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ABSTRACT

Human activity recognition has been a major goal of research
in the field of human - computer interaction. This paper pro-
poses a method which employs a hierarchical structure of
Hidden Markov Models (Layered HMMs) in an attempt to
exploit inherent characteristics of human action for more ef-
ficient recognition. The case study concerns actions of the
arms of a seated subject and depends on the assumption of
a static office environment. The first layer of HMMs detects
short, primitive motions with direct targets, while every up-
per layer processes the previous layer inference to recognize
abstract actions of longer time granularities. The problem of
unsupervised learning within the LHMM framework is also
addressed, through automatic segmentation of raw data and
hierarchical clustering of motion samples. Finally, the idea
of context - aware HMM modeling is also introduced and fu-
ture directions for its application are proposed. The results
demonstrate the efficiency, the tolerance on noise interpola-
tion and the high degree of person - invariance of the method.

Index Terms— Human Activity Recognition, Learning
Theory and Modeling, HMM, Unsupervised Learning, Con-
text - Aware Systems

1. INTRODUCTION

Automatic Human Activity Recognition (HAR) has received
great attention by researchers involved in human - computer
interaction, due to the continuous need for smarter and more
user - friendly interfaces. HAR implementations presented so
far vary widely in terms of the medium of surveillance (e.g.
camera, motion tracker), the target of recognition (e.g. indoor
or outdoor activity), the human model and the mathematical
model.

As far as the mathematical model is concerned, activ-
ity recognition methods can generally be classified into those
who employ a state - space model (Bayesian Networks [1],
Finite State Machines, Hidden Markov Models [2]) and those
who rely on pattern recognition techniques (Support Vector
Machines, Neural Networks, Dynamic Time Warping, Bayes
and K - means classifiers [3]).

State - space models and especially Hidden Markov Mod-
els (HMMs) have been preferred in most cases for solving the
activity recognition problem, due to their efficiency in cap-
turing spatio - temporal dynamics of signals [4]. In this pa-
per a layered HMM structure (LHMMs) is applied to replace
the typical single - layer HMM classifier, thus facilitating the
learning and inference procedures. Every upper layer pro-
cesses the inferential results of the previous one in order to
detect actions at a higher level of abstraction and of longer
temporal granularities. By decomposing the inherent struc-
ture of human activity, the method manages to reduce the
training requirements of the HMMs, thus enhancing the ef-
ficiency and robustness of the recognition system.

The paper is organized as follows: in Section 2 the basic
ideas behind the proposed method are explained. In Section
3 implementation issues are thoroughly discussed. An unsu-
pervised learning technique is described in Section 4 and in
Section 5 the idea of context - aware HMMs is introduced. In
Section 6 experimental results are presented and commented
on.

2. METHOD DESCRIPTION

The key feature of the HMM recognition framework is the
property that given a HMM λ, a probability P (O|λ) can be
assigned to the generation of any observation sequence O.
Observation sequences can be denoted O = O1O2 . . . Ot . . . ,
where Ot = {Feature1, F eature2, . . . } the feature vector
at time slot t.

The classical single - layer approach for HMM activity
recognition suffers certain limitations. Modeling actions of
relatively long duration leads to long observation sequences
that burden the training process and reduce the efficiency of
the recognition. Besides that, extraction of a large number
of activity features (e.g. multi - sensorial environments) aug-
ments the training data, encumbering the inference process.

These drawbacks can be overcome by implementing a lay-
ered structure of HMMs. Layered representations of state -
space models such as Finite State Machines, Bayesian Net-
works [5] and HMMs [6] have been considered in order to
overcome the limitations of the single - layer approaches. Lay-
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Fig. 1. Strucuture of human activity

ered HMMs (LHMMs) can improve the training process in
two fashions. First, the high - complexity processing of low
- level data is restricted to the first layer only, permitting the
upper layers to process simple discrete input symbols, based
on the previous layer inference. Additionally, LHMMs can
achieve efficient segmentation of the parameter space, by in-
tegrating the inferential results of multiple HMMs in the same
layer.

The contribution of this paper lies mainly on the demon-
stration of the applicability of LHMMs for the Activity Recog-
nition problem, when a person’s actions (e.g. putting a stamp),
rather than his ”state” or ”situation” (e.g. phone conversation,
[6]) has to be detected. Recognition of abstract actions proves
to be a challenging problem, since the order of the series of
events is of great importance. In order to achieve this goal,
a decomposition of the structure of human action is neces-
sary. Eventually, the application of LHMMs becomes fea-
sible thanks to the innovative idea of exploiting two typical
characteristics of the human activity:
Hierarchical and chronological structure of activity
Human actions can be classified into hierarchical levels of ab-
straction. The lowest level of human activity hierarchy is oc-
cupied by simple, short motions with single, direct targets, re-
ferred to as Primitive Motions (PMs). Every upper layer con-
tains more abstract motions (AMs), that take place in longer
time intervals, accomplish more complicated goals and reveal
complex intentions. Actions at some level are composed by a
sequence of actions of the previous level. In this manner, ac-
tions in successive levels are connected to each other, because
every action can be described as the result of the execution of
simpler actions at the previous level over some period of time.
An example of this structure is shown in Figure 1(a).
Distribution of activity to multiple cooperative agents
Another inherent characteristic of human activity is the execu-
tion of composing actions by different motion agents. When
a single human is considered, the role of motion agents is
played by the human limbs. For instance, walking consists of
periodical movements of the two legs. When a whole team is
taken into consideration, then every member can be seen as an
agent, whose action contributes to the fulfilment of the team’s
objective. The knowledge about the activity of every single
cooperative agent is crucial for a reliable inference about the
type of the overall activity. Figure 1(b) presents an example of

how the combination of agent inferential results differentiates
the final inference.

The above observations inspire a layered structure of HMM
model for activity recognition. More specifically, the LH-
MMs recognition method is based on the following ideas:
A set of N motion agents A = {A1, A2, . . . , AN} is de-
fined for the activity in question. A set of Mi Primitive Mo-
tions is defined for every agent Ai (1stlevel): PMAi =
{PMAi

1 , PMAi
2 , . . . , PMAi

Mi
}. A set of Ri Abstract Motions

is defined for every agent Ai (2ndlevel): AMAi = {AMAi
1 ,

AMAi
2 , . . . , AMAi

Ri
}. More layers can be added as the level

of abstraction of the described actions increases.
For every layer L of an agent Ai, a bank of HMMs is

assigned performing a mapping of the layer’s observation se-
quences OL to the actions XL contained in this layer: fL :
OL → XL. For the first layer, the observation sequences
O1 are sequences of feature vectors extracted by the raw in-
put data, while the actions X1 belong to the set PMAi . The
mapping procedure fL at every layer L implements the clas-
sical HMM recognition framework. For the second and every
upper layer, the observation sequences consist of the infer-
ential results of the previous layer over some period of time.
Thus, successive outputs of some layer form the (discrete) in-
put vectors of the next one.

At some level an integration procedure takes place, so that
the overall activity can be inferred by the partial inferential
results of every single agent alone. The agent integration pro-
cess concerns the detection of meaningful, simultaneous, and
cooperative actions among the defined activity agents. Figure
2 depicts graphically the proposed method.

The advantages emerging by the application of the method
include: a) the restriction of continuous observation sequences,
that require laborious processing, to short sequences at the 1st
layer only, through the introduction of levels of abstractions,
and b) the segmentation of long feature vectors to multiple
shorter ones thanks to the introduction of multiple motion
agents.

3. ACTIVITY RECOGNITION IN OFFICE
ENVIRONMENT

The functionality of the proposed method has been tested un-
der a simple implementation scheme containing two layers.
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Fig. 2. Layered HMM method block diagram

The target of recognition concerns actions of the arms in an
office environment and was limited to the following actions:
Pick Up Phone, Adjust Screen, Switch Screen On/Off, Take
Pen and Put Stamp.

The implementation of the method relies on the assump-
tion of a static office environment, where the positions of
all objects on the desk and the subject’s seat are relatively
fixed. With regard to the analysis in Section 2, two cooper-
ative agents are defined, namely the two arms of the subject,
denoted LA and RA for the left and right arm respectively.
The static office environment is divided into 6 workspaces
WSi, i = 1, 2, . . . , 6 as shown in Figure 3(a). Workspaces
can be viewed as the surrounding space of one or more ob-
jects.

The reason for introducing the static environment and the
workspace definition is, that this scheme enables the bound-
ing of the PM set for both agents to transitions between two
workspaces. Formally, PMs can be denoted LAWSiWSj or
RAWSiWSj , i 6= j respectively. Finally, 8 PMs have been
defined for the first level of abstraction, 3 for the left and 5 for
the right arm. In Figure 3(b), PM transitions are represented
as arrows in the static environment.

According to the method description, every AM of the
second level is formed by a sequence of PMs of the previous
level, following the natural structure of human activity. With
respect to that, the final form of the implementation scheme

(a) (b)

Fig. 3. Workspaces in static office environment and PM defi-
nition

is presented in Figure 4. It is important to underline that the
distinction of the actions Adjust Screen and Switch Screen
On/Off can only be achieved after the agent integration pro-
cedure dictated by the method’s formulation.

Fig. 4. Implementation scheme diagram

The subject’s arms are modeled with two distinctive body
spots, the wrist and the elbow (Figure 5(a)). The trajecto-
ries of these spots are captured by a wearable magnetic mo-
tion tracker (Ascension MotionStar c©, Figure 5(b)). Conse-
quently, the raw data produced at every single time - slot t
for both agents contains 3D positions of the associated body
spots: Rt = {xt

W , yt
W , zt

W , xt
E , yt

E , zt
E}, where W stands for

wrist and E for elbow. The motion features extracted are the
3D position and the vectorial velocity, so a feature vector at
time slot t can be denoted: Ot = {xt

W , yt
W , zt

W , xt
E , yt

E , zt
E ,

Vx
t
W , Vy

t
W , Vz

t
W , Vx

t
E , Vy

t
E , Vz

t
E}.

(a) (b)

Fig. 5. Arm model and wearable motion tracker

The bank of HMMs of the first layer was trained with 100
PM samples taken by 5 different subjects using the Baum -
Welch parameter estimation algorithm [7]. Instead of a sin-
gle HMM per PM, 5 HMMs per PM are trained, in order to
capture variations on the execution time of the actions. In
the inference phase, the first layer of every agent emits ev-
ery 150 msec a discrete symbol associated to the PM taking
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place at that time. The final inference procedure combines
partial, classical HMM - based inferences of the 5 HMMs as-
sociated to every PM, in a simple voting process over 10 time
slots (150 msec). Furthermore, raw data input undergoes an
Euclidean distance segmentation process before being fed to
the first layer HMMs, so that only segments of the testing
sequence where motion has been detected are taken into con-
sideration. The segmentation procedure increases the speed
of inference and eliminates false alarm errors.

The concatenation of the first layer inference symbols over
longer periods of time, form the observation sequences of the
second layer HMMs. It should be noted that in case of an
absolutely accurate inference at the first layer, simple Finite
State Machines instead of HMMs could be used at the second
layer to detect the desirable sequence of PMs that form an
AM. In fact, the first layer’s inference proved to be prone to
wrong decisions over short time intervals. For this reason, the
symbols emitted by the first layer are treated as observation
symbols of the ”hidden” state, which represents the actual PM
currently executed. Accordingly, second layer HMMs have
been trained in a heuristic manner using direct specification
of the HMM parameters, so that non - zero probabilities are
attributed to first - layer inference sequences, either perfect
or containing minor mistakes, and zero probability otherwise.
Thus, significant enhancement in the system’s robustness is
achieved, through the ”correction” of first layer inferential re-
sults.

4. UNSUPERVISED LEARNING IMPLEMENTATION
SCHEME

The supervised learning fashion dominates state of the art
HMM modeling, but it is responsible for certain limitations
of the according implementations. More particularly, the sys-
tem’s autonomy and adaptiveness is limited by its inability
to retrain itself when changes in the recognition environment
occur. Besides that, human intervention in the segmentation
process is known to be error - prone. Inaccurate segmentation
leads to non - representative training sequences that harm the
recognition process by misleading the model’s parameter es-
timation algorithm.

Supervised learning has been usually imposed by the fact
that there exists no explicit way for a machine to realize which
parts of a raw data sequence are of interest. In addition to
that, automatically extracting important segments with high
accuracy has also proved to be a non - trivial problem in
most applications. In the following, an unsupervised learning
technique applicable in the LHMM recognition framework of
Section 3 is presented, addressing both of the above issues
efficiently.

The proposed method for unsupervised learning consists
of two distinct phases. In the first pre - processing phase,
an automatic segmentation algorithm is employed to detect
all primitive motions in a given raw data sequence. In the

second phase, extracted motion samples are grouped to form
the HMM training sets using hierarchical cluster analysis.

Automatic segmentation is achieved thanks to the obser-
vation that any human motion can be represented by a major
fluctuation in the moving limb’s speed diagram. Therefore,
the main concept of the segmentation algorithm is the detec-
tion of major fluctuations in the speed diagram extracted by
the raw data (motion trajectories). The main steps of the seg-
mentation process are shown in Figure 6.

In the motion clustering phase, every extracted motion is
labeled by a vector V containing coordinates of the first and
last point of the respective motion trajectory: V = {xA, yA,
zA, xB , yB , zB}. The resulting vectors are clustered using
the Ward’s linkage clustering method. This method proved
to be the most efficient among the agglomerative methods for
hierarchical clustering that were tested (single-,average- and
complete-linkage). Ward’s linkage minimizes at every step
the increase in the total within - cluster error sum of squares
(ESS) as a result of joining two clusters. For a set X the ESS
is described by:

ESS(X) =
NX∑

i=1

|xi − 1
NX

NX∑

j=1

xj |2

The linkage function is described by the expression:

D(X, Y ) = ESS(XY )− [ESS(X) + ESS(Y )]

Termination of the algorithm is determined setting a mini-
mum cluster distance, above which fusion of clusters stops
and a final number of clusters is obtained.

Application of an hierarchical clustering method for this
problem is imposed by the fact that the number of clusters
is initially unknown. Assuming that meaningful motions in
a long activity sequence are frequently repeated, correspond-
ing clusters are expected to contain a large number of mo-
tion samples. The size of the final clusters could be a reliable
criterion for distinguishing meaningful and random motions.
Selection of target - motions from the group of meaningful
motions and annotation of the training sets remain the only
jobs to be inevitably done manually.

Multiple advantages arise from the application of the pro-
posed unsupervised learning scheme. Firstly, the system is
able to capture the inherent structure of human motion by
detecting the PMs in a sequence, thus providing useful as-
sistance during the designing phase of the system. Further-
more, the static workspace limitation can be suspended due
to the capability of the system to retrain itself when objects
move around in the workspace. Finally, automatic segmenta-
tion guarantees enhanced reliability as far as integrity of the
resulting training sequences is concerned.

5. CONTEXT - AWARE MODELING

The idea of context - aware modeling refers to the capability
of a system to switch among a number of kindred models de-

117



0 20 40 60 80 100 120 140
0

50

100

150

200

250

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Normalized speed (b) Normalized speed after smooth filtering

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Detection and quantization of extrema (d) Extraction of segments

Fig. 6. Extraction of the three PM segments contained in a sample of the AM ”Put Stamp”

pending on certain predefined conditions. In other words, it is
assumed that any procedure can be modeled more efficiently,
if different models are adopted for capturing all differentia-
tions that can occur.

The application of the above idea into the HMM activity
recognition framework seems promising, as many variables of
the problem can be thought to have certain effect on the final
recognition rate. These variables mainly concern biometric
features of the acting subject. For instance, body proportions
(e.g. height, length of arms) can largely affect the way in
which a subject moves around in a static environment. Differ-
ent execution times can also be expected, as individuals tend
to adopt a different average speed in everyday activities.

The functionality of a context - aware system depends on
the selection of proper differentiating variables, which pre-
requisites deep knowledge of the procedure’s inherent charac-
teristics and on the building of an efficient model - selection
method based on the integration of those variables’ values.

The model selection method can be formulated as a MAP
(Maximum a posteriori) decision rule according to the Bayes
decision theory. For every modeled motion a set C of cor-
responding HMMs is trained. Model selection is conditional
on the predefined set of N differentiating variables: DV =
{DV1, DV2, ..., DVN}. According to MAP decision rule, ev-
ery time a motion segment must be classified, the most prob-
able HMM Ci of every motion’s bucket is selected:

Ĉ = argmaxi(P (Ci|DV1, DV2, ..., DVN ))

Using Baye’s theorem it holds that:

P (C|DV1, DV2, ..., DVN ) =
P (C)P (DV1, DV2, ..., DVN |C)

P (DV1, DV2, ..., DVN )

The denominator is independent of C, so the decision rule can
be rewritten as:

Ĉi = argmaxi(P (Ci)P (DV1, DV2, ..., DVN |Ci))

Assuming that each differentiating variable is conditionally
independent of every other (P (DVi|C, DVj) = P (DVi|C), i 6=
j), the final form of the decision rule would be:

Ĉ = argmaxi(P (Ci)
N∏

j=1

P (DVj |Ci))

An HMM class Ci is trained with motion samples taken
from a specific individual. In other words, HMM classes Ci

are assigned to specific individuals that act like prototypes. It
is obvious that subjects for training should be carefully cho-
sen, so as to represent adequately the possible combinations
of differentiating variables that can occur in the general pop-
ulation. Both HMM priors and conditional variables’ distri-
butions can be approximated with relative frequencies from
the training set. Let N(Ci) the number of training sequences
of HMM class Ci and NC the total number of training se-
quences of all HMMs of a motion. Prior probabilities P (Ci)
can be calculated as: P (Ci) = N(Ci)

NC
. If equal number of

training sequences are taken from each subject, then all prior
probabilities are equal. In a similar manner, conditional dis-
tributions can be estimated by: P (DVj |Ci) = N(DVj ,Ci)

N(Ci)
,

where N(DVj , Ci) the number of training sequences in class
Ci characterized by a specific value for variable DVj . Appro-
priate quantization is necessary in case of continuous differ-
entiating variables.

Future work of the authors will concentrate on extending
the LHMM recognition framework with context awareness.

118



The influence of various biometric features on the final recog-
nition rate will be explored.

6. RESULTS AND CONCLUSIONS

Table 1 presents the results acquired by testing the classifier
described in Section 3 with 5 subjects (different from those
used for training) performing uninstructed 5 repetitions of the
target actions. Recognition rates were noted over the 25 sam-
ples of each action. The results demonstrate a recognition rate
over 80% for all the actions in question.

In the previous case, measurements are assumed to be
noiseless due to the accuracy of the magnetic tracker. How-
ever, noisy measurements are expected in applications where
motion capture is performed using computer vision techniques.
For this reason, the effects of Gaussian noise interpolation on
the raw data were investigated, revealing the immunity of the
LHMM system to noise with SNR > 10 (Figure 7).

Table 1. Recognition rates
Abstract Motion Recognition rate
Pick Up Phone 100%
Adjust Screen 100%

Take Pen 80%
Put Stamp 92%

The unsupervised learning technique of Section 4 was tested
with a long sequence containing 25 repetitions of each AM.
The segmentation algorithm achieved a total 97,5% success
rate. The clustering algorithm managed to put in the right
clusters all the correctly segmented PMs, creating one train-
ing set for each PM. A few almost empty clusters were also
created containing falsely segmented sequences, thus demon-
strating the effectiveness of the ”cluster size criterion” for
detecting meaningful primitive motions. A context - aware
LHMM classifier was also tested depending only on the mo-
tion execution time as a conditional feature. Preliminary re-
sults show a satisfactory overall recognition rate, revealing a
perspective on important amelioration when more biometric
features are taken into consideration.

Concluding, the presented implementations demonstrate
that LHMMs can be successfully employed for the recog-
nition of human actions, achieving more efficient training,
reliable inference and improvement of the system’s robust-
ness. Additionally, training and testing of the classifier with
different persons reveals a certain person - invariance of the
classifier. Finally, the possibility of performing unsupervised
learning with such systems and the perspective of enhancing
the LHMM structure with context awareness are adequately
illustrated.

Fig. 7. Performance of the proposed method in the presence
of measurements noise
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