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ABSTRACT

The use of independent component analysis (ICA) in coherent
images needs to take into account the presence of the multi-
plicative noise that exits in this kind of images. In this paper,
the recovery of original images from a mixture contaminated
with this type of noise is studied using the ICA ideas. The
mixing matrix is obtained using the fourth order multiplica-
tive ICA method, which extracts the mixture before removing
the noise. The result is a noisy version of the original images,
where the effect of other images is reduced. The quality of the
images is finally improved with the used of a multiplicative
noise removal method. The proposed approach is compared
with the direct use of ICA method over the noisy mixture or
a denoise version of it, using simulated images.

Index Terms— Independent Component Analysis, Mul-
tiplicative Noise, Image Processing, Coherent Images.

1. INTRODUCTION

Independent component analysis (ICA) has been used exten-
sively in the extraction of linear information from many types
of signals. The ICA methods can be applied to the data recorded
in some sensors in case where the later result from the mix-
ing of independent signals. In its simplest and original form,
ICA is designed to obtain the mixing matrix when the data
are the instantaneous linear mixture of independent sources
(with the same or smaller dimension than the data). Once
the mixture is estimated, the original sources are computed
by solving the blind source separation (BSS) problem. Since
this first model was formulated in [1], the ICA methods have
been extended to treat with non-linear mixture, additive noise,
more sources than signals, convolutive mixture, partially de-
pendent sources, etc., which has made possible their applica-
tion to many fields.

One of the fields where ICA performance and applicablil-
ity has significantly improved since the initial attempt in [2],
is image processing, where it has been applied to many kinds
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of images, as natural [3], video [4], multispectral [5] or hy-
perspectral [6]. The linear information obtained by the ICA
methods has been used to solve different problems like tex-
ture classification, creation of thematic maps, restoration of
images and unsupervised classification.

A type of images where ICA has been less applied, or
even the application has been unsuccessful [7], is coherent
images, such as ultrasound, laser, or synthetic aperture radar
(SAR) images. The limitation of ICA in these images is mainly
caused by the existence of multiplicative noise, which is due
to the coherent formation process. The information in a pixel
is the result of the sum of different backscatterings from the
same region with fluctuating phase, which can be modeled
as a noise free image multiplied by an independent noise of
mean one [8].

In this paper, it is supposed that some original images are
mixed and the data recorded in the sensor consist in this mix-
ture of the original images but contaminated with multiplica-
tive noise. If ICA is applied to these noisy mixture of images,
even for a low level of noise, it does not estimate correctly the
linear information, and, therefore, the original images can not
be recovered using the estimated mixture. This behavior was
shown for random sources in [9] [10].

Other option to recover the images would be to use a mul-
tiplicative noise removal method, in first place, and then use a
standard ICA method to extract the mixture. The subsequent
application of the inverse of the obtained mixture over the
denoised data produces an estimation of the original images.
If the method works perfectly, the results are the correct un-
known mixture and the original images. However, the noise
removal method is far from being perfect, so it will identify
linear information as noise, destroying part of the structure of
the mixture, which will produce a poor posterior estimation of
it and, therefore, of the original images. The above scheme,
although it might be proved efficient for low noise levels, it
fails in the cases where the noise is high.

The approach in this paper is different, and consists in
extracting the mixture before any noise removal algorithm.
This can be done with the fourth-order multiplicative ICA
(FMICA) method described in [10]. The algorithm obtain the
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inverse of the unknown mixture, and also some statistical in-
formation about the noise and the original images. Even if the
actual mixture was known, the inverse mixture matrix appli-
cation can not lead to the full recovery of the original images
due to the presence of noise. However, the obtained images
are going to be the original ones contaminated by multiplica-
tive noise [11]. As a result, a multiplicative noise removal
method can be used as a post processing stage in order to im-
prove their quality.

The independence of the original images assumption it
might be considered quite restrictive. However, the objec-
tive of this work is to apply the recovery method in situa-
tions where the ICA analysis is expected to obtain good re-
sults, which implicitly assumes the existence of independent
images. Even though ICA methods rely on this restrictive
condition of independence, it has been shown that they can
be successfully used in more general image processing prob-
lems. We expect, that this is going to be the case for coherent
images as well.

Many methods for multiplicative noise reduction or re-
moval have been proposed for more than twenty years, mainly
in the field of radar images, where this noise is called speckle
noise. In [12] these methods are classified in two main groups.
The first group are principally minimum mean square error
(MMSE) and the second are maximum a posteriori (MAP)
filters. In this paper, MMSE filters will be used as multiplica-
tive noise removal methods.

The signal model is studied in Section 2. In Section 3, the
FMICA and noise removal methods are briefly introduced,
while in Section 4 the behaviour of the proposed approach is
tested using simulations. The paper finalizes with the main
conclusions and future work.

2. SIGNAL MODEL

In the model we assume, the data are a linear mixture of
independent images, contaminated with multiplicative noise.
Hereafter, this model will be refered to as multiplicative ICA
(MICA) model. The data consist in N images of M1 × M2,
and each one of them can be ordered as a row vector of length
M = M1M2. Then, the data are arranged in a N × M ma-
trix Z, where each row [zi(1), . . . , zi(M)] corresponds to one
image (so i = 1, . . . , N ) and each column z(t) corresponds
to the information in a pixel position for the N images, where
the variable t characterizes the pixel position, so it goes from
1 to M . These images are supposed to be noisy version of the
mixture of some independent images. The ith original image
is notated as si(t), with t = 1, . . . , M , while i goes from 1 to
the number of independent images, that is assumed to be N
for simplicity, although the development would be the same
for any other value, smaller than N . The original images can
be collected in a N × M matrix S, where its elements are
[S]it = si(t). These images are mixed with a full rank matrix
A, that is called the mixing matrix, such that the noise-free
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Fig. 1. FMICA recovery method

mixture of images is collected in a N × M matrix X, with
X = AS, where each row, [xi(1), . . . xi(M)], corresponds to
a mixed image and each column, x(t), corresponds to the in-
formation in the t pixel for the different mixed images. Then,
the recorded data follow the model[8]:

zi(t) = vi(t)xi(t) (1)

where the process vi(t) for t = 1, . . .M is the multiplicative
noise that corrupts the ith image, having mean one and being
independent both from image to image and from the vectors
xj(t), for all j = 1, . . . , N . As it has been done before with
s(t) and x(t), the noise processes can be grouped in a ma-
trix V, where each row, [vi(1), . . . vi(M)], corresponds to the
multiplicative noise present in the ith mixed image and each
column, v(t), corresponds to the noise in the tth pixel of the
different images. This is a standard model in SAR or other
coherent images and is the base of many speckle reduction
methods[8].

The approach proposed in this paper consist in two steps.
First the FMICA algorithm in [10] is used to obtain an esti-
mate of the inverse of the mixing matrix, B, and and then the
estimation of a noisy version of the original images can be
achieved via equation ŝn(t) = B̂z. Even if the estimation of
the mixing matrix was exact, (which means that BA = I)),
the ith estimated source whould not consist of the desired one
only but of the desired source plus a zero-mean, signal depend
noise term, i.e., ŝn

i (t) = si(t) +
∑

k B̂ik(vik − 1)sk. Due to
the fact that such a type of noise can be effectively eliminated
by MMSE filters [13] [12], the final estimate ŝ(t) of the origi-
nal images result from the MMSE filtering of the estimated in-
dependent components ŝn

i (t). The proposed method is shown
in Figure 1, and will be called FMICA recovery method.

As it can be seen, the key step in FMICA recovery method
is the FMICA algorithm, which is going to be introduced in
the next section. In order to do so, it is necessary to study
some of the statistical properties of the model.

The ICA methods use the statistics of the outputs of a lin-
ear transformation u(t) = Wx(t) to find the inverse of the
mixing matrix, called the unmixing matrix, since in the case
W = A−1 the components of the output u(t) are going to be
independent. As in the ICA case, the FMICA algorithm uses
the statistical properties of y(t) = Bz(t), where B = A−1,
but in this case the unmixing process is not going to lead to
independent components y(t) are not independent. Specifi-
cally, the covariance, third- and fourth-order cumulants of the
components of y(t) depend on some statistical functions of
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the noise and the original sources, and on the mixing and the
unmixing matrix, which can be collected in the following pa-
rameters:

{γs
i , κ

s
i , ηi, ωij , ρi, φi, Bij} (2)

where γs
i and κs

i are the skewness and kurtosis of si(t) and
the rest of parameters are

ηi =
√

σv
i μx

i ; ωij =
√

σv
i Aij ; ρi = γv

i /(σv
i )3/2;

φi = κv
i (κx

iiii + 4μx
i γx

iii + 6(μx
i )2σx

ii + 3(σx
ii)

2 + (μx
i )4)

(3)

with σv
i , γv

i and κv
i being the variance, skewness and kurtosis

of vi; and μx
i , σx

ii, γx
iii and κx

iiii being the mean, variance,
skewness and kurtosis of xi. The indices in the parameters
go from 1 to N . With these parameters and the unmixing
matrix B, the theoretical structure of γ y

ij , σy
ijk and κy

ijkl is
completely defined. The specific structure can be found in
[10].

It is important to point out that, as the problem is blind, the
parameters {ηi, ωij , ρi, φi, γ

s
i , κs

i} and the unmixing matrix
B are unknown.

3. METHODS

In this section, first the FMICA algorithm and then the multi-
plicative noise removal is briefly discussed.

3.1. FMICA algorithm

ICA searches for the linear transformation which renders the
components of its output as independent as possible. If the
data satisfy the ICA model, the solution is the inverse of the
mixing matrix. In the case of MICA model, it has been shown
that the components of the output of the unmixing matrix are
not independent, but they possess a specific statistical struc-
ture, and FMICA exploits it in order to find the solution. The
structure is explicitly shown in [10], which is satisfied if the
unmixing matrix B is the inverse of the mixing matrix, and
the rest of the parameters in (2) take their theoretical values.

On the other hand, the covariance, third- and fourth-order
cumulants of the output y(t) can be estimated from the noisy
data, for any matrix B. If these three estimated functions are
noted as σ̂y

ij , γ̂y
ijk and κ̂y

ijkl, they can be obtained from the co-
variance, third- and fourth-order cumulants of the noisy data
z(t), which are noted as σ̂z

ij , γ̂z
ijk and κ̂z

ijkl , respectively. The
explicit relation is straightforward to obtain, taking into ac-
count the relation y(t) = Bz(t):

σ̂y
ij =

∑
mn

BimBjnσ̂z
mn ; γ̂y

ijk =
∑
mnp

BimBjnBkpγ̂
z
mnp

κ̂y
ijkl =

∑
mnpq

BimBjnBkpBlqκ̂
z
mnpq

(4)

It can be seen that the functions σ̂y
ij , γ̂y

ijk and κ̂y
ijkl depend

only on the unmixing matrix B, while the functions σ y
ij , γy

ijk

and κy
ijkl depend both on the unmixing matrix and the set of

parameters in (2) which are unknown due to the fact that the
problem is blind.

Hence, the estimated functions (4) will be equal to the the-
oretical ones when B = A−1 and the rest of the parameters in
(2), take their theoretical values. The latter, will be called the
correct solution. To measure how well the structure is repro-
duced for a specific matrix B and a specific set of parameters
(2), a cost function J = J(Bij , ηi, ωij , ρi, φi, γ

s
i , κs

i ) can be
built as:

J =
∑
ij

(μx
i

∑
k

ωikBkj − ηiδij)2 +
∑
i≥j

(
σy

ij − σ̂y
ij

)2

+
∑

i≥j≥k

(
γy

ijk − γ̂y
ijk

)2

+
∑

i≥j≥k≥l

(
κy

ijkl − κ̂y
ijkl

)2

(5)

The first term in the cost function has been included in or-
der to take into account the theoretical relation between the
parameters Bij , ωij and ηi. The cost function , which is
formed by N2 = N(N +1)/2((N +2)/3(1+(N +3)/4))+
N2 terms, is function of N1 = N(2N + 5) parameters, and
will be zero at the correct solution.

Thus, the problem is reduced to find the value of the pa-
rameters {φi, ηi, ωij , ρi, γ

s
i , κs

i , Bij}i,j=1,...,N that minimizes
the cost function (5), which means a problem of non-linear
minimization of J . Although the non-linear minimization
method mostly used in the ICA literature is the steepest de-
scend using the natural gradient, it is necessary to resort to
another minimization method here. The natural gradient of
the cost function is not easy to establish, since the set of
parameters is not a multiplicative group, and the standard
steepest descendant method is too slow. In the FMICA al-
gorithm, the minimization is accomplished using the quasi-
Newton method called BFGS (Broyden- Fletcher- Goldfard-
Shanno). In this method the set of parameters, which are
grouped in a N1 × 1 vector b, is updated in the step k as:

b(k + 1) = b(k) − μ(k)H(k)∇kJ (6)

where μ(k) is the learning rate in the step k, ∇kJ is the gra-
dient of J in the step k, and the matrix H(k) is an estimate of
the inverse of the Hessian in the step k, which is forced to be
positive definite and symmetrical, and is obtained using the
value of the parameters and the gradient of J in the steps k
and k − 1. For more details about BFGS, readers are referred
to literature on non-linear optimization, for example [14].

Only the gradient and the starting point are necessary for
the FMICA algorithm to be completed. With respect to the
gradient, its derivation can be found in the appendix of [10].
With respect to the starting point, as in most non-linear opti-
mization methods, adequate starting values are necessary for
the method to converge. In our case, appropriate initial values
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for all parameters but the unmixing matrix, B(0) can be de-
termined by assuming a not too high noise level. With respect
to B(0), it is necessary to resort to a standard ICA method,
the FastICA in this paper. In other words, the solution of
the FastICA is set as initial for B in the FMICA algorithm.
Summarizing, the initialization of the FMICA algorithm is as
follows:

B(0) =solution of FastICA method;

φi(0) =ρi(0) = 0; γs
i (0) = γ̂ỹ

iii; κs
i (0) = κ̂ỹ

iiii;

ηi(0) =
√

σ̂v
i μ̂z

i and ωij(0) =
√

σ̂v
i [B(0)−1]ij

(7)

where σ̂v
i is obtained as σ̂v

i = σ̂z
ii−

∑
k[B(0)−1]ik∑

k[B(0)−1]2ik+(μ̂z
i )2

and ỹ(t) =
B(0)z(t). These last estimatated values are inexact, due to the
errors in B(0), but this is not a problem since the value of σ̂ v

i

is inside other parameters (ηi and ωij), and is updated in the
minimization process. In fact, a initial value of zero for all the
σ̂v

i provides, in most of the cases, a good initialization, such
as the method converges, but the convergence is slower. The
FMICA algorithm consists in the minimization of (5) with the
update formula (6), the gradient of J and the initialization (7).

3.2. Multiplicative noise removal methods

The literature on multiplicative noise removal methods is very
large and an extensive but not exhaustive list of them can be
found in [12], where they are classified in two main types:
MMSE and MAP methods. The MMSE filters assume dif-
ferent multiplicative models in the images and perform the
filtering using non-stationarity estimators of the noise free
scene. Examples of this methods are the Lee [15], the Kuan
et al.[16] and the Frost et al. [17] filters. The MAP filters use
the power density function (PDF) of the noise (that is known
for a specific application) and assume some PDF for the noise
free scene. This statistical information is used to calculate
the most likely image. Both PDFs, the noise’s and the noise-
free image’s, are based on theoretical and practical studies of
images. For the first PDF, this corresponds to a study about
the coherent formation process, and for the second PDF, to a
study about the reflective properties of typical scenes. exam-
ples of this type of methods are the Bayesian Gaussian [18]
and the Gamma [19].

The statistical properties of noise are well known, at least
in fully developed speckle SAR images, where it is circular
Rayleigh in amplitude and negative exponential in intensity,
but the PDF of the original images depend of the nature of the
scene and it is not known in a general. For this reason, in this
paper a MSSE method is used, specifically the Lee filter [15].

4. RESULTS

In this section, the behavior of the proposed recovery method
is studied via simulations. As said before, working with simu-

(a)

(b)

Fig. 2. (a) Original images; (b) Mixture of images.

lated data gives us the possibility to establish a direct compar-
ison between the recovered images and the initial ones used
to generated the data. This is not possible working with real
data, where the performance of the method would be judged
as a function of another task such as classification or detec-
tion.

In our simulation study, three original images, shown in
Figure 2(a), are used to generate the data. The variance of
these images is normalized to the unity, to avoid the scale in-
determination that appears in the ICA model [1]. The images
are not completely independent, but the results will show that
the ICA principles can still be applied.

These images are mixed with a 3 × 3 matrix, whose el-
ements have been randomly generated. The resulted mixture
of images appears in Figure 2(b). On other hand, the noise V
is randomly generated following a Gaussian PDF, changing
the variance to study how the behavior of the method changes
with the level of noise. None of the involved methods depend
theoretically on the PDF of the noise, so Gaussian has been
chosen for simplicity.

The performance of the FMICA recovery method is com-
pared with the standard recovery method that incorporates the
FastICA which is shown in Figure 3. As the standard ICA
method can not be directly applied to the noisy mixture, the
FastICA recovery method first uses the MSEE filter to ob-
tain an estimation of the noise-free mixed images x̂′(t). If
the multiplicative noise removal method works perfectly, the
process will produce the original mixed images, but if not,
it will destroy part of the linear information and will worsen
the posterior separation of the original images. After the de-
noise step, the standard FastICA method [20] is used, and it
produces an estimate of the unmixing matrix B̂′. With this
matrix, the estimation of the original images is obtained as
ŝ′(t) = B̂′x̂′(t).

When the standard deviation of the noise is 0.06, the noisy
mixture of images appears in Figure 4(a). Both method (the
FMICA recovery and the FastICA recovery methods) are ap-
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Fig. 3. Standard method

(a)

(b)

(c)

Fig. 4. (a) Mixture of images multiplied by Gaussian noise
of 0.06 standard deviation (b) Recovered images with the
FastICA recovery method; (c) Recovered images with the
FMICA recovery method

plied to this noisy mixture, and the results are presented in
Figure 4(b) and 4(c), where corrections in the order and sign
of the recovered images have been applied when needed. These
corrections are needed since, although the scale indetermina-
tion has been fixed with the normalization over the original
images, the permutation and sign indeterminations of the ICA
model still remain [1].

As it can be seen in these images, both methods obtain
reasonably good estimations of the original images. Even so,
it can be seen that the separation obtained by the proposed
method is better than the one obtained by the FastICA. This is
due to the fact that the MSEE denoising method is not perfect
and it affects the ability of the FastICA method to estimate
the correct unmixing matrix. On the other hand, the FMICA
algorithm obtain the mixture before the denosing process, so
the demixing of the image is better with the proposed method.
The different separation capacity of both methods is clearer in
the second image, where traces of the other two images (spe-
cially the first) are clearly visible in the results of the FastICA
recovery method, while this behaviour is much less evident

(a)

(b)

Fig. 5. For noise of standard deviation equal to 0.1 (a) Recov-
ered images with the FastICA recovery method; (b) Recov-
ered images with the FMICA recovery method.

in the results of the one. This visual observation can be mea-
sured by the Frobenious norm of the difference between the
original and the estimated images from the FastICA recov-
ery method (ŝ1

2(t)) and the FMICA recovery method (ŝ2
2(t) )

yields to:

||ŝ1
2(t) − s2(t)||Fro = 94.9 ; ||ŝ2

2(t) − s2(t)||Fro = 42.5

The behavior observed in Figure 4 is clearer when the
level of noise is increased. If the standard deviation of the
noise is 0.1, the recovered images are shown in Figure 5. In
this case, the distances from the original to the estimated im-
ages from the FastICA recovery method and the FMICA re-
covery method yields to:

||ŝ1
2(t) − s2(t)||Fro = 102.1, ||ŝ2

2(t) − s2(t)||Fro = 45.1

In Figure 6, the distance between the recovered and the orig-
inal images is shown as a function of the noise level. The
distance is computed as the mean for the three images of the
norm of the difference between estimated and original im-
ages. It can be seen how, except for very small level of noise,
the proposed method is always better than the FastICA recov-
ery method.

5. CONCLUSIONS AND FUTURE WORKS

In this paper, a method for recovering images from a mix-
ture contaminated with multiplicative noise is proposed. The
approach try to extend the use of ICA ideas to coherent im-
ages, a field where the ICA application has been very limited.
The proposed method used the FMICA algorithm to recov-
ered the mixture before any denoise process. This approach
is more efficient that trying to demix a denoise version of the
data, since the denoise process destroy part of the linear infor-
mation. In future work, the statistical information about the
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Fig. 6. Distance between recovered and original images with
FastICA recovery method and FMICA recovery method.

original images and the noise that the FMICA algorithm also
provides, will be incorporated to newly designed methods in
order to enhance the overall recovering performance.
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