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ABSTRACT

Humans are social agents and the social dimension is an im-
portant aspect of human cognition. One challenge facing the
realization of artifacts and artificial agents that posses human-
like cognition abilities is to implement human-like interactive
capabilities into them. Natural Language Processing is one
of the earliest applications of Al techniques because of the
importance of language in shaping human cognitive and in-
teractive capabilities. Nevertheless nonverbal communication
is starting to gain more importance specially in the domains
of HRI and ECA because natural human-human communi-
cations are known to utilize a variety of nonverbal interaction
protocols. This paper proposes a new adaptation algorithm for
interactive agents that aims to develop agents that can learn
and adapt their theory of mind concerning nonverbal inter-
action in real-time during actual interactions. The proposed
method utilizes elements of the theory of theory and the the-
ory of simulation to guide the adaptation process. A proof of
concept simulation experiment with the proposed system is
also illustrated.

Index Terms— Social Cognition, EICA, Learning Inter-
active Behavior, Interactive Adaptation.

1. INTRODUCTION

The social dimension of cognition is considered by some re-
searchers as one of the most important dimensions in shaping
human cognition. In the recent years many researchers in HRI
started to focus on implementing natural interaction modali-
ties including nonverbal interactions into robots [1],[2]. Nev-
ertheless most of the approaches involves hand coding of the
interactive behavior. One reason for this situation is that intu-
itive and natural interactive behavior is not well specified like
other kinds of behavior the agent needs to achieve and fur-
thermore, personality and social backgrounds affect nonver-
bal interactive behaviors in humans [3] which makes it very
difficult to come up with accurate models of the partner.

This paper is a first effort toward realizing an agent that
can learn the interaction protocol by engaging in interactions
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with other intelligent agents (including humans). The follow-
ing section presents the main architecture of the proposed sys-
tem followed by detailed explanation of the algorithm used to
learn the nonverbal interaction protocol in section 3. Sec-
tion 4 presents a proof of concept experiment that provides
some insight about the applicability of the proposed system.
In section 5 a brief discussion of the relation between the pro-
posed system and some influential architectures for interac-
tive agents. The paper is then concluded with a discussion of
the limitations of the current approach and future directions
of research.

2. THE PROPOSED ARCHITECTURE

Fig. 1 shows a simplified version of the proposed system
which is implemented on top of the Embodied Interactive
Control Architecture (EICA) proposed by the authors in [4].
The goal of the proposed system (L,EICA) is to build agents
that can achieve three main objectives:

1. Learning the structure of natural human-human inter-
actions autonomously by watching those interactions in
the real world.

2. Applying the learned structure to human-agent inter-
actions to achieve a higher level of naturalness during
those interactions.

3. Adapting the initially learned structure/protocol online
during its own human-agent interactions.

This paper will focus on how the proposed architecture can
achieve the last two objectives assuming that the first objec-
tive is already met. The proposed solution is motivated by
multiple disciplines including nonverbal interaction studies,
developmental psychology and neuroscience.

To achieve natural interaction with humans, the agent needs
to synchronize its behavior with the behavior of the human at
multiple time scales using different kinds of process ranging
from deliberative role switching to reactive body alignment.
For example research in nonverbal interaction studies found a
rich set of synchronization protocol that utilize proximities,
body alignment, nonverbal sound synchrony and other en-
trainment phenomena at different levels. Researchers in this
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Fig. 1. A simplified version of the proposed architecture

area suggested that this synchrony happens in time scales that
go down to hundreds of milliseconds in what was called the
gestural dance [3].

The proposed system supports this natural layered feature
of human-human interaction by structuring the control pro-
cesses of the agent in multiple layers called interaction control
layers. Within each layer a set of interactive processes provide
the protocol needed to synchronize the behavior of the agent
with the behavior of its partner(s) at a specific timescale based
on a global role variable that specifies the role of the agent in
the interaction.

The structure of the interactive processes in each layer is
learned incrementally using the Interaction Structure Learner
(ISL) in the first stages of the agent’s development by watch-
ing other agents playing different roles. The work presented
in this paper assumes that this stage have already passes leav-
ing the agent with a set of n! processes in each layer each of
which is known up to a parameter vector p! where [ represents
the layer number and i = 1 : n!.

The perceptual subsystem consists of a set of sensors that
read relevant signals from the environment and other partners.
Those signals are then processed by two sets of processes:

1. Perception Processes: a set of ng processes each of
which detects a feature in the sensed signals. All fea-
tures are represented as real numbers and combined in
the situation vector (..5).

2. Perspective Taking Processes. A set of ng X n, pro-

cesses each of which detects one of the features from
the perspective of one of the interacting partners. n,, is
the number of partners involved in the interaction.

The behavior of the agent is governed by a set of pro-
cesses arranged in layers as shown in Fig. 1. Every process
in the system has a set of inputs a set of outputs and an acti-
vation level. Processes with nonpositive activation levels are
not allowed to run while the actuation commands issued by
active processes are combined by weighting them with the
activation level of the source process. The processes at the
first layer are called basic interaction acts (BIAs) and the pro-
cesses in higher layers are called interaction control processes
(ICPs). Every BIA or ICP consists of two twin processes: the
forward process -{ P} where i is the role of the agent in the
interaction (e.g. listener, speaker, etc), [ is the layer number
and k is a unique identified within this layer- and the reverse
process (I P}).

Every forward process is a mapping { Pl i R — Rne
where n; is the number of its inputs and n, is the number
of its output. The inputs of the forward BIAs representing
the self ({ PY)) are connected to the outputs of the interaction
perception processes and its outputs are connected to the ac-
tuators of the robot through the action integrator.The inputs of
the forward ICPs at layer [ are connected to the activation lev-
els of the interactive processes at layer [ — 1 through a set of
n! delay elements. The outputs of the forward ICPs at layer
[ are fed to the activation levels of the interactive processes at
layer | — 1. This arrangement means that processes at layer
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| represent an interaction protocol n! times slower than the
processes at layer [ — 1. The activation level of the forward
processes at layer [ are all connected to the Interaction Adap-
tation Manager at this layer.

Every reverse process is a mapping :P,i D RMTe 5 R
The inputs of the reverse process are connected to both the
inputs and outputs of its forward twin while its output which
represents the expected activation level of the forward pro-
cesses given the recent history of its inputs and outputs is
connected to the Interactive Adaptation Manager at this layer.

In this paper it is assumed that the forward and reverse
BIAs, the forward ICPs of all the roles of the interaction ex-
cept the one to be learned, and their reverse counterparts are
all known. It is also assumed that the forward ICPs of the role
to be leaned are known up to a parameter vector { Pl

The Mirror Trainer in Fig. 1 is responsible of keeping
the reverse interactive processes in match with their twin for-
ward ICPs once the parameter vector of these forward ICPs
are changed. This is accomplished simply by running an of-
fline version of the forward processes while monitoring their
outputs and adapting the Radial Basis Function Neural Net-
work (RBFNN) of the reverse interactive process using this
training set.

The Interaction Structure Learner is responsible of learn-
ing the number and structure of the ICPs up to a parameter
vector. This component is not discussed later in this paper.

The system utilizes a set of shared variables that control
the learning rate of it:

1. Age Ag: This variable increases monotonically (lin-
early in the current implementation) to a maximum of
Agmaz With the interaction time of the agent and is
used to determine the reluctance to adaptation.

2. Role RI: Represents the role played by the agent in the
current interaction

3. Robust ; Rb: Represents the average difference between
the theory and the simulation for the current partner.

kRb

The learning rate of the agent is determined as: 1 = Tg

where £ is the role to be learned.

3. INTERACTIVE ADAPTATION MANAGER

The interactive adaptation manager (IAM) is the heart of the
proposed system and runs the interactive adaptation algorithm
in all the interaction control layers starting from layer number
1. The goal of this process is to allow the agent to acquire the
protocol used by a specific role agent (e.g. listener, instructor,
etc) while it is doing some other role it has already learned.
To achieve this goal the IAM monitors the difference between
the current theory the agent have about what its partner (who
plays the role to be learned) is intending at different levels of
abstraction and the simulation of what it could have done if
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it was playing this role. The IAM then adapts the forward
ICPs representing the target role to reduce this difference. In
the rest of this paper we will consider two-agent interactions
(e.g. lister-speaker, teacher-student etc) although extension of
the technique to interactions involving more than two roles is
straightforward.

The goal of the IAM is to find for every process a param-
eter vector f %, that minimizes the error estimate:

~ o, (BY)

where a; (;P}) is the estimate of the activation level of
process ; Pi based on the theory, a, (;P}) is the estimate of
the activation level of process ; P}, based on the simulation and
d (x,y) is a distance measure. Currently euclidian distance is
used.

To achieve this goal some restrictions have to apply to
the design of the ICPs. In the current implementation every
ICP keeps probability distribution over the ICPs or BIAs of
the immediate lower layer. This distribution is used to decide
the activation level of these lower layer interactive processes
as shown in Algorithm 1. What this algorithm mainly does
is randomly selecting an ICP from the lower layer using the
associated distribution (RAND) and then activates this ICP
while deactivating the ICPs that are mutually exclusive with
this ICP. In the actual implementation the inhibitory effect
channels of the EICA architecture was used to do this deacti-
vation [5].

62 = d (at (,Pé)

Algorithm 1 Interaction Control Process.

function INTERACTION CONTROL PROCESS(Z-pﬁ€ >
Probability distribution Associated with 7f Ponpttt
Number of ICPs in layer [ — 1)

Jmaz = RAND (ngg (.7))

o (it ) — =

for j = 1 : n and j #  Jjmasr and
Mutual Execlusive ({P}fl,f ijaml_l) do

2

-1

a(ip!) — —¢
end for
end function

To generate the theory about the intention of the partner
the agent runs the reverse ICPs on the outputs of the perspec-
tive taking processes representing this partner. Those ICPs
output the expected activation level of their forward counter-
parts in the whole hierarchy. This is illustrated by the Reverse
Simulated Processes block in Fig. 1. This calculation propa-
gates bottom-up in the interaction control hierarchy resulting
of ay (;PL).

To calculate what the agent would have done using its cur-
rent interaction competencies in the situation of the partner,
the system runs the forward ICPs of the role taken by the part-
ner and monitors the activation levels of those ICPs. This is



depicted by the Forward Simulated Processes in Fig. 1. This
calculation propagates top-down resulting of a, (;P}).

The interactive adaptation algorithm uses these two sig-
nals to adapt the forward ICPs of the target roles and then
executes the mirror trainer to adapt the reverse ICPs of the af-
fected forward ICPs. The details of this algorithm are shown
in Algorithm 2.

Algorithm 2 Interactive Adaptation Algorithm

function INTERACTIVE ADAPTATION ALGO-
[ ) +1
RITHM[(”]’ at (’iPkl)7 as (iPk;l)7at (iPLnH»l)’
1 1
Qg (ipl:tlul)»nl»nl-i_ )
n«—mn-++1

e d(a; (;P;) — as (:P;))
if 62 > T.andipRb > TR, then
Ws = Ag/Agma:L’
wy = 1.0 — wy

(n—1)x, Rb—wgs x ek
rRb — -

= argmax (wsas (iP,i{ill) + wiat (iP]ij;ll))

El+1
Wi (k) — (L) x pltl (k)

forj = 1: k do

inglx (] ) —

kl+1

max

1+1 -
ipktﬁ,l (])
max
L
2 ip

m=1

1+1
1+1

max

)

(m)
end for
MirrorTrain (7

end if

end function

I+1
P I+1

klnax

The IAM algorithm first calculates the difference between
the estimations of the theory and the simulation paths and
only updates the parameters of the process to be learned if this
difference is above some threshold and the partner is consid-
ered robust enough to learn from him/her/it. If there is a need
for adaptation:

1. The system decreases the robustness of the partner ( Rb
) based on the age (Ag).

. The ID process in the process in the next layer most
probably responsible of this error is calculated (k/11).

max
. The probability distribution of this process in the next
layer (iP]iHl ) is updated to make this error less likely

max

in the future.

The mirror trainer is executed to make él 41 compat-

ible with / P!,..,

‘max

4. EXPERIMENT

a simulation study was conducted to measure the capacity of
the agent to learn how to control the gaze direction during
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Fig. 2. The Processes of the agents used in the experiment.

listening while it is acting as an instructor for an agent that
knows how to listen. The main focus of this study was to
analyze the effectiveness of the mirror training and Interac-
tive Adaptation to learn how to interact similarly to the agents
encountered. Neither Interaction Structure Learning nor the
naturalness of the resulting behavior was studied in this sim-
ulation. A simulation study rather than a real world human-
agent interaction was selected because it allows us to control
all the parameters of the fully designed agent, the noise lev-
els, etc and because it can be speeded up to allow us to study
more interactions (the simulations in this experiment were run
600 times faster than the real-time speed). Ten different fully
designed agents were implemented that differ in the details
of how they conduct instruction and how they respond to it
while three agents were designed as instruct-only agents and
the goal of the experiment was to study how can those agents
learn listening by instructing the fully designed agents. Be-
cause the verbal content was not needed in this experiment
a single 10 minutes speech was recorded and parts of it are
played while instructing. The virtual environment in which
the agents interacted consists of a table with six different ob-



jects and the agents were standing facing each other in the
opposite directions of the table. The locations of the objects
were selected randomly within the surface of the table. Dur-
ing the interaction, when the instructor is speaking about an
object or working on it, there is a probability (7% and 10%
respectively) that it will move the object. The maximum dis-
tance between the agent and the objects can be longer than its
hand so the instructor has to move sometimes along its side
of the table. Every agent has two arms that can be used to
manipulate objects or point to them. The inputs to the agents
are the 3D locations of objects along with eight position sen-
sors attached virtually to the front and back of the heads of
the agents and their right palm and index fingers (used to dis-
cover pointing). The final input channel is the speech signal
of the other agent.

Fig. 2 shows the internal design of the behavioral control
system used. Fully-Designed agents had all there ICPs de-
fined based on an earlier study reported in [6] while Instruct-
Only agents lack the definition of the five listening ICPs in
layer 1. Learning these ICPs through the interaction was the
goal of Instruct-Only agents. The Listen and Explain pro-
cesses of layer 2 were implemented as probabilistic state ma-
chines and activated one ICP of layer 1 on every time step.
The details of the probability distributions associated with dif-
ferent ICPs are reported in [5].

Every instruct-only agent instructed a randomly selected
fully designed agent for a time period between 10 to 15 min-
utes in every interaction and conducted interactions until it
finds that the difference between the theory and simulation
paths is under a predefined threshold. After every instruction
the instruct-only agent was doing a listening session with a
randomly selected fully designed agent to measure its learn-
ing progress. The measure of the learning progress was cal-
culated as the average RMS difference between the BIAs ac-
tivation levels of the instruct-only agent and an the average
fully-designed agent.
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Fig. 3. The effect of initialization on the number of interaction
needed to learn listening

Fig. 3 shows the learning progress using three different
initialization settings. The error was calculated as:

168

10
1 1
ni_j ; ﬁ ; Qagent (BIAl) — Qjideal (BIAz)

where n; is the number of test interactions, BIA; is the
basic interaction act number ¢ and a,, (P) is the actionability
of the process P in case of agent x. Three different initializa-
tion settings were used. In the first setting the listening ICPs
were initialized to have a random probability distribution. In
the second setting the listening ICPs were initialized to have
a uniform probability distribution. In the third case imitation
was used to initialize the ICPs. As the figure shows imitation
boosts the speed of learning and allowed the agent to learn the
required ICPs in 22% of the time needed to learn in the ran-
dom initialization case and less than 27% of the time needed
to learn in the uniform initialization case. The figure also
shows that imitation based initialization has a much smaller
initialization error (3.45).

5. RELATION TO CURRENT APPROACHES

Ishiguro et al. [1] proposed a robotic architecture for inter-
active robots based on situated modules and reactive modules
in which reactive modules represent the purely reactive part
of the system, and situated modules are higher levels mod-
ules programmed in a high-level language to provide specific
behaviors to the robot. The situated modules are evaluated
serially in an order controlled by the module controller [7].

Research in nonverbal communication in humans reveals
a different picture in which multiple different processes do
collaborate to realize the natural action. For example [3] showed
that human spatial behavior in close encounters can be mod-
eled with two interacting processes. It is possible in the se-
lective framework to implement these two processes as a sin-
gle behavior but this goes against the spirit of behavioral ar-
chitectures that emphasizes modularity of behavior [8]. The
L;EICA architecture deals with this problem by allowing mul-
tiple processes to control the agent at the same time while
providing a two levels action interaction mechanism that is
based on actionability and intentionality that can provide co-
herent behavior while being able to model the complex paral-
lel processes used to control human interactive behaviors. For
details about the action integration mechanism of L;EICA re-
fer to [9].

Another more interesting difference between L;EICA and
the situated modules approach is the explicit representation
of the nonverbal protocol at different interactive speeds in
L;EICA. This explicit protocol representation rather than a
passive theory of mind is a unique feature of the proposed ap-
proach that can hopefully help the agent to discover how to
interact and also help analyzing why the agent is interacting
the way it does.

The C5m [10] architecture which is based on the work of
[11] and was modified and extended by many researchers and



is currently used for both synthetic character and interactive
robotic research. The control system of the agent in C5m is
divided into a set of motivational subsystems and every one
of them is represented by a tree of actions with more abstract
actions at the top and more reactive actions at the bottom. Ev-
ery one of those actions is represented by a set of activation
rules, pieces of code to achieve the action etc. The perceptual
subsystem is represented by a tree of percepts. Each percept
is a piece of code that can detect some feature in the input
stream to the agent. Details of this system can be found in
[10]. The common feature of L;EICA and C5m is the focus
on learning but this focus is presented in different ways. The
learning system of C5m can be considered as an intelligent
way to discover both the state and action spaces available to
the agent utilizing help from a human teacher. This learning
mechanism has no notion of a protocol and although effective
in explicit teaching situations it is difficult to encode the mul-
tiple time scales of synchronization required for interactive
agents that can be captured in the ICPs of L;EICA.

In summary the main important feature of L;EICA that al-
lows it to be a better architecture for combining autonomy and
interactivity is the notion of protocol and the ability to learn
interaction protocols online based on the difference between
the bottom-up theory and the top-down simulation paths. The
ability to learn the structure of the interaction at different time
scales is another advantage of L;EICA although it was not
discussed in details in this paper.

6. CONCLUSION

This paper presented a novel learning algorithm that allows
an agent to learn an interaction protocol by engaging in inter-
actions with other agents. The proposed method can be easily
extended to multiparty interactions.

The proposed method allows the agent to acquire a simple
theory of mind regarding the type of interactions it engages in
by utilizing elements from the theory of theory and the theory
of simulation.

A proof of concept experiment in a simulated environment
showed the effectiveness of the approach and provided an ev-
idence that imitation can be used as an initializing behavior to
help the agent learn the interaction protocol faster.

The method as presented in this paper can only be used to
learn interaction protocols and is not suitable for learning task
completion behaviors. Another limitation of the proposed
method is that it requires a priori knowledge of the interaction
control processes up to a parameter vector. Currently we are
investigating a new interaction structure learning algorithm
that can hopefully overcome this limitation.

Another direction for future research is applying the pro-
posed method to real world human robot interactions to mea-
sure its effectiveness in capturing human nonverbal behavior
in explanation scenarios.
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