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ABSTRACT 

 

A new method to design and evolve neural network ensembles 

NNEs based on speciation is presented in this paper. The main 

advantage of this method is that, it completely evolves NNEs by 

combining the evolution of neural networks and the 

configuration of the ensemble in one evolutionary phase. In 

every generation, population is evolved toward the best set of 

structure and weights. Then, the ensemble is configured and its 

performance is evaluated. Evolution is stopped if the best 

performance is reached or the maximum number of generations 

is reached. The main idea of this method is to generate NNE 

based on fitness sharing and genotype diversity measurement. 

The size of the ensemble depends on the number of species.  The 

output of the ensemble is calculated by the weighted sum of the 

output of each member. The members’ weights are changed 

dynamically from generation to generation depending on the 

characteristics of species existing in the current population. 

Experiments with Iris data, breast cancer data, and diabetes data 

set from the UCI machine learning repository showed that the 

proposed method can produce NNEs with better performance as 

compared to other ensemble methods. 

 
     Index Terms- Neuroevolution, Ensembles, Speciation 

 
1.  INTRODUCTION 

 

Combining multiple evolved ANNs has been actively researched 

recently. The main idea of neural networks ensemble is that a 

population of ANNs contains more information than any single 

ANN in the population. Such information can be used to 

improve generalization performance and reliability [1]. 

Generally multiple ANNs in the last generation are combined to 

construct an ensemble that has better generalization performance 

provided that the last generation individuals complement each 

other in the generalization [1]. Each network within the 

ensemble has a potentially different weight in the output of the 

ensemble [2]. Several researches have shown that the network 

ensemble has a generalization error generally smaller than that 

obtained with a single network and also that the variance of the 

ensemble is less than the one of a single network [2].To 

maximize the effect of combining multiple ANNs, a method for 

large diversity of neural networks in evolution should be used. 

The output of a typical ensemble with k  constituents networks 
when and input x is presented is [2] [3]:  

      ( ) ( )
!

k
y x w y xi i

i
= ∑

=
                                             (1) 

where y i is the output of network i and w i is the weight 

associated with the network. 

     It is common to use only the fittest solution of the last 

generation, as only information of single individual is exploited. 

An ensemble of individual is a more promising choice because 

information that is derived from combining a set of individuals 

might produce higher accuracy than using the information from 

the best individual among them. A lot of studies [4] [5] [6] [7] 

focused on  using  negative correlation learning  (NCL) and 

backpropagation (BP) to obtain accurate and diverse ensemble 

by adding penalty term describing the negative correlation 

between networks to conventional mean square error of each 

network. The idea of training neural networks as a 

multiobjective optimization problem and using the resultant 

Pareto frontier to form an ensemble of networks is proposed in 

[5] [8] and [9]. Authors of [5] concluded that, Pareto-based 

ensemble is better than the obtained by BP. Another method to 

evolve ensemble based on fitness sharing is introduced in [10], 

[11], [13] and [14]. In this method the population is evolved by 

genetic operations crossover and mutation until the maximum 

number of generation is reached or the fitness is 1.0; then, 

networks of the last generation are trained by BP. After that the 

population is clustered and the representative individual of each 

cluster is selected to form the ensemble. Although of its 

excellent results, this method has two weak points: there are two 

training phases, and ensemble formation phase is separated from 

individuals training phase.  The idea of evolving both the 

population and the ensemble in one single phase is proposed in 

the current paper. In this paper a new method to generate an 

ensemble automatically based on fitness sharing is proposed. 

 

2.  BASIC IDEA OF THE PROPOSED METHOD 

 

The fundamental idea of the proposed method is the speciation 

of the whole population into a number of species through 

evolution as shown in Fig.1. The number of species varies from 

generation to generation depending on the population genotype 

diversity.  The number of individual networks in each species 

varies depending on the sharing radius. At each generation, the 

best individual of each species is selected to be a member in the 

ensemble. The output of member networks is combined by the 
weighted sum of outputs; the weight of each member is 

determined by three factors, the size, the age, and the average 

fitness of its mother species. A member network which belongs 

to a species that has a large size, a long evolution age, and high 

average fitness, will be weighted more than a member that 

belongs to a small and young species with low average fitness. 

The sum of weights equals to one for normalization purposes. 

   This method can be characterized by its flexibility, which 

suites different problems. This flexibility can be explained on 

two levels. First, on the level of NNs, where evolutionary 

algorithms are used to evolve the structures and the weights of 

NNs. Second, on the ensemble level, where ensemble is evolved 

(members, size, and weights) by benefiting from speciation. The  
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Fig. 1. Ensemble evolution cycle 

 

 

 

 

size of the ensemble is dynamically determined through the 

evolution. The share of different members in the output of the 

ensemble is determined based on characteristics of its mother 

species, where species with high performance live a long number 

of generations, while low performance species die out. Also the 

size of species is important aspect since species with large 

number of individuals will have high share rate in the production 

of the new generation individuals.  The old method can be seen 

as ensemble method where the best individual weight is 1.0 i.e. 

the contribution of the other individuals is neglected. So it can be 

said that the old method is special case of ensemble, where the 

whole population represents the ensemble.  

 

3. SPECIES EVOLUTION 

 

Fitness sharing is the best method to speciate a population of 

neural networks. Speciation in genetic algorithms creates 

different species, each embodying a sub-solution, which means 

to create not only the best one but also diverse solutions [12] 

[14]. In each generation individuals are placed in species. Each 

species is represented by a random genome inside the species 

from the previous generation.  A given individual in the current 

generation is placed in the first species in which this individual is 

compatible with the representative individual of that species. If 

this individual is not compatible with any existing species, a new 

species is created with that individual as its representative [15]. 

Every species is assigned a potentially different number of 

offspring in proportion to the sum of   shared fitness of its 

individuals. Species then produce by first eliminating the lowest 

performing member from the population. The entire population 

is then replaced by the offspring of the remaining individuals in 

each species [15].  

 

4. KEY POINTS OF THE PROPOSED METHOD 

 

The design of neural networks ensemble implies making many 

decisions that have major impact on the performance of 

ensemble. The most important decisions that should be taken in 

designing an ensemble are [2]: 1) the method of designing and 

training the individual networks, 2) the method of combining the 

individual networks, 3) the method of measuring the 

performance of individual networks, 4) the method of 

encouraging diversity among the members of ensemble and how 
to measure such diversity. Based on these decisions of designing 

neural network ensembles NNEs, we propose some key points to 
design and evolve NNEs: 

1. Individual networks are evolved (weights and structure) by 

genetic operations crossover and mutation as in [15]. 

2. Most of introduced methods fix the size of the NNE to a 

given number of NNs; in our method, the size of the 

ensemble varies every generation and the final ensemble 

size is determined at the end of evolution. 

3. The weighted sum of the outputs method is used to combine 

the output of the NNE members Eq. (1); the members 

weights are obtained by a new method based on the species 

characteristics. 

4. Fitness sharing speciation is used to keep and   promote the 

diversity between the individuals of the ensemble, and 

diversity is measured by a new metric “neuro-edit” based 

on the genotypic similarity. 

5. The performance of the ensemble is evaluated as the rate of 

correct classification. The performance of the individuals of 

the population is evaluated as a function of the average 

error on the training data set and the total number of species 

in the population, i.e. diversity degree is factored as an 

objective in the objective function. 

6. All the population individuals are initialized to the same 

minimal structure (input nodes are fully connected to output 

nodes, no hidden nodes, and the weights of connections are 

initialized randomly) and trained on the same data set for 

the same number of generations. 

 

5. WEIGHTS OF THE ENSEMBLE MEMBERS 

 

1. For an initial population p  of n  neural networks: 

}{ , , ...,1 2p p p pn= . 

2. Through evolution, this population is speciated into m  

species: }{ , , ...,1 2Sp Sp Sp Spm= , and each species has a 

different number of individuals. Initially, at the first generation 

all the population is speciated to one species since, initial 

population individuals have the same genotype structure. After 

the first generation, individuals begin to have different genotypes 

and to be speciated to more than one species.  

Species satisfy the following conditions:  

1)Sp Spi j ϕ∩ = , and 

                                  2)
1

m
Sp pi

i
=

=
∪ , 

This means that each individual in the population is speciated to 

only one species, and the sum of all species individuals equal to 

the population size. 

Species can be characterised by the tuple , ,A S FSp Sp Sp
i i

< > : 

1. A , age of species, the number of generations in which 

this species is still alive, to indicate the experience 

gained by its members by training,1 A kSp
i

≤ ≤ ,   

where k  is the maximum number of generations.  

2. S , size of species, number of individuals, to reflect 

the power of the species to produce.  

3. F , average fitness of species, to reflect the 

performance of species. 

 

The weight of each species can be calculated as a function of its 

age, size, and its average fitness as follows: 

                           A S Fi i i iω α β γ= + +                                 (2)  

0 , , 1α β γ≤ ≤     

The values ofα , β  and γ can be selected to tune the importance 

of the species parameters, age, size and average fitness.  

Sp1 

Sp2 

Sp3 

Sp4 

Spi 

 

Ensemble 
evolution 

cycle 
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The weight of an ensemble member selected from Spi  is 

calculated as iw i W

ω
= , where 

1

m
W i

i
ω= ∑

=
. 

 

6. FINTESS CALCULATIONS 
 

A useful NN to be added to an ensemble is one that correctly 

classifies as many examples as possible while making mistakes 

on examples that most of the current population members 

correctly classify [16]. An ideal ensemble is one that has 

members where, each member has different error set on a given 

data set.  This means that, the ensemble members should be 

diverse, to address this condition during the evolution of the 

population, the whole population similarity degree is factored as 

a term in the objective function of each individual.  The 

population similarity is defined as: 

  
speciesofno

ps
__.

λ
=    where λ is a variable  to tune the 

importance of similarity term. The fitness function is defined as: 

             2[ ( )]F M E psi i= − + , 

at the beginning of the evolution, the similarity term  equals to 

λ , with highly speciated population the similarity  term will be 

nearly zero  and the fitness will depend on the individual average 

error,
1

( )
1

M
E y x di i j jM j

 
= −∑ 

=  
, where M is the size of the 

training set, ( )y xi j is the output of individual i on the  
th
j  

pattern of the training data set, jd  is the desired output. The 

performance of the ensemble will be measured as the correct 

classification rate on data set. 

 

7.  FITNESS SHARING TECHNIQUE 

 

Fitness sharing is a technique that penalizes genomes that inhabit 

neighbourhoods of many other genomes. Generally, an 

individual’s fitness evaluation is divided by a sharing factor that 

measures the genome’s proximity to other genomes in the 

population.  Genomes in heavily populated peaks receive a high 

penalty, which translates into a lower probability of propagating 

to the next generation. This technique is intended to spread the 

population across several peaks in the solution space, with wider 

or higher peaks able to support more individuals [14]. Ensembles 

are effective when their members are both accurate and diverse. 

Speciation through fitness sharing creates a diverse set of 

solutions to exploit different niches in the fitness landscape [17]. 

Raw fitness scores are shared amongst similar individuals. The 

definition of similarity and the mechanism of sharing vary in this 

paper. The similar individuals are those which have similar 

genotypes (structures and weights). Individuals of similar 

genotypes have similar fitness values or performances. 

Given that f i  the fitness of an individual i  and ( )sh dij  is a 

sharing function, the sharing fitness f si  is computed as [12]: 

                 

( )∑
=

=
p

j
ij

i
si

dsh

f
f

1

)(δ

                                                 (3) 

The sharing function ( )ijdsh  is set to 0 when distance ijd  is 

above the threshold tδ , otherwise,  ( )ijdsh  is set to 1 as in the 

following equation [15]:                                                                   

                          ( )






≥

<
=

tij

tij

ij
d

d
dsh

δ

δ

,0

,1
                        (4) 

The sharing radius is determined by the following equation:  

                       
11

( 1) 2 1 1

p p
dij

n n i j i
δ

−
= ∑ ∑

− = = +
                        (5) 

Where p  is the population size, and di j  is the genotype 

distance between thi  and thj NN’s and is measured according 

to a new proposed method explained in the next section. Fitness 

sharing decrease the increment of fitness of densely populated 

ANN space and shares the fitness with other space [12] [13]. 

With fitness sharing the genetic algorithm finds more diverse 

solutions although some of the solutions are not good.  

 

7.1 Measuring Genotype Diversity 

 

Based on the nature of evolvable neural networks ENNs, a new 

measure defined as “neuro-edit” is introduced in [18] to measure 

the distance between neural networks based on measuring 

similarity between neural networks in terms of connection genes. 

This measure is based on the encoding method presented in [15]. 

It is not enough that a connection gene in one genome to be 

similar to a connection gene in another genome, although they 

have the same in-node and the out-node, since the weights and 

states of such genes may be different. If they have the same 

weight and status, then they are completely similar and distance 

between them equals to 0, otherwise the distance will not be 0. 

The computation of distance between two chromosomes can be 

divided into two parts. The first part measures the distance 

between common genes (i.e. genes that have the same id ), and 

the other part for uncommon genes. 

Common genes distance: to calculate the distance between two 

genes with the same id (genes exist in both chromosomes), the 

status of each gene is checked, if both genes are enabled, then 

distance between them will depend on their weights. In the case 

of similar weights, the distance will equal to 0. In the case of 

dissimilar weights, the distance will equal to the absolute 

difference between weights normalized by the maximum of 

absolute value of weights. In the case of, one of the genes has a 

disabled status, this means that the gene is useless or not actually 

functioning in the phenotype and the two genes are considered 

dissimilar and distance between them will equal to 1. The total   

distance between  n  common genes of two chromosomes  1C  

and 2C  is calculated by adding up distances as follows:                                        

( )
( )

1 1 2 2

1 1 2 2
1

( ) * ( ) ( ) ( )
1

max ( ) * ( ) , ( ) ( )

n i C i C i C i C

com

i i C i C i C i C

st g w g st g w g
d

n st g w g st g w g=

− ∗
=

∗
∑   

                                                                                                   (6)                           

Where, 
1

)( Cigst  and 
1

)( Cigw are the state and the weight of a 

common connection gene 1Cgi ∈ , and  
2

)( Cigst  and 

2
)( Cigw are the state and the weight of a common connection 

gene 2Cgi ∈ . 

Uncommon genes distance: the distance between n  uncommon 

genes in 1C , and  m  uncommon genes in 2C , is given by:  

1 2

1 1

1 1
( ) ( )

n m

uncom i C j C

i j

d st g st g
n m= =

= +∑ ∑           (7) 

Where, 
1

)( Cigst is the state of an uncommon connection 

gene 1Ci∈ , 
2

)( Cjgst is the state of an uncommon connection 

gene 2Cj∈ . 
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The distance of uncommon genes depends only on their status.  

The total distance between two chromosomes 1C  and 2C   is 

given by: 

               
( ) ( )1 2

1 2

1
,

3

0 ( , ) 1

com uncomd C C d d where

d C C

= +

≤ ≤
       (8) 

Distance between two genomes satisfies the following 

conditions:   

),(),()3

0),()2

,0),()1,

1221

2121

1121

CCdCCd

CCifCCd

CCdPCC

=

≠>

=∈∀

                   (9)  

It can be easily shown that,   ),( 21 CCd  satisfies the triangle 

inequality [18], ),(),(),( 323121 CCdCCdCCd +≤  where 

21, CC  and 3C are three different chromosomes. 

 

8.  EVOLVING  NNE ALGORITHM 

 

As shown in Fig.2 the main steps of the algorithm are: 

1- Generate initial population of N  networks, all networks 

have the same structure, input nodes, output nodes, no 

hidden nodes, and input nodes are fully connected to 

output nodes. The weights are randomly initialized. The 

number of input nodes equal to the number of features in 

the training data, and the number output nodes equal to the 

number of classes. 

2- Speciate the population based on fitness sharing by using 

genotype diversity of the population as threshold. The 

number of species in a population depends on the degree of 

its genotypes diversity. The initial population has the same 

structure so; it is normally that all individuals are speciated 

to the same species.   

3- Evaluate the performance of the population individuals on 

the training data set. 

4- Configure the ensemble by selecting the best individual of 

each species; calculate the weight of each ensemble 

member depending on the characteristic of its species. 

Compute the ensemble output as a weighted sum of the 

output of each member.   

5- Stop evolution if the maximum number of generations or 

the best fitness is reached. Otherwise go to the next step. 

6- Generate new population from the current population by 

using crossover and mutation.  

7- Go to step 2. 

 

9.  EXPERIMENTAL RESULTS 

 

The proposed system has been tested on three benchmark data 

sets; Iris data set, breast cancer data set, and diabetes data set 

which are available by the UCI machine learning repository. Iris 

data set contains 150 instances with 4 numeric attributes, and 

three classes. The data set is equally distributed with 50 

instances for each class. The 150 instances are divided into 60 

instances for training, 30 instances for validation, and 30 

instances for testing. Breast cancer data set is a two class 

problem with 699 instances, each instance has 9 attributes and 1 

class attribute. The data set is divided into 349 instances for 

training,  175 instances for validation, and 175 instances for 

testing. Diabetes data set has 768 instances with 8 numeric 

attributes which can be classified into positive or negative 

diabetic. Also in agree with literatures the data set is divided into 

384 instances for training, 192 instances for validation, and 

192instances for testing. Each experiment starts with an initial  

population consists of 100 NN’s, each NN has a minimal 

structure; 4 input nodes   and 3  output nodes for iris data set, 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flowchart of ensemble evolution algorithm 
 
input nodes and one output node for beast cancer data set, and 8 

input nodes and one output node in the case of diabetes data set, 

no hidden nodes, input nodes are fully connected to output 

nodes, connections weights are randomly initialized. The 

maximum number of generations is 200. Genetic operators rates 

are set as follows:  structures crossover rate is 0.8, weights 

crossover rate is 0.6, add node mutation rate is 0.05, add 

connection mutation rate is 0.03, weight mutate rate is 0.03, and 

connection re-enable rate is 0.25.   

   The evolution continues until the maximum number of 

generations or the best fitness is reached. During evolution the 

ensemble parameters (ensemble size and weight of ensemble 

members) are optimized. At the end of evolution the best 

ensemble configuration is obtained.  Tables 1, 2 and 3 show the 

configuration of ensemble for iris data set, breast cancer data set, 

and diabetes data set respectively. The first column shows the 

member id  in the population. The second column refers to 

species id  from which that ensemble member is selected. The 

weight associated with each member is shown in the third 

column. The ensemble members weights are obtained 

with 0.5α = , 0.5β = , and 0.9γ = .  The classification rate of 

each member is shown in the last column. The ensemble size of 

iris data set is seven members, six members on breast caner data 

set and seven members on diabetes data set.  The ensemble 

configuration shown in tables 1, 2, and 3 are the best 

configuration obtained on ten experiments.  

   The common error between the ensemble members can be 

defined as follows: 

ic EEEE ∩∩∩= ...21  where iE  is the error set of member i  

on the data set. On   iris training data set the common error is 0, 

i.e. each individual has different set of error, and on breast 

cancer training data set is 1, i.e one pattern is common between 

all ensemble members error sets. Tables 4, 5, and 6 show the 

no 

yes 

Initial population 

Genotypic Speciation 

Individual Evaluation 

Generating Ensemble 

Ensemble Evaluation 

Stop? 

New  population 

Mutation  

Crossover 

selection 

End 
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classification rate on iris data set, breast cancer data set, and 

diabetes data set for training, validating, and testing respectively.  

 

Table 1. Ensemble configuration (Iris data set) 

Individual 

id  

Species 

id  

member 

weight 

Classification 

rate 

1 89 0.1687 0.89 

26 91 0.2052 0.97 

3 96 0.1524 0.86 

4 98 0.1325 0.81 

5 102 0.1526 0.85 

6 104 0.0948 0.66 

7 105 0.0937 0.66 

 

Table 2. Ensemble configuration (Breast cancer data set) 

Individual 

id  

Species 

id  

Individual 

weight 

Classification  

rate 

1 9 0.1750 0.9714 

2 14 0.1745 0.9714 

3 16 0.1745 0.9714 

4 29 0.1760 0.9000 

82 33 0.1696 0.9857 

95 34 0.1304 0.8429 

  

Table 3. Ensemble configuration (Diabetes data set) 

Individual 

id  

Species 

id  

Individual 

weight 

Classification  

rate 

1 1 0.1400 0.9601 

6 7 0.1416 0.9711 

61 10 0.1413 0.9689 

9 15 0.1547 0.9751 

82 22 0.1383 0.9398 

80 24 0.1320 0.8929 

77 45 0.1377 0.9391 

 

The ensemble output is calculated as the weighted sum of output 

of its members.   To be consistent with the literature [10] [11] 

and [12], the shown results are the average on ten experiments. 

The results of the experiments are comparable to results in [11] 

on breast cancer data set and diabetes data set. As in [11] and 

[6], the standard deviation on the training set is always smaller 

than on the test set.  Table 7 shows a comparison between the 

results of the proposed method and results of [11] from ensemble 

size point of view for breast cancer data set where the population 

of neural networks in [11] was speciated with average output 

with linkage cluster analysis. Although, the results of the 

proposed method are less than the results obtained in [11] in the 

case of ensemble size  of 15 members,  the proposed method 

results  are better than results of [11] in the case of ensemble size 

of 8 members . In both cases the proposed method has a smaller 

ensemble size, 6 members. So the computational complexity to 

get output from the proposed ensemble is less than the case of 

using method proposed in [11]. 

 

Table 4. Ensemble classification rate on Iris data set 

 Average Std. Max. Min. 

Training  0.9943 0.0118 1.000 0.9789 

Validating  0.9518 0.0239 0.9731  0.9261 

Testing 0.9918 0.0121 0.9937 0.9685 

 

Table 5. Ensemble classification rate on breast cancer      

data set 

 Average Std. Max. Min. 

Training  0.9837 0.0141 0.9976 0.9189 

Validating  0.9331 0.0312 0.9631 0.8926 

Testing 0.9821 0.0172 0.9934 0.9096 

Table 6. Ensemble classification rate on diabetes data set 

 Average Std. Max. Min. 

Training  0.8038 0.0165 0.8187 0.7896 

Validating  0.7901 0.0311 0.8056 0.7721 

Testing 0.8022 0.0143 0.8141 0.7846 

 

Table 7.  Comparing results of this paper and results of [11] 

for breast cancer data set 

 Proposed method Results of [11 ] 

Comb. method Sum  of w. output Vote, Avg, and Wavg 

Ensemble size 6 15 8 

Class. rate 0.9821 0.9829 0.9771 

 

• Comparing proposed method with Bagging and boosting 
The proposed method is compared with bagging [18] [19] , 

where the NNs are trained using  randomly re-sampled training 

sets, and boosting  where NNs are trained using weighted re-

sampled  training set based on Arcing method and Ada method. 

Table 8 compares the classification rates of the proposed 

methods and other ensemble methods, bagging and boosting, the 

proposed method for configuring ensembles has a high 

classification rate as compared to the bagging and boosting 

methods. 

  

Table 8. Comparing the classification rate of the proposed 

method, bagging, and boosting. 

 
Bagging 

 

boosting 

Arc         Ada 

Proposed 

method 

Iris 0.9600 0.9630    0.9610 0.9918 

B. cancer  0.9660 0.9620 0.9600 0.9821 

Diabetes 0.7720 0.7560 0.7670 0.8022 

 

• Comparing combination methods 
The proposed method to combine the output of ensemble 

members is the weighted sum of outputs. The weights of 

ensemble members depends on characteristics of their species 

see Eq (1). Our method is compared to the following combining 

methods: 

1. Average, where the ensemble output equals to the 

average of its members output. In this case all ensemble 

members have the same weight. For ensemble of n  

members,  the ensemble  output will be: 

1

1
n

o i

i

Ens m
n

=

= ∑  where im is the output of member i . 

2. Weighted average [12], each    ensemble member has a 

weight depending on the error rate of this member as 

follows: 

1

(1 )
1

Eiw i n
Ek

k

−
=

−∑
=

 

The ensemble output is given by, 

1

1
n

o i i

i

Ens w m
n

=

= ∑  

3. Voting, the ensemble output for input x  will be  class 

j , if the number of members that support class j  is 
considerably bigger than the number of members that 
support any other class [12] [21]. 

   These methods are used to combine the output of ensemble 

configured from the last generation, where the ensemble 

evolution is stopped. The results are listed in Table 9, the 

proposed method has a better classification rate than other 

methods for all data sets. Since the weights are evolved during 

the training and evolution of neural networks. 
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Table 9. Comparison of proposed combination method and 

other combination methods  

 Avg. w. avg. voting Proposed method 

Iris 0.9573 0.9761 0.9628 0.9918 

B. cancer  0.9489 0.9685 0.9734 0.9821 

Diabetes 0.7065 0.7410 0.7381 0.8067 

 

10. CONCLUSION AND FUTURE WORK 

 

In this paper, we have proposed a new method to evolve 

ensemble of neural networks. Both, the population individuals 

and the ensemble configuration (members, size, and weights) are 

evolved in the same evolution phase. This method is based on 

speciation and fitness sharing, where the population is speciated 

with a new genotype similarity measure. The distance between 

population individuals is measured in terms of connection genes 

of their genotypes. The preliminary results of experiments on iris 

data set breast cancer data set and diabetes data set showed that, 

the proposed method is able to generate ensembles has better 

performance than bagging and boosting methods, and 

comparable performance with smaller ensemble size compared 

to other methods which are based on fitness sharing. The main 

contribution of the proposed method is the full benefit from 

evolutionary algorithms in evolving ensemble as whole. The 

advantages of this method are that, the interaction between the 

evolution of the population individuals and the construction of 

the ensemble, there is no need to initially select the ensemble 

size or fix the ensemble members weights. The evolution of 

ensemble is stopped when the maximum fitness is reached or the 

maximum number of generation is reached, not depending on the 

performance of the best individual,  and the ensemble obtained 

by this method has smaller size that  those obtained by other 

methods. Our future work will be concentrated on assessing the 

proposed method on other benchmark data sets available on 

UCI, like Australian credit card set, and glass data set.  
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