q(¢)) increases linearly with the number of the training data.
Several sparsification methods exist to address this shortcom-
ing, for example, the novelty criterion introduced in [16] and
the approximate linear dependency test (ALD) in [3]. A com-
mon feature of these methods is a basis dictionary is created
instead of storing all the training data. Both the novelty cri-
terion and the ALD test ease the growing problem to some
extent. With the assumption of compact input domain, the
size of the dictionary is guaranteed to be finite. However, in a
nonstationary scenario, pruning methods with a fixed budget
are more suitable [17, 18]. The integration of the novelty cri-
terion and ALD into the Ex-KRLS is straightforward whereas
a fixed-budget Ex-KRLS will be part of the future work.

The other important future work includes testing the pro-
posed algorithm on more problems and generalizing the state-
space model to a full-blown Kalman filter, which if possible
might have a deep impact on the nonlinear Kalman filter re-
search field.

7. REFERENCES

[1] P. Pokharel, Weifeng Liu, and José Principe, “Kernel
Ims,” in Proc. International Conference on Accoustics,
Speech and Signal Processing 2007, 2007, pp. 1421-
1424.

[2] J. Kivinen, A. Smola, and R. C. Williamson, “Online

learning with kernels,” IEEE Trans. on Signal Process-

ing, vol. 52, pp. 2165-2176, Aug. 2004.

[3] Yaakov Engel, Shie Mannor, and Ron Meir, “The ker-
nel recursive least-squares algorithm,” IEEE Trans. on

Signal Processing, vol. 52, no. 8, pp. 2275-2285, 2004.

[4] S. Van Vaerenbergh, J. Via, and I. Santamaria, “A
sliding-window kernel rls algorithm and its application
to nonlinear channel identification,” in Proc. Inter-
national Conference on Accoustics, Speech and Signal

Processing 2006, May 2006, pp. 789-792.

29

[5]1 A. Sayed, Fundamentals of Adaptive Filtering, Wiley,
New York, 2003.

[6] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Transactions of the ASME - Jour-
nal of Basic Engineering, vol. 82, pp. 35-45, 1960.

S. Haykin, Adaptive Filter Theory, Prentice-Hall, NJ,
2002.

E. A. Wan and R. van der Merwe, “The unscented
kalman filter for nonlinear estimation,” in Proc. of
IEEE Symposium 2000 (AS-SPCC). ake Louise, Alberta,
Canada, 2000.

[9] S. Arulampalam, S. Maskell, N. J. Gordon, and
T. Clapp, “A tutorial on particle filters for on-line non-
linear/non-gaussian bayesian tracking,” IEEE Trans-
actions of Signal Processing, vol. 50(2), pp. 174-188,

2002.

[10] L. Ralaivola and F. d’Alche Buc, “Time series filtering,
smoothing and learning using the kernel kalman filter,”
in Proceedings. 2005 IEEE International Joint Confer-

ence on Neural Networks, 2005, pp. 1449-1454.

[11] F. Girosi, M. Jones, and T. Poggio, “Regularization the-
ory and neural networks architectures,” Neural Compu-

tation, vol. 7, pp. 219-269, 1995.

[12] V. Vapnik, The Nature of Statistical Learning Theory,

Springer Verlag, New York, 1995.

[13] N. Aronszajn, “Theory of reproducing kernels,” Trans.

Amer. Math. Soc., vol. 68, pp. 337-404, 1950.

[14] Christopher J. C. Burges, “A tutorial on support vec-
tor machines for pattern recognition,” Data Mining and
Knowledge Discovery, vol. 2, no. 2, pp. 121-167, 1998.

[15] Simon Haykin, Neural Networks: A Comprehensive
Foundation, Prentice Hall, second edition, 1998.

[16] J. Platt, “A resource-allocating network for function
interpolation,” Neural Computation, vol. 3, no. 2, pp.
213-225, 1991.

[17] Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer,
“The forgetron: A kernel-based perceptron on a fixed
budget,” in Advances in Neural Information Process-
ing Systems 18, Cambridge, MA, 2006, pp. 1342-1372,

MIT Press.

[18] Y. Sun, P. Saratchandran, and N. Sundararajan, “A direct
link minimal resource allocation network for adaptive
noise cancellation,” Neural processing letters, vol. 12,

no. 3, pp. 255-265, 2000.

