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ABSTRACT
Probability density function estimation from limited datasets
is a classical problem in pattern recognition. In this paper
we propose a reformulation of the well-known nonparamet-
ric Parzen method as a parametrically regularized Gaussian
Mixture Model, from which we can easily estimate density
contour level. As an application illustration to the proposed
contour level estimator, we also address the Blind Source Sep-
aration problem through the analysis of contour level distor-
tions in joint probability density functions. Finally, we use
the proposed estimator to undo a nonlinear mixture of two
images.

Index Terms— Parzen method, GMM, PDF Contour Level
Estimation, ICA, BSS.

1. INTRODUCTION

Probability Density Function (PDF) estimation from limited
data sets is a classical problem in pattern recognition, for
which many approximated solutions are presented in liter-
ature [1]. In this work, we focus on PDF approximations
provided by Normal Mixtures, or Gaussian Mixture Mod-
els (GMM). In these models, “good” mixture parameters (i.e.
Gaussian kernel means and covariance matrices, as well as the
mixture weight of each kernel) can be found in many ways,
such as through the well-known Expectation-Maximization
(EM) algorithm [2].

Although the EM is not the fastest algorithm for mixture
optimization [3], it is usually simpler to apply, which can par-
tially explain its widespread popularity in many application
fields. However, it presents some drawbacks [4], some of
them linked to likelihood computation in high-dimensional
problems, which can be true in some low-dimensional prob-
lems as well [5]. In order to cope with these drawbacks,
model regularization is a common solution. Indeed, model
regularization imposes constraints on the Gaussian mixture
composition, which increases generalization [6].

Regularization strategies can be roughly split into four
categories, namely:
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(I) One general approach to regularization is based on the
addition of a regularization term to the unconstrained
criterion function, which expresses constraints or de-
sirable properties of solutions.

(II) For models obtained via clustering-like algorithms (in-
cluding the EM, which can be loosely seen as a soft
clustering algorithm [4, 7]), a straightforward regular-
ization approach is that of averaging estimates from
many independent initializations.

(III) For Mixture Models, regularization can be easily ob-
tained by imposing constraints on the mixture compo-
nent parameters (e.g. by imposing constraints or lower
limits on the covariance matrix of Gaussian kernels in
GMM).

(IV) Conexionist models (e.g. artificial neural networks) can
also be regularized, or partially regularized by pruning
[8], though it is not always explicitly referred to as a
regularization procedure.

On the other hand, the nonparametric Parzen method [1,
4] can loosely be regarded as a mixture model based method
with strongly-constrained mixture components (category III).
The Parzen approach gives an instant PDF approximation (no
iterations) and, in spite of its simplicity, it is known that, under
some constrains on its window width parameter, the conver-
gence of the estimated PDF with the actual one is guaranteed,
when the number of samples tends to infinity[1, 9]. In other
words, many smallisotropic (radial basis) Gaussian kernels,
with identical dispersion, can virtually approximate any PDF
“shape”. This corresponds to a trade from kernel complexity
(elliptical kernels, for instance, typically obtained viathe EM
approach) to kernel number.

Although EM and Parzen approaches come from differ-
ent paradigms – namely, parametric and nonparametric PDF
estimation, respectively – they share a striking structural sim-
ilarity, whenever the Parzen method is based on Gaussian ker-
nels. In both cases, the actual PDF is approximated by a
Mixture of Gaussians. Therefore, hereafter we will refer to
estimates from both approaches as Gaussian Mixture Models
(GMM).
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In this work, we take advantage of the Parzen model sim-
plicity to develop a new PDF contour level estimator. The
whole estimation process includes Gaussian kernel optimiza-
tion through likelihood validation, and a deterministic anneal-
ing [10] like iterative algorithm which provides a gradual im-
provement of the contour level estimate.

Finally, as a straightforward application to the proposed
estimator, we address the blind separation of two independent
signal mixtures from a very simple perspective: the geometric
distortion of contour level in joint PDF.

In Section 2, the PDF estimation problem from a finite
data set is addressed, whereas in Section 3 we reformulate
the Parzen method as a parametrically regularized GMM . In
Section 4 a new PDF contour level estimation approach from
the Parzen model is proposed. Finally, in Section 5 an ap-
plication of the proposed PDF contour level estimator is il-
lustrated. This application is based on nonlinear Independent
Component Analysis (ICA), from a geometric point of view.

2. PDF MODELING WITH GAUSSIAN MIXTURES

Given a data set of cardinalityN , X = fx1;x2; : : : ;xNg,
wherexi is a real-valued column vector of lengthD, we as-
sume that these vectors are independent samples drawn from
an unknown multivariate probability density functionp(x).

We further assume that there is a suitable parametric ap-
proximation forp(x), given by a mixture of multivariate Gaus-
sian functions, i.e.:p(x) � p̂(xj�) = MXi=1 �ig(xj
i;Ri) (1)

where� = [�1; : : : ; �M ; 
1; : : : ; 
M ;R1; : : : ;RM ℄ stands
for the mixture parameter vector, andg(xj
i;Ri) =1(2�)D=2jRij1=2 exp ��0:5(x� 
i)tR�1i (x� 
i)� (2)

corresponds to thei-th Gaussian kernel of the mixture, with
mean vector and covariance matrix given by
i andRi, re-
spectively. We further impose0 � �i � 1 and

PMi=1 �i = 1.
Accordingly, denoting the likelihood ofX by l(�) =p(Xj�), likelihood adjustment of a Gaussian mixture model

to a given PDF can be summarized as finding the optimal pa-
rameter vector,�o, that maximizes the log-likelihood, i.e.:�o = argmax� (log l(�))

If we do not impose any restriction on�, finding�o turns
out to be a non-trivial optimization problem, to which the
Expectation-Maximization algorithm is usually applied [2].

It is well known that Gaussian mixture density estimates
are particularly problematic in high-dimensional spaces with

relatively few training data sets [11], or even in some low-
dimensional problems [5]. This drawback can be tackled with
regularization strategies. Indeed, one particularly interesting
regularization category is based on structural restrictions, be-
cause it can simplify learning algorithms as well. Accord-
ingly, in Section 3, we reformulate the Parzen method as a
parametrically regularized GMM.

3. PARZEN METHOD FROM A PARAMETRIC
PERSPECTIVE

Now, let us reformulate the GMM optimization problem un-
der very strong constraints on the parameter vector. First,we
constrain the placement of Gaussian kernel centers toM ran-
domly chosen samples fromX .

For this purpose, we randomly split the data setX into two
disjoint subsets: theprototyping subset, P = fp1;p2; : : : ;pMg of sizeM , and theoptimization subset,V = fv1;v2; : : : ;vN�Mg, consisting of the remainingN �M samples.

Moreover, we want to use identical isotropic Gaussian
kernels with uniform weights in the mixture. Therefore, we
further impose thatRi = �2I and�i = 1=M , respectively,
for i = 1; : : : ;M . It clearly corresponds to the following
restrictions on the parameter vector:� = [�i = 1=M; 
i = pi;Ri = �2I℄ (3)

wherei = 1; : : : ;M .
These restrictions lead to a Gaussian Mixture Model equiv-

alent to that obtained by the nonparametric Parzen method,
where each Gaussian kernel center,
i, is a sample fromP .
Applying these restrictions to Equation 1 yields:p̂(xj�) = (1=M) MXi=1 g(xjpi; �2I) (4)

in which the the only free parameter is� (see Equation 3).
This is a single scalar parameter, and optimizing� through
likelihood maximization, in this case, is equivalent to opti-
mizing�, which can be done in a rather straightforward man-
ner, by a simple exhaustive one-dimensional search, through
a grid of values empirically set, according to the following
algorithm:

Algorithm for � optimization

1. Rough variance estimation:for each sample fromP ,pi, the two nearest neighbors are found,pj andpk,
so that a roughi-th variance estimate is provided by�2i = (kxi�xjk2+ kxi�xkk2)=2. Note thatM � 3.

2. Setting the 1D likelihood optimization search grid:
the median value from all rough variance estimates is
taken, i.e. �2m = median(�21 ; �22 ; : : : ; �2M )
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from which, we set�min =p�2m=10,�max = 10p�2m
and�� =p�2m=20.

3. Prototyping: from the prototyping subset, a Gaussian
Mixture Model is obtained, where each Gaussian kernel
center,
i, is a sample fromP , according to Equation 4.

4. Optimization: Since the log-likelihood depends on the
scalar parameter�, according to:log(l(�)) = N�MXj=1 log p̂(vj j�) (5)

wherevj is thej-th (independent) sample drawn from
the optimization subset, we simply proceed with an ex-
haustive 1D search for the standard deviation�o that
maximizeslog(l(�)). This search is done through a fi-
nite set of values for�, corresponding to a regular grid
of real values from�min to �max, with grid interval�� .

For the Parzen method, the choice of the so calledwindow
width, �o, plays a pivotal role. Many methods for this pur-
pose are available in the Literature. The algorithm proposed
here uses the very same working principles as in the cross-
validation method [12, 11, 4], but in a simpler way. Therefore,
we should refer to this as a ‘simple validation’ method.

To provide an illustration, we consider the L-shaped joint
probability density function,p(x1; x2), shown in Figure 1.

Fig. 1. An L-shaped joint probability density function

The crosses under the 3D surface represent 168 data sam-
ples, from which we estimatep(x1; x2) from M = 20 sam-
ples randomly taken to be set as kernel centers, whereas the
remaining 148 samples are used to optimize�. On the left
side of Figure 2, Gaussian kernels are represented by circles.
On the right side, there is an illustration of the� optimization
through an exhaustive 1D search.

4. CONTOUR LEVEL ESTIMATION FROM THE
PARZEN MODEL

A potentially useful concern in probabilistic modeling of data
sources is the estimation of contour levels of PDFs, mainly

Fig. 2. Isotropic Gaussian kernels (left) and� optimization
(right)

that contour level bounding the 95% confidence region. On
the other hand, the simplicity of the described Parzen model,
thanks to the identical radial dispersion of each Gaussian ker-
nel, allows for a very straightforward approach to PDF con-
tour level estimation. In this section, we briefly present this
approach.

Now, let� be a control parameter, and�95(�) the contour
level of p̂(x) (see Equation 4) inside which the density inte-
gral equals 0.95. It is easy to see that�95(�) tends to be a
circle (respectively a sphere or a hyper-sphere, forD = 3 orD > 3) of radiusr = 1:96� whenever� tends to infinity.

In other words, given a high enough�, we may assume
that almost all data points fromV lie inside�95(�), which,
in turn, is almost a circle. This assumption is illustrated in
Figure 3 for aD = 2: compare the contour points represented
by ‘*’ (a circle of radiusr = 1:96�) to the most external solid
line which represents the estimated�95(�), for a high enough�.

Accordingly, in order to gradually approximate�95(�o)
(our goal contour level, not necessarily a circle), we first ac-
cept a naive first guess of�95(�) — where� = N��o andN�
is a big enough Real scale factor — given by a simple sphere
of radius1:96N��o. Furthermore, continuous�95(�) is rep-
resented by a set of points equally spaced, i.e. a circular grid
of points on�95(�). Afterwards, the value of� is gradually
reduced to�o, while each point on it is gradually adapted to
minimize the following cost function:J(xj�;P) = (p̂(xj�;P)� g(r1:96j0; I))2 (6)

where jjr1:96jj = 1:96 and 0 is a null vector. Note thatg(r1:96j0; I) is just a threshold value which defines the PDF
contour. In 2D, it yields the following stochastic iteration
rule: xnew  xold � (p̂(xold)� 0:023)rp̂(xold) (7)

where0:023 � g(r1:96j0; I) for a 2D multivariate Gaussian,
andp̂(xold) stands for̂p(xoldj�;P).
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We highlight thatrp̂(xold) is here a simple weighted vec-
tor sum, thanks to the symmetrical and identical dispersionof
Gaussian kernels in the constrained PDF Parzen model.

Figure 3 illustrates the step-by-step contour level estima-
tion of�95(�o), in a joint PDF of two dependent variables, re-
sulting from the nonlinear mixture of two independent images
(see scatter plots in Figure 4). Further detail on the nonlinear
mixture is provided in Section 5.

Fig. 3. Step-by-step contour level estimation

5. AN APPLICATION CASE STUDY: NONLINEAR
ICA

To provide a straightforward application of our PDF contour
level estimation approach, we address the problem of blind
separation of independent signals from a mixture. It is well-
known that linear mixtures may be separated through a de-
mixing matrix, whose blind adaptation is guided by entropy
based cost functions [8, 13, 14, 15].

By contrast, nonlinear mixtures demand much harder de-
mixing approaches. Fortunately, for mixtures of 2 indepen-
dent signals, the simple visualization of scatter plots maybe
a helpful tool, which in turn is closely related to joint PDF
analysis of resulting variables.

For instance, if samples from two independent signals,
says1(n) ands2(n), n = 0; 1; 2 : : :, follow two known laws,p1(s1) andp2(s2), respectively, then their joint PDF,p(s1; s2),
equalsp1(s1)�p2(s2). Consequently, if the interval of values
of si (i = 1; 2) corresponding to the highest values ofpi, over
which the integral ofpi equals 0.95, is a continuous inter-
val, then the correspondingR2 region over which the integral
of p(s1; s2) equals 0.95 is a closed contour, namely�95(�o).
Indeed, we limit our approach to the case where�95(�o) is
expected to be an uninterrupted single contour.

Specifically, whenp1(s1) and p2(s2) are flat (uniform)
distributions,�95(�o) is expected to be a square. On the other
hand, linear memoryless mixtures of independent variables
cause liner distortions of such contours, whereas, nonlinear
mixtures yield nonlinear distortions. This is illustratedin Fig-
ures 4 and 5, with flat densities, and corresponding square
contours.

From this point of view, any memoryless mixing of inde-
pendent signals can be associated to a mapf : R2 ! W2,
where the expected contour,�95(�o), is mapped onto a new
closed contour, inW2. Consequently, whenever an inverse
map does exist, the de-mixing transformation is given byg :W2 ! R2.

Note that if we have at least a rough approximation top1(s1) andp2(s2) (which is a common assumption in ICA),
we are able to easily infer an equally rough sketch for�95(�o),
if the sources are independent. For instance, independent
images with flat PDFs produce square contours, whereas in-
dependent speech signals with picked densities around zero
produce cross-like (‘+’) contours�95(�o). Let �I stand for
this rough sketch, supposedly available whenever the signal
source laws are known (or guessed).

Then, one possible way to findg from samples is to look
for a space transformation that maps back the distorted con-
tour (from the mixture joint PDF) into the rough sketched
contour�I (from the joint PDF of the independent sources).
Clearly, this approach has its application limited to smooth
maps (i.e. linear mixtures or soft nonlinear mixtures), where
space distortions inside the contour level are well represented
by deformations along its border. The whole de-mixing pro-
cess can be summarized as follows:

a) FromX (samples from the mixed sources), a PDF model
is estimated according to Section 3.

b) The contour level�95(�o) of the mixture is gradually
estimated, from a first radial contour guess, as illustratedin
Figure 3.

c) The contour curvature of�95(�o) is computed and com-
pared to theexpectedcurvature of�I . A dynamic warping al-
gorithm [1] is then applied to find the “best” correspondence
between points from the two contours (see illustration in Fig-
ure 5).

d) The corresponding points from�95(�o) and �I are
given as input and target, respectively, to a adjustable para-
metric nonlinear mapper. For simplicity, we choose a clas-
sic Multilayer Perceptron (MLP) Neural Network (NN) to be
this nonlinear mapper [8]. Furthermore, in order to limitg
to a soft nonlinear mapping, we limited the number of hid-
den neurons to 2 and, in our experiments, we trained the NN,
through the backpropagation algorithm, with very low initial
weights. This was done to induce the learning of quasi-linear
mappings (i.e. smooth mappings).

Finally, the trained NN — trained to map back�95(�o)
to �I — is expected to perform the inverse of the nonlinear
mixturef . Therefore, from the PDF contour level analysis, a
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de-mixing device candidate is provided, and “good” estimates
to independent signals,s1 ands2, correspond to the output
of the NN — not necessarily in the same order — when the
mixed signals,x1 andx2, are given as inputs.

Figure 6 illustrates this process with two 256x256 graylevel
images as independent signals. In this illustration, signals cor-
respond to pixel graylevels, from 0 to 1, whereas the nonlinear
mixture is given by:x1(n) = tanh(1:2s1(n) + 0:8s2(n))� 0:10010:8640x2(n) = (5s1(n) + 7s2(n))� 0:047711:4276
wheren = 1; 2; : : : ; 65536.

To reduce the computational burden, the whole set of 2D
points from the mixture was randomly subsampled by 10.
This is to say thatX corresponds to a set of only 6,554 sam-
ples.

Afterwards, according to Section 3,X was split into two
disjoint subsets,P andV , both with 3,277 samples.

To provide some visual comparison, Figures 6 and 7 present,
respectively, the “de-mixed” images from the proposed ap-
proach and the well-known Fast ICA algorithm[13]. We high-
light that, though Fast-ICA is an algorithm for BSS of linear
mixtures, for mild nonlinear distortions, it can still provide
quite (visually) good results. Therefore, this comparisonis
aimed to emphasize a case where nonlinearity is too strong,
thus justifying the alternative approach proposed here.

Fig. 4. Nonlinear mixture of two independent digital images

Fig. 5. Dynamic warping between contour levels

6. CONCLUSIONS

A new approach to PDF contour level estimation was pre-
sented, along with an illustrative example of how it can be
applied to the Blind Source Separation of nonlinear mixtures.
Unfortunately, the source separation approach seems to be
limited to mixtures of only two independent sources, other-
wise warping algorithms for nonlinear alignment of surfaces
(or even hyper-surfaces) must be considered. On the other
hand, the PDF contour level estimation approach, illustrated
here through the gradual shrinking of a circle, in 2D, is not
limited to the 2D case. Indeed, it can be easily extended to
higher dimensions, which will be addressed in the sequel of
this preliminary work.

Another important point to be addressed in the future is
that the success of the proposed contour level estimator strongly
depends on a very questionable assumption, according to which
the contour level is almost a circle (a sphere or even a hyper-
sphere) for a given “high enough”�. Obviously, such an ap-
proximation depends on the actual data dispersion, and a nu-
merical test must take place here. Indeed, a simple test would
be the comparison between the first spherical/ circular contour
guess and the first contour estimation (found after algorithm
convergence under the highest� value). If � is really high
enough, we should obtain a small distortion, otherwise, the
initial � must be increased until this test holds.

This paper presents preliminary results from a recently
started research study. Accordingly, it presents more illustra-
tions than solid theoretical results. Nonetheless, it points to
some interesting potential ways for developing new strategies
for nonlinear BSS, for instance. It is worth nothing that, in
the presented case study, with just two images, in spite of its
simplicity, it is clear that de-mixing can only be achieved by
a nonlinear mapping. Furthermore, through visual inspection
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Fig. 6. Mixture de-mixing with the Multilayer Perceptron
trained to map PDF contours

of the resulting images, we claim that the proposed approach
did the job quite satisfactorily, even though it does not use
any information-based cost-function, as is usual in Indepen-
dent Component Analysis.
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