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ABSTRACT

In the last decade optimal radio resources allocation has become a problem
requiring more complex solutions, including the possibility of re-configurable,
adaptive use of spectrum. A cognitive approach to radio spectrum manage-
ment has been proposed as a suitable and potentially efficient solution. In
this paper, a Distributed Mode Classification problem is here considered as
a reference approach to proposing new results and a framework of develop-
ment of future research. Such approach strictly relies on the definition of
a Cognitive (Radio - CR) system as capable of environmental interactions.
The Embodied Cognition approach, for the design of new CR terminals, here
followed is based on inspiration from works in Artificial Intelligence looking
at intelligence as to an emergent behavior of a set of (computational) entities
provided of the possibility of active interaction with the surrounding envi-
ronment. In this domain, distributed spectrum sensing is seen as a perception
capability of a CR terminal strictly related to the motion action to optimize
its capability to optimally perform mode classification.

Index Terms— Cognitive Radios, Embodied Cognition, Spectrum
Sensing, Mode Classification, Distributed Detection.

1. INTRODUCTION

In the last years, due to the increasing of wireless standards
and communication services, it has grown up the necessity
of a flexible approach to bandwidth allocation. Dynamic ob-
servation of the spectrum and adaptive reactions to wireless
channel conditions are important problems in improving the
spectrum efficiency. It is nowadays clear that a cognitive ap-
proach to the Spectrum Monitoring and Allocation can lead
to suitable solutions more efficient than existing ones.
A fundamental concept in Cognitive Radio [1] (CR) approach
is Environmental Awareness, or more precisely in this case,
Radio Awareness, i.e. the understanding of what is happen-
ing in the electro-magnetic (e.m.) spectrum. This concept is
translated, at the process level, into theMode Identification
and Spectrum Monitoring(MISM) process (or equivalently
Spectrum Sensing) that plays a key role in Cognitive Radios,
because it provides an observation of the physical world and
the knowledge about the channel conditions, which facilitate
a proper decision for the current context.
In the present paper an Embodied Cognition-based frame-
work, for the internal knowledge organization and usage and
for modeling the interactions between cognitive entity, is pre-
sented. It will be proved that the Distributed Detection The-
ory [2], basis of the Distributed Spectrum Sensing approach

[3, 4], perfectly fits within the Embodied framework, natu-
rally embedding the interactional embodied models.
Hence a general architecture for embodied distributed spec-
trum sensing will be presented and a specific MISM prob-
lem will be defined and simulated through a specific usage
of the general architecture. In particular, a set of cognitive
terminals (CT), moving in an environment characterized by
the presence of a set of radio sources RS with the associated
air interfaces, will be considered. The MISM problem relies
on classifying the active radio sources starting from the ob-
servations about the e.m. spectrum performed by the pool of
cooperative terminals.

2. EMBODIED COGNITIVE VISION

MISM process is only a part of the whole cognitive radio sys-
tem. In fact, at a more general level a cognitive system needs
to be defined through the usage of behavioral models. Let us
now introduce one of this models and the proposed Embod-
ied Cognition-based Framework which will be the base of the
proposed MISM distributed solution.
The Cognitive Cycle is a model which can be used to describe
the behavior of living beings. It allows to describe the interac-
tions with the external world occurring through a cycle com-
posed by four main processes: Sensing, Analysis, Decision
and Action. While the Cognitive Cycle is a shared concept
among almost all the Cognitive Radio community, different
research lines can be seen in how the knowledge is managed
and processed within each stage of the cycle. In fact, each
stage of the Cognitive Cycle requires to manage information,
which can benaturally embedded in the entity itself or ac-
quired during its normallife.
Different visions are already present in the state of the art. In
the current paper a physically grounded representation model
has been chosen as starting point where intelligence cannat-
urally rise up. This vision takes inspiration from Robotics
works of Rodney Brooks [5] and it is referred in literature
asEmbodied Cognition[6]. In this paradigm, the represen-
tation of the internal knowledge and hence the description of
the context, is strictly linked with the perceptive/motory pos-
sibilities of the entity itself. As a matter of fact, thebody
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of the system has an important role in the evolution of the
entity. Physical limitations of motion possibilities drive, by
tackling back the cognitive cycle, the possibilities of the deci-
sion stage too and hence its functioning mechanism and its in-
ternal knowledge representation. The same concept can hence
be extended going backward into the cycle until to the sensing
stage.
A confirmation, at a biological level, of the validity of this ap-
proach to intelligence comes from recent neuro-physiological
studies[7]: from an evolutionary point of view, one of the pri-
mary goal of intelligent multicellular organisms evolving to-
ward higher level organisms is to use contextual information
obtained through sensing to move in the surrounding environ-
ment to gain an advantage in life conditions, due, for example,
to the reaching of a safer or a food richer point.
This definition of the knowledge representation has a direct
impact on the algorithmic development for the considered
MISM problem. In particular the embodied characteristics
will be particularly useful in the design process of coopera-
tion mechanisms, such as the Distributed Spectrum Sensing.
This fact is evident when the Cognitive Radio is a sub com-
ponent of a more general Cognitive System, like a mini-robot
which can perform independent motions in a known or un-
known hostile environment. In this situation, the Decision
stage can be tuned in order to move the robot (or to suggest a
motion to a human) to a location which allows the best ”point
of view” for spectrum monitoring and analysis. If at least two
cognitive cooperative entities are present in the environment,
a distributed algorithm for transmission mode classification
can be developed starting from the embodied formalization
and management of knowledge.

3. COOPERATIVE EMBODIED COGNITIVE
TERMINAL

Let us now define the cooperative cognitive terminal (CT) that
embeds embodied knowledge organization and features. The
attributeembodiedrelated to the representation of the knowl-
edge means that it is all referenced to the CT’s body or the
CT’s point of view.
Since an embodied cognitive system is so strictly related to
the physicality of its body, before modeling the internal knowl-
edge such a system requires to perform its “life”, it is neces-
sary to define how the body is, and which are the characteris-
tics of the cognitive entity.
Let us simply define the body through its environmental inter-
active aspects, i.e. it is equipped with an RF omni-directional
antenna and a video camera. It can perform in the space an
omni-directional movement, of constant length, of the body
itself. In addition to the body, each cooperative cognitive ter-
minal have to be defined also through the knowledge, embod-
ied in itself, that allows its survival. Starting from the basic

body, the required knowledge can be defined as the setKn:

CTn → Kn = {KPn
,KE,KEnv} (1)

whereKPn is the knowledge about the space surrounding the
terminal itself and the temporal set of positions assumed by
the terminal during its navigation/exploration;KE is com-
posed by all the functions that constitute the cognitive cy-
cle and all the embedded information required for perform-
ing it, while KEnv is the knowledge that the CT has available
about the physical/statistical interaction characteristics of the
objects present in the environment.
In particular, the embodied knowledgeKE can be structured
onto two levels for each componentr of the cognitive cycle:

KE = {Er(XCT n
), F r(.) :

r = {Sense, Analyze, Decide, Act}} (2)

. The first level is composed by all the “instinctual” knowl-
edge codified into maps. The second level is the procedural
knowledge represented by the survival basic functions that
constitute the inter-stage information transformation processes
within the cognitive cycle.
In the case of basic body, we can defineESense(XCT n

) as
the radiation pattern of the RF antenna and the field of view
of the camera the terminal is equipped with. The knowl-
edge required to analyze the environmentEAnalyze(XCT n

)
is composed by all the analysis methodologies the CT has
available and that can be chosen depending on the current in-
ternal/external context conditions (e.g. the status of the bat-
teries that can condition the selection of a less accurate but
less power-consuming analysis process).
The Decision knowledge too can not be completely defined
without considering the specific body of the CT. At a general
level,EDecide(XCT n

) will contain the policies that guide the
behavior of the terminal in all the possible environmental situ-
ations. Finally the Action KnowledgeEAct(XCT n

) describes
how to translate in actions the decisions taken in the previous
stage of the cycle and provides physical indication on the sig-
nals that have to be applied to the motor drivers.
In order to introduce cooperation between terminals which
share the same environment and observe the same phenom-
enon, each CT needs information both on the physical situa-
tion of the companion terminals inside the environment and
on their behavioral model. Let us consider an homomorphic
set of terminals where each terminal is supposed to have the
same behavioral model (e.g. a set of “cloned” robots). The
available knowledge is again defined by (1) but the informa-
tion about the environment is now defined as:

KEnv = {KPRoom,KBRoom,Kk
PRS

,Kk
BRS

,KPj
,KBj

:
k = 1, · · · ,K, j = 1, · · · , N, j 6= n}

(3)
whereKPRoom refers to the knowledge of an environmental
and shared reference coordinate system (RCS) together with
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Fig. 1. Mirror representation of the interactions form E1 point
of view

the transformation that links it with CT’s RCS;KBRoomcon-
tains information about which are the room physical reactions
to the motion of the CT (the physical structure of the envi-
ronment);Kk

PRS
gives the definition of the radio sources in

terms of relative position/orientation, RCS and transforma-
tion to link to theRoomRCS;Kk

BRS
contains a statistic de-

scription of the possible transmission situations the terminal
could face for thek-th radio source.KPj andKBj are re-
lated to the position and to the behavior of the other coopera-
tive terminals, being the companion CTs considering as other
interactive entities. All the positions have to be considered
relative toCTn RCS.
The embodied formalization foresees an explicit representa-
tion of the interacting entities, i.e. a definition of theself
through the environmental interactions with theothers. Hence,
at the general level, how the interactions between the CT and
the other objects (cognitive or not) happen has to be defined
too. Let us suppose that a CT always perceives the other
interacting entities as cognitive. As stated by Marchesotti
et. al. in [8], a cognitive entity E1 can internally represent
another interactive cognitive entity E2 through a set of ac-
tive mirror knowledge simulating a cognitive cycle through
a shared medium. As depicted in Figure 1, from the cogni-
tive entity E1 point of view, only how to influence the E2 and
how E2 influences E1 (i.e. the interfaces with the physical
world) are ”visible”. The hidden part of the cycle can bea-
priori known (behavioral model) or it can be learned (partially
or completely), in an approximated way, through interacting
experiences. Interacting entities are also the room itself and
the radio sources. Each one of the interacting entities is de-
scribed, in this internal representation, by the sets contained
in KEnv, while the concept of environment is here substan-
tially translated into a virtual shared medium, used by the CT,
where the internal representations of the other players per-
form their sensing/actions.
The above describe knowledge can be perfectly statistically
known within the CT, or it has to be estimated during the nor-
mal operations. The estimation of part of this knowledge in-
volves an introduction of uncertainty in the system. In present
paper a situation where the positions of the CTs are not per-
fectly known (sensing-based localization) will be considered.
This fact will lead to a generalization of the distributed de-
tection theory (respect to the system proposed in [4]). The
considered case has to be intended as one of the possible prob-
lematics a CT has to face in real applications.

3.1. Distributed Embodied Cognitive Core

In this Section, how to build up analysis and decision stage
according to the new Embodied framework of an Embodied
Cognitive Radio Terminal is presented.
Let us consider a simple framework where only two CTs and
only one radio source that it can be switched on (hypothesis
H1) or switched off (hypothesisH0) are present in the envi-
ronment.
Let us now define the quantities involved in the information
processing within the cognitive cycle forCT1 (simply exten-
sible toCT2), starting fromyi, that are the features extracted
by thei-th CT from the radio signal perceived by the RS. The
probability density functions (pdfs)p(yi|Hj , xi) statistically
describe how the RS influence the perceptions of theCTi in
both the possible cases.
Generalizing the previously defined pdfs, it is possible to ob-
tain a general behavior of the perceptual interactions between
the CT and the RS in all theRoom: p(y|H0, x) andp(y|H1, x)
composeK1

BRS
. The vector of features, that each CT ex-

tracts from its observations, is hence composed byv(t, x1) =
{yi, x1, x2,∆x2}.
Let ui = j : j = {0, 1} be the classification performed by
CTi about the presence of the hypothesisH0 or H1. It is
hence possible to infer that theui represent the MISM clas-
sification. The pdfsp(ui = j|yi) : j = {0, 1} describe the
statistical behavior of the MISM classification algorithm in
relationship with the perceived featuresyi.
This knowledge is part of the behavioral model of the interact-
ing entityKB2 , but, under the homomorphic assumption, it is
also a part of the embodied knowledge, i.e. it is inEAnalyze.
Each CT estimates the behavior of the companion CT through
a mirror (or inverse) decision process. Let us call this estima-
tion ûi. The context label can hence be defined asL(t, x1) =
{u1, û2, x1, x2}.
Once defined the most important variables it is possible to an-
alyze more in detail how the single stages of the cycle can be
structured.

3.1.1. Analysis Stage

The analysis stage is composed by three main sub-blocks: the
feature extractor, the mirror decision block and the distributed
classifier
While the feature extractor derivev from the perceived ob-

servations the distributed classifier is the fundamental com-
ponent of the analysis stage of the cognitive cycle for the em-
bodied cooperative CTs. This fact will be more clear after
the introduction of the generalized distributed detection the-
ory applied to the considered MISM problem.
Let us consider the self-localization ofCTi as sensing-based.
This fact introduces a certain amount of uncertainty on the
considered variable of the problem. This uncertainty can be
described by a proper pdfp(xi|x̂i) which is dependent by
the particular combination algorithm/features used for local-
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Fig. 2. Analysis Module of an Embodied CT

ize the CT. Let us also consider the relative position of the
other CT respect to the 1-st one’s reference system as esti-
mated (e.g. through the usage of the video camera). Calling
d̂j the estimated distance vector betweenCTi andCTj , the
absolute positions of the two CTs are linked through the re-
lationshipx̂j = x̂i + d̂j . Beingp(xi|x̂i) the pdf of x̂i and
p(dj |d̂j) the pdf ofd̂j , the pdf ofx̂j , p(xj |x̂j) will be given
by the convolution betweenp(xi|x̂i) andp(dj |d̂j).
Let us now define the generalized distributed classification
function used by the classifier:

Λ(y1, x1)
u1=1

≷
u1=0

t1(x2) (4)

whereΛ(y1, x1) is the generalized version of classical Bayesian
likelihood function andt1 is the distributed threshold. The
functionΛ can hence be defined as:

Λ(yi, x̂i) =

∫
X

p(yi|H1, xi)p(xi|x̂i)∫
X

p(yi|H0, xi)p(xi|x̂i)
(5)

whereX is the environmental RCS. Ifp(xi|x̂i) is unknown
an implementation approach can be its substitution with a
weighting functionw′(x̂i) : Π′ → R in (5), whereΠ′ is a
limited portion ofX.
Under the following decision costs assignment:

C000 = C111 = 0
C010 = C100 = C011 = C101 = 1

C001 = C110 = Kd

the decision threshold can be written as:

ti(x̂j) = P0
P1

·

(Kd−1)+(2−Kd)

∫
X

p(uj = 0|H0, xj)p(xj |x̂j)

1+(Kd−2)

∫
X

p(uj = 0|H1, xj)p(xj |x̂j)

(6)

if the pdf p(xj |x̂j) is unknown, in this case too it is pos-
sible a substitution with a weighting function. Let us call

w(d̂j) : Π → R the weighting function that substitutes the
pdf p(dj |d̂j). Hence the weighting function to be used in
the threshold is given byw′′(x̂j) = w(d̂j) ∗ w′(x̂i), where
* denotes a convolutional operator. It should be noticed that
the Bayesian threshold computed for the distributed detection
theory incorporates both the statistical behavior of the RS and
the classification behavior ofCT2 computed in the pointx2.
This fact corresponds to the internal simulation of the cogni-
tive cycle of the interacting entities that each embodied CT
should perform. In fact the pdfsp(y2|Hj , x2) describe the
perceptual interaction ofCT2 with the radio sources, while
the pdfsp(u2 = j|y2, x2) represent the Analysis stage of the
companion CT. This is one of the main reasons why the dis-
tributed detection theory perfectly fits within the embodied
cognition framework until now described. This theory allows
to simulate the behavior of the interacting entities and to com-
pare it with the observations/classification each CT performs
(represented by the likelihood function) in a one-shot compu-
tation, with a low computational load respect to other solu-
tions (e.g. agent-based internal emulation).
Finally, the Mirror Decision stage is used in the analysis stage
to estimate which classCT2 could have classified having as
input the action (motion) the CT has actuated.

3.1.2. Decision Stage

Before describing the Decision stage, it is necessary to define
which is the final goal for the CT. From a physiological point
of view, the final goal of a living entity is thehomeostasis[9],
i.e. the reaching of a dynamic equilibrium that allows the life
of the entity itself. This concept can be extended to higher
cognitive layers: it is possible to infer thathomeostasisis the
status of the CT in which it has gained the maximum advan-
tage respect to its physical possibilities and to the environ-
mental context. An engineering translation for this concept
can be the minimization of a global cost functional:

xT = argxi
min
x1,x2

J(x1, x2, u1, u2) (7)

wherexT is calledtarget pointand represents the point where
the CT can reach its dynamic equilibrium. Being theu2 un-
available toCT1 it is possible to use a suboptimal version by
substituting theu2 with its estimated version. In the case of
the MISM system here presented, the functional should eval-
uate how much the position of the CT provides a good point
of view of the e.m. context.
The decision stage choses the motion that leads to the cur-
rent dynamic target pointxT in a more direct way. This is
possible through the usage of a deterministic look-up table
LT (ui) → ∆x that associates a motion∆x(xi), parame-
trized by the position of the CT, for each classification per-
formed by the CT.
This table should be invertible, hence it should be possible to
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defineLT−1(∆x(xi)) → ûi. This inverse function can be
used in the Mirror Decision block of the analysis stage as es-
timator for the class decided by the companion CT.

4. SIMULATION AND RESULTS

4.1. Simulation Framework

Let us define the characteristics of the MISM problem. Two
RSs are present in aRoomof 12x12 meters. Two communi-
cation modes are possible, i.e. IEEE 802.11b WiFi and Blue-
tooth. The above air interfaces have the particular charac-
teristic that they share the same bandwidth and they can be
simultaneously superimposed. Furthermore Bluetooth (BT)
transmits with a very low power (1mW) within a range which
is much more limited than the WiFi (or WLAN) one.
Each source can be associated to only one Md and the trans-
mitted signal is affected by the typical propagative phenom-
ena that can be found in a common office, according to the
model presented in [10]. The general framework, similar to
the one presented in [3, 4], is summarized in Figure 3. The

Fig. 3. Simulated MISM Problem

possible situations the CT could find in the environment are
represented by four classes: WLAN, when the WLAN RS
only is switched on; BLUE, when the Bluetooth RS only is
switched on; WLBL, when both the RSs are switched on;
NOISE, when environmental noise only is present. The two
CTs involved in the MISM classification can enter the room
in any of the border points and they are able to move within
the room itself. Each CT is able to perform a motion of one
meter in each direction from the starting point and that each
action is composed by a single motion∆x.
In order to solve the specific MISM problem two time fre-
quency (TF) features, derived from the Wigner-Ville TF trans-
form , have been used. In particular, the standard deviation of
the instantaneous frequency (σω) and maximum time duration
of the signal (Tmax) have been proved [3] to be useful in the
case of signals superimposed in the same bandwidth.
The vectoryi = [σω Tmax] is used as input for the distrib-
uted classifier, together with the instantaneous positions of the
two CTs. In order to face the multi-class MISM problem, the
multiple classifier One-Against-All architecture [4] has been

chosen. In the proposed implementation, this architecture re-
quires the computation of the upper bound of the theoretical
error probability. This information is obtained through simu-
lated sample means and covariances of the classes. Under the
assumption of Gaussianp(yi|Hj , xi) with j corresponding to
one of the possible classes, it is hence possible to compute
Chernoff boundCj,k(xi) for each couple of classes. The up-
per bound for a selected classj is hence given by:

P j
err(xi) = max

k,k 6=j
Cj,k(xi) (8)

In order to design the decision stage, the global minimum
of P j

err(x), for each classj, has been chosen as target point
where the CT can reach an homeostatic condition. It is hence
easy to obtain the look-up tableLT (ui), as it is easy to derive
the inverse one. As weighting functionsw andw′ two equal
2D rectangular functions have been used. The width of the
function is 1x1 square meters.
The simulation system has been developed in Matlab Simulink
and it has been built up according to the organization of knowl-
edge and the interaction models presented in Section 2. Each
CT has been developed as dynamic system through a closed-
loop finite state machine (FSM) whose data structures are or-
ganized in the same sets described in Section 3. Apart for
the specific implementation language, the CT has been im-
plemented in order to obtain an “emulation” of the Cogni-
tive core of the system. In fact, with the proper language-
dependent adjustments, it is possible to export the same ar-
chitectural structure on an hardware platform, without any
particular ad-hoc modifications. In the following, the results
obtained with the simulative/emulative system for the faced
problem will be presented.

4.2. Results

In order to simulate the uncertainty introduced by the sensing-
based localization, a 2D Gaussian noise has been added to the
absolute positions of the CTs, according to the definition of
the simulated problem. Furthermore, the following simula-
tion parameters expressed have been used:

• Maximum Number of Iterations per Simulation: 1000

• Number of Simulations per class per problem: 1000

• Standard Deviation of Positioning uncertainty:ρx =
{1m, 2m}

• Kd = {2, 5}

• uniformly random choice of the entering position of the
CTs in the room

The first presented results are related to the effectiveness of
the embodied distributed classifier. The valueKd = 2 re-
duces the distributed thresholdti to the usual Bayesian thresh-
old commonly applied to the Bayesian stand-alone classifica-
tion. Result obtained with this value are compared to the ones
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obtained for a choice ofKd = 5, already tested in [4], under
the form of confusion matrices. In Table 1 and 2 the obtained
confusion matrices forρx = {1m, 2m} are shown. The first
column indicates theground truth (GT), i.e. the real con-
textual situation, while the other columns represent the dis-
tribution of the classifications performed by the CT. In the
following, the class labels will be further abbreviated as W
(WLAN), B (BLUE), WB (WLBL), N (NOISE). As already

Table 1. Confusion Matrices forρx = 1m
Kd = 2

GT/CLASS W B WB N
WLAN 84,9% 7,3% 7,7% 0,2%
BLUE 2,3% 87,8% 0,1% 9,9%
WLBL 72,5% 26,3% 1,1% 0,1%
NOISE 0,0% 26,7% 0,0% 73,3%

Kd = 5
WLAN 85,4% 7,8% 6,6% 0,2%
BLUE 2,5% 87,9% 0,1% 9,5%
WLBL 72,7% 26,1% 1,1% 0,1%
NOISE 0,0% 31,9% 0,0% 68,1%

Table 2. Confusion Matrices forρx = 2m
Kd = 2

GT/CLASS W B WB N
WLAN 85,1% 11,1% 3,6% 0,2%
BLUE 0,8% 76,8% 1,1% 21,4%
WLBL 66,2% 28,4% 5,2% 0,1%
NOISE 0,0% 9,1% 0,0% 91%

Kd = 5
WLAN 85,1% 11,1% 3,6% 0,2%
BLUE 0,7% 77,0% 1,1% 21,2%
WLBL 65,7% 28,9% 5,3% 0,1%
NOISE 0,0% 10,5% 0,0% 89,5%

proved [3, 4], the distributed approach allows to reach bet-
ter results than in the stand alone case. It should be noticed
that the class WLBL is never well classified. This is due to
the features distribution all along the room. In fact one of
the two RS is always predominant in a certain area. Besides
to this fact, in an office indoor environment, Bluetooth has a
maximum range of less than 10m, and the combined effects
of multi-path and the spurious cross-terms introduced by the
Wigner distribution can create mis-classifications between the
NOISE and BLUE class.
The good results obtained when the other transmitted classes
show that the uncertainty is well compensated by the simple
weighting functions used. A better design ofw andw′ could
lead to a substantial reduction of these errors.
A still more important impact of the embodied framework on
the MISM problem is the goodness of the mode classifica-
tion in the homeostatic condition. Except the case of WLBL
class, all the other classes reach a detection accuracy of at
least 99,3%. It is possible to understand that, the iterative ex-
ploration of the room and the reciprocal observation of the
two involved CTs lead to an almost complete reduction of
the MISM mis-classification, with the only exception of the

WLBL class. This exception, due to the environmental and
technological problems cited above, is relatively problematic
for a MISM application. In fact the CTs always decide the
presence of an available communication signal and never con-
fuses it with the NOISE class.
It should be clear that the convergence to an homeostatic con-
dition could be very slow. In fact a not negligible number
of simulations did not reach a global homeostatic condition
within the fixed 1000 steps, especially in the case of WLBL
class.

5. CONCLUSIONS AND FUTURE WORKS

In the present paper an embodied cognition-based approach
to distributed spectrum sensing was presented. Starting from
the awareness of the physical capabilities of the body, the
mind of the Embodied Cognitive Radio system can be devel-
oped through an organization of the internal knowledge that
directly represent the active/passive interactions of the entity
with the players involved in the problem. This framework has
been particularly designed addressing the MISM problem and
the Distributed Detection Theory has been proved to realize
Embodied capabilities in a simple and fruitful way. In fact
simulated situations have proved the effectiveness of the pro-
posed method.
Future research directions consist in a more complex defini-
tion of the CT, providing it with self-learning capabilities.
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