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ABSTRACT () One general approach to regularization is based on the
Probability density function estimation from limited daigts addition of a regularization term to the unconstrained
is a classical problem in pattern recognition. In this paper criterion function, which expresses constraints or de-
we propose a reformulation of the well-known nonparamet- sirable properties of solutions.

ric Parzen method as a parametrically regularized Gaussia
Mixture Model, from which we can easily estimate density
contour level. As an application illustration to the propds
contour level estimator, we also address the Blind Sourpe Se
aration problem through the analysis of contour level disto
tions in joint probability density functions. Finally, wesel
the proposed estimator to undo a nonlinear mixture of two(lll) For Mixture Models, regularization can be easily ob-
images. tained by imposing constraints on the mixture compo-
nent parameters (e.g. by imposing constraints or lower
limits on the covariance matrix of Gaussian kernels in

n(II) For models obtained via clustering-like algorithmis-(i
cluding the EM, which can be loosely seen as a soft
clustering algorithm [4, 7]), a straightforward regular-
ization approach is that of averaging estimates from
many independent initializations.

Index Terms— Parzen method, GMM, PDF Contour Level
Estimation, ICA, BSS.

GMM).
1. INTRODUCTION (IV) Conexionist models (e.qg. artificial neural networkahc
also be regularized, or partially regularized by pruning
Probability Density Function (PDF) estimation from lindte [8], though it is not always explicitly referred to as a

data sets is a classical problem in pattern recognition, for regularization procedure.
which many approximated solutions are presente_d in.Iiter— On the other hand, the nonparametric Parzen method [1,
aturg [1]. In this work,. we focus on PD,F apprOX|mat|ons4] can loosely be regarded as a mixture model based method
provided by Normal Mixtures, or Gaussian Mixtureé Mod- it srongly-constrained mixture components (categtijy |
els (GMM)' In these models, "900‘_’" mixture parameters (-8-The parzen approach gives an instant PDF approximation (no
Gaussian kernel means and covariance matrices, as wedl as {firations) and, in spite of its simplicity, itis known thander
mixture weight of each kernel) can be found in many waySgome constrains on its window width parameter, the conver-
such as th.rough the well-known Expectatlon-MaX|m|zat|ongence of the estimated PDF with the actual one is guaranteed,
(EM) algorithm [2]. ) ) _ when the number of samples tends to infinity[1, 9]. In other
Although the EM is not the fastest algorithm for mixture 5,45 many smaiisotropic (radial basis) Gaussian kernels,
optimization [3], itis usually simpler to apply, which caam it igentical dispersion, can virtually approximate arymP
t@ally explain its w!despread popularity in many applicati “shape”. This corresponds to a trade from kernel complexity
flelds._ However_, |t_presents some.dralwba}cks [,4]’ SOme 0(felliptical kernels, for instance, typically obtained e EM
them linked to likelihood computation in high-dimensional approach) to kernel number.
problems, which can be true in some low-dimensional prob- Although EM and Parzen approaches come from differ-
lems as well [5]. In order to cope with these drawbacksgn haradigms — namely, parametric and nonparametric PDF
model regularization is a common solution. Indeed, modelg;imation, respectively — they share a striking strutira-
regularlggtlon IMPOSES constraints on th? Gaussian ntialXturilarity, whenever the Parzen method is based on Gaussian ker
compOS|t|op,wh|ch Increases generalization [6]. L nels. In both cases, the actual PDF is approximated by a
Regularization strategies can be roughly split into founyixsre of Gaussians. Therefore, hereafter we will refer to
categories, namely: estimates from both approaches as Gaussian Mixture Models
Thanks to CNPq agency for funding. (GMM).
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In this work, we take advantage of the Parzen model simrelatively few training data sets [11], or even in some low-
plicity to develop a new PDF contour level estimator. Thedimensional problems [5]. This drawback can be tackled with
whole estimation process includes Gaussian kernel opimiz regularization strategies. Indeed, one particularlyrgggng
tion through likelihood validation, and a deterministicyaal-  regularization category is based on structural restnstite-
ing [10] like iterative algorithm which provides a graduiadi  cause it can simplify learning algorithms as well. Accord-
provement of the contour level estimate. ingly, in Section 3, we reformulate the Parzen method as a

Finally, as a straightforward application to the proposecarametrically regularized GMM.
estimator, we address the blind separation of two indepgnde
signal mixtures from a very simple perspective: the geoimetr 3. PARZEN METHOD FROM A PARAMETRIC
distortion of contour level in joint PDF. PERSPECTIVE

In Section 2, the PDF estimation problem from a finite
data set is addressed, whereas in Section 3 we reformulatg@w, let us reformulate the GMM optimization problem un-
the Parzen method as a parametrically regularized GMM . lger very strong constraints on the parameter vector. Fest,
Section 4 a new PDF contour level estimation approach fromdonstrain the placement of Gaussian kernel centet$ ran-
the Parzen model is proposed. Finally, in Section 5 an apdomly chosen samples froai.
plication of the proposed PDF contour level estimator is il-  For this purpose, we randomly split the dataX¥ento two
lustrated. This application is based on nonlinear Indepetd disjoint subsets: therototyping subsetP = {p1, P2, .-,
Component Analysis (ICA), from a geometric point of view. pa } of sizeM, and theoptimization subseV = {v;,vs,...,

vN_um }, consisting of the remaininy — M samples.

2. PDF MODELING WITH GAUSSIAN MIXTURES Moreover, we want to use identical isotropic Gaussian
kernels with uniform weights in the mixture. Therefore, we
Given a data set of cardinalitiy, X = {x;,x,...,xx}, furtherimpose thaR; = o?I anda; = 1/M, respectively,
wherex; is a real-valued column vector of lengih, we as- fori = 1,..., M. It clearly corresponds to the following
sume that these vectors are independent samples drawn fraestrictions on the parameter vector:
an unknown multivariate probability density functip(x). 9
We further assume that there is a suitable parametric ap- © =[a; =1/M,¢c; = pi, Ri = 0°1] ®3)
p_roximatic_)n forp(x), given by a mixture of multivariate Gaus- \yhere; — 1,..., M.
sian functions, i.e.: These restrictions lead to a Gaussian Mixture Model equiv-
M alent to that obtained by the nonparametric Parzen method,
p(x) ~ p(x|0) = Z a;g9(x|ci, Ry) (1) Wwhere each Gaussian kernel center,is a sample fronP.
P Applying these restrictions to Equation 1 yields:
where® = [aq,...,am,c1,...,cp, Ry, ..., Ry stands . M )
for the mixtuEe parameter vector, and | p(x|o) = (1/M) Z 9(x|p;, o°T) 4)
i=1
g(x|ci, Ry) = in which the the only free parameterds(see Equation 3).
1 This is a single scalar parameter, and optimizéddhrough

D i OXP [_0_5(X — ci)tR;l(x — Ci)] (2) Iik-el-ihood mgximization, in this case, is equivalent toiept
(2m)P/2[Ry| mizing o, which can be done in a rather straightforward man-
ner, by a simple exhaustive one-dimensional search, throug
a grid of values empirically set, according to the following
algorithm:

corresponds to theth Gaussian kernel of the mixture, with
mean vector and covariance matrix givendyandR;, re-
spectively. We further impose< a; < 1andY. Y, a; = 1.
Accordingly, denoting the likelihood oft by I[(®) =
p(X|@), likelihood adjustment of a Gaussian mixture modelAlgorithm for o optimization
to a given PDF can be summarized as finding the optimal pa-

rameter vector®,, that maximizes the log-likelihood, i.e.: 1. Rough variance estimation:for each sample fror®,

pi, the two nearest neighbors are found, and py,

0, = argmax(log(©®)) so that a rougti-th variance estimate is provided by
© o? = (||x: —x;||* + |lxi — x£[|?) /2. Note thatd/ > 3.
Ifwe do notimpose any restriction @, finding®, turns 2. Setting the 1D likelihood optimization search grid:
out to be a non-trivial optimization problem, to which the the median value from all rough variance estimates is
Expectation-Maximization algorithm is usually applied.[2 taken, i.e.
It is well known that Gaussian mixture density estimates
are particularly problematic in high-dimensional spacés w o2 = median(o?,03,...,0%,)
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fromwhich, we setr,in, = \/02,/10, 0mae = 10/02, 14 o Log-Likelihood

B \
andA, = /02, /20. -500
. . . -1000
3. Prototyping: from the prototyping subset, a Gaussian 1500
Mixture Model is obtained, where each Gaussian kernel *2 -2000

Max. Log-Likelihood = - 61.4 |

centerg;, is a sample fron®, according to Equation 4. ;ﬁ I‘
4. Optimization: Since the log-likelihood depends on the = - -3500
scalar parameter, according to: VA T 4000 PP
1 o

N-M
log(l(0)) = ) logp(v;lo) (5)
=1 Fig. 2. Isotropic Gaussian kernels (left) andoptimization
wherev; is thej-th (independent) sample drawn from (right)
the optimization subset, we simply proceed with an ex-

haustive 1D search for the standard deviawgnthat
maximizesog(I(c)). This search is done through a fi- that contour level bounding the 95% confidence region. On

nite set of values fos, Corresponding to a regu|a|’ gnd the other hand, the Slmp|ICIty of the described Parzen mOdel
of real values fromr,;n t0 omaz, With grid interval  thanks to the identical radial dispersion of each Gaussan k

A,. nel, allows for a very straightforward approach to PDF con-
. i tour level estimation. In this section, we briefly presetig th
For the Parzen method, the choice of the so callediow approach.

width, o,, plays a pivotal r(_)le. Many methods_for this pur- Now, leto be a control parameter, aiigs (o) the contour
pose are available in the Literature. The algorithm proﬁoseleveI of ji(x) (see Equation 4) inside which the density inte-

her_e uses the very same Workiqg pri_nciples as in the crosgl-ra| equals 0.95. It is easy to see tiiat (o) tends to be a
validation method [12, 11, 4], butin a simpler way. Therefor circle (respectively a sphere or a hyper-sphere/dce 3 or

we should refer to this as a ‘simple validation’ method. D > 3) of radiusr = 1.965 whenevew tends to infinity.
To provide an illustration, we consider the L-shaped joint | other words gi\-/en a high enough we may aséume

probability density functionp(z1, 2»), shown in Figure 1. that almost all data points froi lie inside g5 (o), which,

in turn, is almost a circle. This assumption is illustratad i
Figure 3 foraD = 2: compare the contour points represented
by “*' (a circle of radiusr = 1.96¢) to the most external solid
line which represents the estimafég (o), for a high enough
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Accordingly, in order to gradually approximalgs (o, )
(our goal contour level, not necessarily a circle), we first a
cept a naive first guess bf;(¢) — wheres = N,0, andN,
Same is a big enough Real scale factor — given by a simple sphere
(available observations) of radius1.96 N,0,. Furthermore, continuou%; (o) is rep-
resented by a set of points equally spaced, i.e. a circuidr gr
of points onl'g5(c). Afterwards, the value of is gradually
Fig. 1. An L-shaped joint probability density function  reduced tar,, while each point on it is gradually adapted to

minimize the following cost function:
The crosses under the 3D surface represent 168 data sam-

ples, from which we estimatg(z, z2) from M = 20 sam- J(x|o,P) = (p(x|o, P) — g(r1.06/0,1))? (6)
ples randomly taken to be set as kernel centers, whereas the ' '
remaining 148 samples are used to optimizeOn the left  \here Ir106]] = 1.96 and 0 is a null vector. Note that

side of Figure 2, Gaussian kernels are represented bysircle;(r, 4|0, I) is just a threshold value which defines the PDF

On the right side, there is an illustration of theptimization  contour. In 2D, it yields the following stochastic iteratio
through an exhaustive 1D search. rule:

4. CONTOUR LEVEL ESTIMATION FROM THE
PARZEN MODEL Xnew < Xotd — (P(Xota) — 0.023)Vp(Xo14) (7

A potentially useful concern in probabilistic modeling @ftd ~ where0.023 ~ g(r1.46/0,I) for a 2D multivariate Gaussian,
sources is the estimation of contour levels of PDFs, mainlandp(x,;4) stands fop(x,.4|0, P).
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We highlightthatVj(x,:4) is here a simple weighted vec- Specifically, wherp (s1) andp.(s2) are flat (uniform)
tor sum, thanks to the symmetrical and identical disperafon distributionsI'g5(o,) is expected to be a square. On the other
Gaussian kernels in the constrained PDF Parzen model.  hand, linear memoryless mixtures of independent variables
Figure 3 illustrates the step-by-step contour level estimacause liner distortions of such contours, whereas, ncaline
tion of g5 (0, ), in @ joint PDF of two dependent variables, re- mixtures yield nonlinear distortions. This is illustraied-ig-
sulting from the nonlinear mixture of two independentimmge ures 4 and 5, with flat densities, and corresponding square
(see scatter plots in Figure 4). Further detail on the nealin contours.

mixture is provided in Section 5. From this point of view, any memoryless mixing of inde-
pendent signals can be associated to a thagR? — W2,
o — Tys(0) where the expected contoliy; (o, ), is mapped onto a new
(®) H 2 i
25 - > % T, ~T,.(1.96N_,) closed conto_ur, iw=. Co_n_sequently, Whe_nev_er an inverse
= map does exist, the de-mixing transformation is giveryby
20 1 wW? = R2.

Note that if we have at least a rough approximation to
p1(s1) andps(s2) (which is a common assumption in ICA),
we are able to easily infer an equally rough sketcH¥gr(o, ),
if the sources are independent. For instance, independent
images with flat PDFs produce square contours, whereas in-
dependent speech signals with picked densities around zero
produce cross-like (‘+') contourBg;(o,). LetI'; stand for
this rough sketch, supposedly available whenever the kigna
] KK source laws are known (or guessed).

T 4 v s 1 s a2 Then, one possible way to findfrom samples is to look
for a space transformation that maps back the distorted con-
tour (from the mixture joint PDF) into the rough sketched
contourT'; (from the joint PDF of the independent sources).
Clearly, this approach has its application limited to srhoot
maps (i.e. linear mixtures or soft nonlinear mixtures), vehe
space distortions inside the contour level are well reprtese
by deformations along its border. The whole de-mixing pro-
5. AN APPLICATION CASE STUDY: NONLINEAR cess can be summarized as follows:
ICA a) FromX (samples from the mixed sources), a PDF model
is estimated according to Section 3.
To provide a straightforward application of our PDF contour  b) The contour level'gs(o,) of the mixture is gradually
level estimation approach, we address the problem of blindstimated, from a first radial contour guess, as illustrated
separation of independent signals from a mixture. It is well Figure 3.
known that linear mixtures may be separated through a de- c) The contour curvature &%s(o,) is computed and com-
mixing matrix, whose blind adaptation is guided by entropypared to theexpectedurvature of’;. A dynamic warping al-
based cost functions [8, 13, 14, 15]. gorithm [1] is then applied to find the “best” correspondence

By contrast, nonlinear mixtures demand much harder debetween points from the two contours (see illustration g Fi
mixing approaches. Fortunately, for mixtures of 2 indepenure 5).
dent signals, the simple visualization of scatter plots iy d) The corresponding points frofy;(c,) andT'; are
a helpful tool, which in turn is closely related to joint PDF given as input and target, respectively, to a adjustabla-par
analysis of resulting variables. metric nonlinear mapper. For simplicity, we choose a clas-

For instance, if samples from two independent signalssic Multilayer Perceptron (MLP) Neural Network (NN) to be
saysi(n) andsa(n),n = 0,1,2.. ., follow two known laws, this nonlinear mapper [8]. Furthermore, in order to limit
p1(s1) andps (s9), respectively, then their joint PDB(s;, s»),  to a soft nonlinear mapping, we limited the number of hid-
equalg; (s1) x p2(s2). Consequently, if the interval of values den neurons to 2 and, in our experiments, we trained the NN,
of s; (i = 1,2) corresponding to the highest valuegpfover  through the backpropagation algorithm, with very low liti
which the integral ofp; equals 0.95, is a continuous inter- weights. This was done to induce the learning of quasi-tinea
val, then the correspondirfg? region over which the integral mappings (i.e. smooth mappings).

Fig. 3. Step-by-step contour level estimation

of p(s1,s2) equals 0.95 is a closed contour, namily (o, ). Finally, the trained NN — trained to map ba€ks(o,)
Indeed, we limit our approach to the case whEgg(o,) is  to I'; — is expected to perform the inverse of the nonlinear
expected to be an uninterrupted single contour. mixture f. Therefore, from the PDF contour level analysis, a
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de-mixing device candidate is provided, and “good” estésat Iﬁ;%‘;'vﬁ;’“f“’

Target Contour (independent sources)

to independent signals; andss, correspond to the output o .
of the NN — not necessarily in the same order — when the "{ " o
mixed signalsg; andz,, are given as inputs. (1 (medsauges) -
Figure 6 illustrates this process with two 256x256 graylleve - -
images as independentsignals. In this illustration, $fyrar- " - Etm.f\.
respond to pixel graylevels, from 0 to 1, whereas the noaline wEOE L R A
mixture is given by: “ Yy
tanh (1 9 ( ) 108 ( )) 0.1001 (to be |ea$:erge§§°anﬂe$:lsrletwork) " :
an .2s51(n 8s9(n)) — 0. B :
m(n) = 0.8640 \\ : |
- -« Il I
2y () = L251(0) £ T52(n)) — 0.0477 ; o Pt B
11.4276 ‘ "1 concavity fter warping |

o 0 @ P o & @ D W9 10 110

wheren = 1,2,...,65536.

To reduce the computational burden, the whole set of 2D
points from the mixture was randomly subsampled by 10.
This is to say thaft’ corresponds to a set of only 6,554 sam-

ples. 6. CONCLUSIONS

Afterwards, according to Section 3; was split into two
disjoint subsetsp andV, both with 3,277 samples. A new approach to PDF contour level estimation was pre-

To provide some visual comparison, Figures 6 and 7 preseghted, along with an illustrative example of how it can be
respectively, the “de-mixed” images from the proposed apapplied to the Blind Source Separation of nonlinear mix¢ure
proach and the well-known Fast ICA algorithm[13]. We high-unfortunately, the source separation approach seems to be
light that, though Fast-ICA is an algorithm for BSS of linear imited to mixtures of only two independent sources, other-
mixtures, for mild nonlinear distortions, it can still pide  wise warping algorithms for nonlinear alignment of surface
quite (visually) good results. Therefore, this comparign (or even hyper-surfaces) must be considered. On the other
aimed to emphasize a case where nonlinearity is too strongiand, the PDF contour level estimation approach, illustrat
thus justifying the alternative approach proposed here. here through the gradual shrinking of a circle, in 2D, is not
limited to the 2D case. Indeed, it can be easily extended to
higher dimensions, which will be addressed in the sequel of
this preliminary work.

Another important point to be addressed in the future is
that the success of the proposed contour level estimatorgdtr
depends on a very questionable assumption, according thwhi
the contour level is almost a circle (a sphere or even a hyper-
sphere) for a given “high enough”. Obviously, such an ap-
proximation depends on the actual data dispersion, and a nu-
merical test must take place here. Indeed, a simple testwoul
be the comparison between the first spherical/ circularzont
guess and the first contour estimation (found after algarith
convergence under the highestvalue). If o is really high
enough, we should obtain a small distortion, otherwise, the
initial o must be increased until this test holds.

This paper presents preliminary results from a recently
started research study. Accordingly, it presents moretitfu
tions than solid theoretical results. Nonetheless, it {3oia
some interesting potential ways for developing new stiateg
for nonlinear BSS, for instance. It is worth nothing that, in
the presented case study, with just two images, in spitesof it
simplicity, it is clear that de-mixing can only be achieved b
a nonlinear mapping. Furthermore, through visual inspacti

Fig. 5. Dynamic warping between contour levels

X,

Nonlinear .
MIX 2

X

Sy

Fig. 4. Nonlinear mixture of two independent digital images
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Fig. 6. Mixture de-mixing with the Multilayer Perceptron Fig. 7. Mixture processing with the classic Fast ICA algo-
rithm

trained to map PDF contours

of the resulting images, we claim that the proposed approactj9] A. Artes-Rodriguei J. M. Leiva-Murillo, “A fixed-point
did the job quite satisfactorily, even though it does not use

any information-based cost-function, as is usual in Indepe

dent Component Analysis.
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