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ABSTRACT

To control the administration of hypnotics during operations
it is necessary to classify the depth of anaesthesia in a robust
and efficient way. The frontal EEG was selected as a fea-
ture source. Different populations of topologically optimized
trained neural networks solved the problem of robust classifi-
cation. Robustness in this context means that the performance
of the classifier is independent of the agent administration
strategies used to induce different depth of anaesthesia. Train-
ing and optimization of the neural networks were supported
by genetic programming and simulated evolution. The results
are compared to the performance of the BIS XP monitor. For
this purpose we applied this monitor to all patients in the co-
operating hospital and measured the frontal EEG in a parallel
way. The anaesthetist used several autonomic parameters like
heart rate and blood pressure to recognize the depth of anaes-
thesia. The performance of both approaches using the frontal
EEG has been measured by confusion matrices which repre-
sent the concordances and deviants between the scores of the
anaesthetist and the results of the automatic procedure. Our
approach led to higher degrees of concordances for all stages
especially if the anaesthetic agent ketamine is included. The
extension of the evaluated EEG frequency range improved the
results for the difficult recognition of transitional stages.

Index Terms— Robustness, classification, anaesthesia,
EEG, artificial neural networks, evolutionary and genetic al-
gorithms, genetic programming, ketamine, BIS XP.

1. INTRODUCTION

In developing a flexible mobile device which should be able to
classify and forecast the depth of consciousness during anaes-
thesia in a robust and economical way only one frontal EEG
channel was evaluated. The classification was done by pop-
ulations of optimized neural networks. The networks were
trained by the parallel computable system SASCIA [1] [2] [3]
[4] which is running on a cluster of PCs. The different par-
allel running components in the master slave architecture of
SASCIA are synchronized by the LINDA tuple space, which
is described below. The tuple space originally introduced by

Gelernter [5] was implemented by means of Python and a cor-
responding C interface (PyLinda) by Wilkinson [6]. The dis-
tributed computing algorithms offered opportunities to eval-
uate the feature space in an automatic way. The quality of
the approach is estimated by the concordance between the
automatically classified stages of anaesthesia and the stages
scored by the anaesthetist. According to our aim of develop-
ing adaptive and robust nonlinear classifiers the effects of

• different strategies of anaesthesia (agent or drugs ef-
fects),

• extended frequency range of the used features and

• different learn, test and validation sets

on the results are studied.

Robustness of the classifier in this context means that dif-
ferent mixtures of drugs or agents used during anaesthesia
should not lead to a lower degree of concordances. For exam-
ple it is well known that the effects of the agent ketamine on
EEG differ significantly from the effects of other agents.

The ketamine effects on the quality of classification were
considered. Taking into account that some monitors which
are able to classify the depth of anaesthesia are offered on
the market we selected the BIS XP monitor as a reference
device. This monitor is extensively documented and tested,
so we tried to compare the performance of this device with
our approach.

Kreuer et. al. [7] compared the performance of this BIS
XP Monitor with the Narcotrend monitor by measuring the ef-
fects of the agent isoflurane on the EEG during general aneas-
thesia. They did not found any remarkable differences. Hans
et. al. [8] published the warning that Ketamine may confound
the index of the BIS monitor. That could be lead to difficul-
ties if this index is used to steer administration of anaesthesia.
Neural networks were also used to predict the responses to
incision during anaesthesia by Huang et. al. [9]. They distin-
guished between responder and non responder.
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Fig. 1. Approach to train, optimize and apply populations
of neural networks which serve as robust adaptive classifiers.
Evolutionary algorithms, simulated genetic algorithms (SAS-
CIA) and genetic programming (COOPER) are included in a
multi-layer-approach for training purposes. The validation is
performed by a chain of classifiers.

2. METHODS

2.1. Data recording

The EEG and vegetative parameters of 63 patients were re-
corded during surgery in the cooperating hospitals of Schmal-
kalden and Zella Mehlis (Germany). The complete data pool
of all patients was divided into three independent parts: n
EEG epochs with 10 second length and n= 14028 of 22 pa-
tients were included in the training data set, m epochs with
m= 11884 of 22 patients were used to optimize the coopera-
tion of the trained networks and the data of 19 patients with v
epochs, v= 8889 served as validation set. Anaesthesia was in-
duced either by a mixture of ketamine and propofol, or rapifen
and propofol. The hypnotic stage was maintained by the ad-
ministration of sevofluran. The EEG was measured bipolar
near Fp1 and Fp2 and sampled by the rate of 505 values per
second by our mobile recorder system Quisi mini. This sys-
tem uses a 16 Bit Sigma-Delta analog-to-digital converter (16
Bit ADC) and a flash-RAM-card to store the data in two byte
mode. The electrodes of the BIS XP monitor were fixed on
the forehead of the 19 patients selected for the validation set
according to the manual of the company. Therefore the EEG
could be sampled by both devices in a synchronous way.

2.2. Nonlinear Classification

Fig. 1 shows the sequence of the main procedures which were
used for EEG feature selection, training of neural networks,
optimizing the topologies of networks and the classification
of the validation set.

At least four stages and awake should be distinguished by
the nonlinear classifier to guide the anaesthesia: The label A1
marks the transitional stage of sedation or light anaesthesia,
A2 the stage of moderately deep anaesthesia or the stage of
surgical tolerance, A3 the stage of deep anaesthesia and A4

...
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Fig. 2. Different parallel working processes of the training
and optimization tool SASCIA for neural networks are syn-
chronized by the LINDA concept. The master slave architec-
ture of SASCIA is running on a PC cluster in parallel mode.
The data exchange between master and slave processes is re-
alized by using the LINDA tuple space.

the stage of very deep anaesthesia or stage with the occur-
rence of so called burst suppression patterns. These staging
are in accordance with the well known definitions of Kugler
[10]. The developed and continuously improved system SAS-
CIA is the most important part of our approach. Features of
EEG and manually scored segments are included to train and
optimize neural networks. SASCIA can be regarded as a flex-
ible multi layer system controlled by external files. The core
of the system consists of a training algorithm based on error
back propagation. The middle layer serves the topological
optimization by simulated evolution. The optimal selection
of the features is realized in the outer layer by genetic al-
gorithms. Selection, recombination, mutation and inversion
were used as genetic operators. From the complete set of
trained networks a subset of networks is tested by the tool
COOPER [11] to find the optimal subset of networks by ge-
netic programming. That means each neural network is rep-
resented by one bit in a bit string and the bits are switched
by genetic operators. If one bit is switched on the networks
is activated in the selected subset. According to the included
neural networks the length of the string varied from 150 to
188. Optimality aims at excellent cooperation of the networks
in their subsets. According to Fig. 1 COOPER uses the sec-
ond part of EEG segments which is called combination set.
The third set of EEG segments in Fig. 1 serves the valida-
tion of the population of networks. The first population of
neural networks which is able to distinguish between stage
A4 and the set of other stages consists of 8 networks. Eleven
neural networks serve in the second population to recognize
the three stages A1, A2, A3 and Wake. The third population
contains 55 neural networks. The topologies of the networks
differ in all populations according to the selected feature sub-
sets by genetic algorithms and the optimization. The mean
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(a) A2
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(b) A3

Fig. 3. First differences of the EEG time series were trans-
formed into the frequency range. The means and standard
deviations of EEG power distributions in dependence of stage
A2 (top) and A3 (bottom) show remarkable differences in-
duced by the agent ketamine (gray coloured). All logarithmic
values of the graph are normalized to the complete accumu-
lated power until 64 Hz. The 50 Hz band was eliminated.

of the number of inputs, the used learning rates of the batch
training and the momentum were 18, 0.661 and 0.333 for all
members of the three populations. Generally 2 hidden layers
with different numbers of units were used.

During recording of EEG several sources of artefacts sh-
ould be taken into consideration: active or passive body move-
ments of the patients, eye movements, EEG deflection by an
electro surgery system or other electrical devices. Artefacts
were eliminated in a separate way by a multistage procedure
and labelled by UI which means that it is an unidentified seg-
ment. The following classification is performed by a chain of
two classifiers. In a first chainlink the burst suppression (A4)
epochs are separated from the rest. The EEG during stage
A4 can be characterized by more or less short burst and sup-
pression lines. Than the rest is partitioned into the different
stages of anaesthesia A1, A2, A3 and wake. The membership
of 10 seconds EEG epochs to classes of depth of anaesthesia
is simultaneously calculated by sets of trained networks. The
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Fig. 4. The performance of the nonlinear adaptive classifier
concerning the evaluation of EEG epochs is demonstrated by
confusion matrices. The degrees of concordances represent
the medians on all subjects. That means the values in each
rows do not accumulate to 100%. The sum of the single val-
ues for one operation is equal to 100.

networks contribute to final decision by the calculation of the
median.

2.3. Parallel distributed training

The system SASCIA can run on a single computer or a dis-
tributed platform. To save computing time SASCIA was im-
plemented on PC Cluster. The PC Cluster consists of 10 PCs
which are connected by a local area network. The master PC
controls 9 slave PCs. The master slave architecture of the dis-
tributed implementation can be seen in Fig. 2. Up to now N
is equal to 9. The design of the architecture is not restricted
to a certain number of slaves. In accordance with the existing
resources the control files of SASCIA have to be adapted to
guaranty the efficiency of the computing process. The paral-
lel running processes are coordinated by the LINDA concept.
This concept serves for synchronization of the different pro-
cesses which have access to the common storage with a data
container. One process is created which is responsible for that
data container called tuple space. The master process and the
N slave processes are able to access that container in a bidi-
rectional mode. The tuples correspond to ordered parameter
sets which control the concerted action of master and slaves.

3. RESULTS

The first results serve the comparison of our approach to the
BIS XP monitor. The main topic of our contribution should be
dedicated to the robustness of classification. The overwhelm-
ing majority of the 53 features were extracted in the frequency
range. Therefore the differences in frequency range due to
different agents should be explained by the Fig. 3.
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Fig. 5. Confusion matrix calculated on the basis of the BIS
XP monitor results.

First differences of the EEG time series were transformed
in the frequency range. The means and standard deviations
of EEG power distributions in dependence of stage A2 (top)
and A3 (bottom) show remarkable differences induced by the
agent ketamine. All logarithmic values of the graph are nor-
malized to the complete accumulated power. According to
the 128 Hz down sampled EEG time series the maximum fre-
quency is 64 Hz. The 50 Hz band was eliminated. The dotted
lines of EEG influenced by ketamine show a shift of the peak
power values to higher frequencies in each class A2 and A3.
The black lines serve as references because in these cases no
ketamine were applied. The means of each line were cal-
culated on 9 different subjects. The classification was done
manually by the anaesthetist who used the complete sources
of information. The results of classification are demonstrated
by confusion matrices. The matrix in Fig. 4 show the degrees
of concordance in percentage between the manually scored
10 seconds EEG epochs and the results received by the popu-
lations of neural networks. The complete validation data base
consisting of 8889 records from 19 patients was used. The
features were selected in the frequency range up to 64 Hz.
The first step of classification was performed by 8 networks,
which separated stage A4 (burst suppression) from the pool
of stages. The four class problem was solved by 11 networks
simultaneously.

The results of the BIS XP monitor in Fig. 5 differ re-
markably. The values of concordance measured in percentage
show that our approach is more robust against drug influences
especially ketamine than the algorithm of the BIS XP moni-
tor. The relatively low degree of concordance for stage A1
was the cause to improve the performance of the neural net-
works. Regarding to the power distributions in Fig. 6 the up-
per frequency range show differences between the line which
corresponds to the stage A1 and the A2, A3 lines. The number
of extracted features was extended to 62. Nine features repre-
sent the frequency range above 64 Hz. By means of SASCIA
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Fig. 6. Means of EEG power distributions are dependent of
stage A1 (top), A2 (middle) and A3 (bottom) above 40 Hz
especially. All logarithmic values of the graph are normalized
to the complete accumulated power until 128 Hz. The 50 Hz
band was eliminated. The sample rate was 505.3 Hz. The
means were calculated on all 63 subjects. The classification
was done manually by the anaesthetist who used the complete
sources of information.

55 networks were topologically optimized. All 55 networks
contribute to the results represented in Fig. 7.

In comparison with the confusion matrix of Fig. 4 the A1
concordance could be raised from 41.7% to 69.6%. If the ma-
trix will be completed by the results A4 versus rest of Fig.
4 the matrix of Fig. 7 represents the lowest degree of dis-
cordance level. To reduce the number of classifying neural
networks and to improve the results further the optimization
tool COOPER was applied. The confusion matrix of the op-
timized subset of nine neural networks can be seen in Fig. 8
and compared to the matrix of Fig. 7. Two concordance val-
ues could be improved at the expense of the other two values.
The results of Fig. 7 and 8 were received by the inclusion
of the same validation data base consisting of 14038 records
from 22 patients.

4. INTERPRETATION

Because the character of the EEG is more transient in A4 seg-
ments than in other segments the frequency range offers no
advantages to the time range. Therefore features of time range
were only used to separate A4 segments from the rest. This
motivates the processing in a chain of classifiers. The ad-
vantages of this approach could be verified by the improved
results.

Comparing Fig. 7 with Fig. 4 the extension of the fre-
quency range from 64 until 128 Hz for feature extraction led
to remarkable effects in A1 classification. Both the concor-
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Fig. 7. In comparison with the confusion matrix of Fig. 4
the A1 concordance could be raised from 41.7% to 69.6%.
The EEG frequency range which served as the primary ba-
sis of feature extraction was extended from 64 Hz to 128 Hz.
The validation data base consisting of 14038 records from 22
patients was used. The classification was done by 55 net-
works. All 55 networks are topologically optimized by the
evolutionary layer of SASCIA and use different subspaces of
the complete features space.

dance between the opinion of the expert and the results of
the classifier and the type of misclassification could be im-
proved. The stage A1 can be regarded as a transitional stage
between the initial administration of medications and the loss
consciousness. There are muscle activities which can be mea-
sured by EMG (electromyography). The influence of muscle
activities on EEG can not be neglected above 64 Hz especially
(Fig. 6). Therefore the reasons for the improved results are in
concordance with the physiology.

The set of neural networks could be reduced from 55 to 9
networks by means of the optimization tool COOPER with-
out loss of performance. That is important for the real time
implementation of our mobile system. Training and optimiz-
ing populations of neural networks consume much computing
time. According to the distributed computing implementation
of SASCIA a lot of computing time can be saved. The chance
that the computing time drops down will be increased by fur-
ther inclusion of slaves. But the exact saving of computation
time in dependence of the number of slaves is unpredictable.
There are several reasons for that: The global aim of SASCIA
consists in finding the optimal neural networks. That means
the parameter of the networks, the number of features, the
number of hidden units, the number of iteration for instance
have to be varied. A comprehensive search in the parameter
space will lead to great variability of the network architec-
tures. A great variance of computation times follows. Ac-
cording to the LINDA concept the slaves have to wait until
the master generates the next task tuple. The optimization
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Fig. 8. Results of an optimally selected set of nine cooperat-
ing neural networks are presented. The set of nine networks
are a subset of the set of 55 networks. The subset was se-
lected by the tool COOPER of Fig. 1. The data base used
by cooper consists of 11909 feature vectors with associate la-
bels from 22 patients. The validation data base consisting of
14038 records from 22 patients as in Fig. 7 was implemented.

procedures need the complete set of goal values to make the
next steps. The different waiting times of the slaves make
it impossible to predict the saving of computing times. Fur-
thermore all slave processes should be supported by platforms
with equal performance to minimize the loss of efficiency.

5. CONCLUSION AND FUTURE WORK

The results of concordances base on the evaluation of the dif-
ferences between the manually scored EEG and the automatic
classification by means of four criteria. Because of the unbal-
anced distributions of class specific segments more than one
criterion is necessary to control the optimization procedure
adequately. Up to now the four criteria were parametrically
aggregated to one criterion which was used to control the sim-
ulated evolution. The first steps in including the multi-criteria
optimization were done and we expect a further improvement
in performance. In our approach are contained two problems
which can be solved by a two class solution. The separation
of unidentified segments and of A4 segments from the rest
respectively was successfully performed by supported vector
machines. This procedure seems to be an alternative way to
increase the validation. The successful multi-criteria predic-
tion of anaesthetic stages is a necessary step before the im-
plementation of the algorithms can be accepted by the anaes-
thetist.
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