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ABSTRACT

In this paper, we investigate two statistical models for thesour-
ce-filter based single channel speech separation task. We incorpo-
rate source-driven aspects by pitch estimation in the model-driven
method which models the vocal-tract part asa priori knowledge.
This approach results in a speaker independent (SI) source separa-
tion method. For modeling the vocal tract filters Gaussian mixture
models (GMM) and non-negative matrix factorization are consid-
ered. For both methods, the final fusion of the source and filter pa-
rameters results in a reformulation of the models that finally are used
for separation. Furthermore, for the GMM method we propose a
new gain compensation and pitch adjustment method. Performance
is evaluated and compared to the speaker dependent (SD) factorial
Hidden Markov Model [1]. Although the SD method delivers the
best quality our SI methods show promising results and possess a
lower complexity in terms of used parameters.

Index Terms— single channel speech separation, source-filter
modeling, Gaussian mixture model, non-negative matrix factoriza-
tion

1. INTRODUCTION

Recently, Single Channel Source Separation (SCSS) [2] is enjoying
great popularity in the field of signal processing. The task of SCSS
is to separate the linear instantaneous mixturey = s1 + s2 of two
source signalss1 ands2.

This paper is restricted to the most challenging case of two con-
current speech signals, overlapping in time and frequency.As the
number of observationsy is less than the unknownss1 ands2, we
are talking of an under-determined problem. In principle, there exist
two main approaches to solve the problem: One, motivated by the re-
markable ability of the human auditory system to recover individual
sound components in adverse environments, called computational
auditory scene analysis [2], also often known as source-driven ap-
proach. Based on auditory motivated features, these systems try to
mimic the segregation performance of the human brain. The other
method relies on a statistical approach, incorporatinga priori knowl-
edge of the sources to solve the under-determined problem and is
called model-based method [2] emerging from the field of Blind
Source Separation (BSS) [3]. This study is based on the idea first
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proposed by [4] to combine both, the source-driven with the model-
driven approach. Radfar et al. [4] suggest to also consider the speech
signal characteristics and use them as an additional cue. Using this
as basis the signal can be decomposed into an excitation signal and
a filter representing the vocal tract. The source-driven part extracts
the fundamental frequency (F0) of each speaker used to create an ar-
tificial excitation. The vocal-tract filters (VTFs) are estimated based
on a probabilistic model-driven approach. This decomposition re-
sults in a speaker independent (SI) system in contrast to most other
methods. Speaker independency is achieved by training a SI VTF
model. This paper in particular investigates the model driven part
and its impact on separation performance by introducing twosta-
tistical methods, one based on the Gaussian mixture model (GMM)
approach and the other on non-negative matrix factorization (NMF).
We propose a new gain compensation and pitch adjustment method
for the GMM model resulting in a reduction of the model complex-
ity. Additionally, we apply NMF the first time for this source-filter
based approach. The performances of the introduced methodsare
compared to the speaker dependent factorial Hidden Markov Model
(F-HMM) based separation method [1].

The remaining paper is structured as follows: In sec. 2 we intro-
duce the fusion of the model-driven and the source-driven approach.
The proposed VTF models are introduced in sec. 3. The experimen-
tal setup and results are presented in sec. 4. Finally, we conclude and
give future perspectives in sec. 5.

2. COMBINING THE SOURCE-DRIVEN AND THE
MODEL-DRIVEN APPROACH

In the source-filter model the speech signal is composed of anexcita-
tion signal that is shaped by the vocal tract acting as a filterprocess.
The final speech output is the convolution (⋆) of the excitation with
the VTF in the time domain resulting in a multiplicative (×) relation
in the frequency domain as:

si = ei ⋆ hi → Si = Ei × Hi,

wheres is a speech segment, withe its excitation andh its VTF.
The speaker index is given asi ∈ {1, 2}. Signals in time domain
are denoted by lower case and signals in the magnitude spectrum by
uppercase characters.

The overall system is shown in fig. 1 and consists of the fol-
lowing building blocks: A single pitch extraction unit followed by
the excitation generation unit is representing the source-driven part.
VTFs, know as spectral envelopes, are extracted from SI training
dataxtrain and used to train a modelλGMM or λNMF . The exci-
tation signalsei and the model are used to formulate the speaker de-
pendent modelλGMM

SD or λNMF
SD and perform separation. We recon-
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Fig. 1. Blockdiagram of the separation algorithm.

struct the underlying signalssi by finding the most probable signals
Ŝ1 andŜ2 having produced the mixtureY . This paper is restricted
to the model-driven part, assuming that the speakers pitch tracks are
known. In a speech mixture multi-pitch detection methods are used
to extract the respective F0 of the underlying signals. In decoupling
the problem into two subtasks, namely, the multi-pitch detection and
the estimation of the VTFs we firstly reduce the complexity and sec-
ondly allow to tune parameters for each system separately. For the
given F0 of the respective source and the phase of the mixed signal
6 (Y ) the harmonic part of the excitation signal is modeled as:

êi(t, ω0i
, 6 (Y (u))) =

U(ω0i
,fmax)

X

u=1

sin(u ω0i
t + 6 (Y (u))), (1)

whereU denotes the number of harmonics up to a specified
highest frequencyfmax set to4kHz, ω0 is F0 in radians andt =
[1, . . . , T ] is the time index. For unvoiced signals, a Gaussian ran-
dom signal is used as an excitation model and for voiced signal, a
high-pass filtered Gaussian random signal is added to equation 1
above the frequencyfmax. Equation 1 is similar to the harmonic
plus noise modeling [5] but with missing amplitude weightings for
the harmonics which will be provided in our case by the VTF esti-
mation algorithm.

In the training phase, the VTF or spectrum envelope, is ex-
tracted using Linear Prediction (LPC) [6] and a smoothing aspost-
processing. The envelopes are extracted from speech segments from
speakers of a large training database not used for separation. Hence,
we deal with a SI SCSS system. These envelopes are used to train
the model described in the next section.

3. VOCAL TRACT FILTER MODELS

In this section, two different statistical separation algorithms are pro-
posed. The first is based on the Maximum Likelihood (ML) search
performing the separation using the mixture maximization (MIX-
MAX) approach [7] and the second uses NMF to separate the mixed
signal into its constituents.

3.1. Maximum Likelihood Based Source Separation

A GMM is trained to model the densityph(log10(H)) of the ex-
tracted VTFs in the log-frequency domain:

ph(log10(H)) = λ
GMM (c, µ, Σ) =

K
X

k=1

c
k N (log10(H), µk

, Σk),

whereK is the number of Gaussian componentsN with ck, µk

andΣk denote the prior probabilities, mean values and the diago-
nally assumed covariance matrices, respectively. Becausethe GMM
models densities with the same shape at different gain levels with
separate components, the VTFs are mean normalized with the ad-
vantage of reducing model complexity and increasing robustness in
the model learning. By this operation the gain information is lost
and has to be recovered by a gain estimation proposed in the next
section.

For the separation of the speech signals, we rely on the sparse
nature of speech in its high-resolution time-frequency representa-
tion. This directly results in the MIXMAX formulation to sepa-
rate sparsely distributed signals. The log-spectrum of a mixed sig-
nal log(Y ) can be approximated by the element-wise maximum of
the log-spectra of the constituent signalsS1 and S2: log(Y ) ≈
max[log(S1), log(S2)]. This leads to the notion of the binary mask
(BM). Per definition the binary mask of the speakers are comple-
mentary eg.: BM1 = BM2. In the following, we will first construct
speaker dependent models. Afterwards we use the MIXMAX ap-
proach to combine two models and construct a model which is ap-
proximating the mixturelog10(Y ). Using an ML search the most
likely Gaussian component representinglog10(Y ) is selected. The
BMs are applied to the mixed signal to finally obtain the estimates
of the underlying speech signals,ŝ1 andŝ2 respectively.

3.1.1. Gain Normalization and Speaker Dependent Model Adapta-
tion

Each components mean value of the trained GMM can be thought of
representing a prototype VTF. Using this knowledge we can formu-
late a speaker dependent (SD) GMM by incorporatingEi andgk

i , the
logarithmic gain factor, to the means asµk

SDi
= (µk + log(Ek

i ) +

gk
i ) resulting in SD modelsλGMM

SDi
(c, µSDi

, Σ) each consisting of
K1 = K2 = K components.

As the ML approach is prone to gain mismatches, the gain has
been removed from the VTFs, hence the SD models still have to be
gain adjusted. For this purpose we use the MIXMAX approach. The
bin along frequency, comprising the maximum value of the under-
lying signal Si can not exceed the value of the mixtureY at this
frequency bin which is exactly the property we are exploiting for
gain compensation. The left hand side of fig. 2 shows the mixture
Y and the first components meanµ

k1

SD1
of the first speaker without

gain compensation and the right hand side shows the same withgain
compensation. The spectrum is zoomed in to a frequency rangeof
0 − 4 kHz.
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Fig. 2. Illustration of the gain adjustment method. The left hand
side shows one segment of the mixture’s spectrum in dB (blue solid)
and the first componentµk

SD of the adapted SD GMM without gain
compensation (red dashed). The right hand side shows the same but
with gain compensation.
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The gaingk
i is calculated for each componentk and each time

instant as follows: Calculate the difference of the maximumvalue in
each components mean vector(µk + log(Ei)) and the value of the
mixtureY at the same frequency bin.

For pitch adjustment the approximation of the second derivative
over frequency of the mixture is investigated. The curvature at this
frequency bin must exhibit a local maximum, hence the value must
be negative. If the curvature at this frequency bin is not a local max-
imum the neighbors (i.e., one frequency bin before and afterwards)
are considered and if a local maximum is found there, the spectrum
of the meanµk is shifted by one bin to the local maximum sub-
jectively resulting in better results. The gaingk

i is recalculated and
finally used to adjust the mean value of the considered component.
The benefit of this method is the decoupled shape and gain of the SD
GMM means and a reduction of complexity.

3.1.2. Model Construction and Source Separation

Having established the SD models the goal of separating the mix-
tureY can be achieved by applying the MIXMAX approach to all
possible combinations of the respective model components.Con-
sequently, we found the SD binary masks BM1 and BM2 for all
K1 · K2 combinations. The modelλ(ĉk1,k2 , µ̂k1,k2 , Σ̂k1,k2) with
K1 · K2 components is made up of the following parameters:

ĉ
k1,k2 = c

k1 · ck2

µ̂
k1,k2 = µ

k1

SD1
· BM1 + µ

k2

SD2
· BM2

Σ̂k1,k2 = Σk1 · BM1 + Σk2 · BM2

The objective of the maximum likelihood estimator is to find the
component maximizingp(log10(Y )|λGMM ), defined as:

{k⋆
1 , k

⋆
2}ML =

arg max
{k1,k2}

h

p
`

log10(Y )|λGMM (ĉk1,k2 , µ̂
k1,k2 , Σ̂k1,k2)

´

i

.

The estimated component indices{k⋆
1 , k⋆

2}ML can be directly used
to select the associated binary masks BMi and apply them on the
mixed signal to get the respective speakers spectrum.

3.2. Separation Using Non-Negative Matrix Factorization

For modeling the VTF distribution we have furthermore investigated
NMF [8, 9] instead of GMMs. NMF approximates a non-negative
matrix V M×N by the product of two also non-negative matrices
W M×R and AR×N . In our case the VTFs correspond toV and
the basesW are the quantity we are interested in, summarized as
modelλNMF . For factorization ofV , in W andR, the method de-
scribed in [8], minimizing a distance function akin to the Kullback-
Leibler distance, is used. While in the training phase the basesW
are estimated, in the separation phase the weightsA are of interest.
The weights are specifying the contribution of each bases for the ap-
proximation of the target signalV . Typically, in the separation step
a union of all source dependent bases is constructed by combining
them asW = W1 ∪ W2 ∪ . . . ∪ WN . This results in anN -times
larger bases set. Similarly to the ML-based case, we have to reintro-
duceEi into the bases to be applicable for the SI source separation
task. This is achieved by multiplying the spectrum of the excitation
signal of the first and second speaker with the bases:

WSD = W1 ∪ W2 = W · E1 ∪ W · E2.

In the last step, the spectrogram of the mixed signalY is given as
V the non-negative matrix to be approximated. Fixing the intro-
duced basesWSD and estimating the weightsA best approximating

Y , finally yields in the separation of the mixed signal. The recon-
struction is done by first splitting up the bases matrixWSD and the
trained weight matrixA into the parts belonging to the correspond-
ing sources and finally reconstructing the source signals as:

Ŝi = Wi · Ai with i ∈ {1, 2},

whereŜi is the respective spectrum of a speakers segment.

4. EXPERIMENTS

To evaluate the proposed separation algorithms, the database recently
provided by Cooke et al. [10] for the single channel speech sepa-
ration task has been selected. As at this stage of our implemen-
tations no multi-pitch detection algorithm has been developed only
data from the training corpus, for both the training and testing are
used. The sampling frequency was resampled to16 kHz for all files.
For calculating the spectrogram the signal was cut into segments of
32 ms with time shifts of10 ms. For pitch extractionPRAAT [11] has
been used. To assess the performance of our algorithm we compared
them to the F-HMM algorithm [1]. We used the LPC method of or-
der24 to separate the filter from the source signal and transformed
these parameters to the log-frequency representation. Fortraining
the SI models for both algorithms 10 male (MA) and 10 female (FE)
speakers each producing 30 sec. of speech are used. The labelof
the speakers are shown in table 1. For training the SD models of

speaker
FE 4 7 8 11 15 16 21 22 23 24
MA 3 5 6 9 10 12 13 14 17 19

Table 1. Label of female and male speakers used for training speaker
independent models.

the F-HMM method, the remaining files not used for testing areem-
ployed, corresponding to approximately15 min of speech material
for each speaker. Two randomly selected male and female speakers,
each uttering 3 sentences as shown in table 2 were used for testing.
For simplicity we will call these speakers FE1, FE2, MA1 and MA2
in the future.

FE1 speaker 18 “lwixzs” “sbil4a” “prah4s”
FE2 speaker 20 “lwwy2a” “sbil2a” “prbu5p”
MA1 speaker 1 “pbbv6n” “sbwozn” “prwkzp”
MA2 speaker 2 “lwwm2a” “sgai7p” “priv3n”

Table 2. Labels of speakers and file names used for testing.

For testing all files are mixed at a level of0 dB SNR and all
possible combinations between target speakers and their interfering
speakers are evaluated, resulting in altogether108 mixed signals.
Audio examples of the mixtures and the separated files are available
at https://www.spsc.tugraz.at/people/michaelstark/SCSS.

To evaluate the performance the signal-to-noise ratio (SNR) has
been used. To avoid synthesis distortions affecting the quality as-
sessment the SNR has been measured by comparing the magnitude
spectrograms of the true source and the separated signal as:

SNRj =

P

d,t
S2

j (d, t)
P

d,t
(Sj(d, t) − Ŝj(d, t))2

,

whered = [1, . . . , D] is the index of the frequency bin andSj

andŜj are the source and separated signal spectra of the considered
speakerj.
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For the NMF method we trained200 bases for each gender,
yielding an SI model of400 bases. The GMMs were also trained in
a gender dependent way with64 components, which are combined
with equal weighting yielding a model with128 components alto-
gether. The dimension of the model parameters corresponds to the
number of frequency bins used in the spectrogram, which was512.
For training we used200 iterations in the NMF case and10 EM-
steps in the GMM case. The F-HMM method was trained with1000
states using one Gaussian component per state. The priors are as-
sumed to be uniformly distributed. To reduce complexity andmake
this method still tractable for estimating the BM, a beam search [12]
restricting the search to the best5000 candidates has been used. Fig-
ures 3 and 4 show the mean and the standard deviation of the SNR
for each target speaker to its interfering speakers.
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Fig. 3. Mean and standard deviation of the SNR from the target
speakers to the interfering speakers. The shape of the markers iden-
tifies Methods.
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Fig. 4. Mean and standard deviation of the SNR from the target
speakers to the interfering speakers. The shape of the markers iden-
tifies Methods.

Investigating the results we can clearly observe the dominance
of the F-HMM method. This is not surprisingly as this method on
the one hand is speaker dependent and on the other hand has the
highest model complexity. From a complexity point of view the SI
NMF method uses a larger number of parameters than the GMM and
one could argue that for this reason it achieved the second best per-
formance in terms of SNR improvement. But on the other hand the
NMF method uses the synthesized signals only and does not derive a
binary mask applied on the mixed signal. We assume that the reason
for the inferior performance of the ML-based method is its sensi-
tivity to prototype envelope mismatches alleviated by the weighted
sum of the NMF bases. Furthermore, the SNR of the NMF method is
more constant over different interferences compared to theF-HMM
hence the NMF method might be better suited for applicationsin ad-
verse situations. Conducting the same experiments with SD trained
models does not increase the performance significantly. This sup-
ports our assumptions to employ SI models. Finally, it should be
noted that the phonetic content of some utterances was almost simi-

lar with only one word difference and that we investigated also mix-
turesY with same genders in contrast to most other literature.

5. CONCLUSION AND OUTLOOK

We have presented two statistical approaches for modeling the VTFs,
a maximum likelihood (ML) based one and one using non-negative
matrix factorization, and we have used them for the source-filter
based single channel speech separation task. The decomposition of
the speech signals into a source and a filter component was moti-
vated by the work of [4] yielding a speaker independent (SI) separa-
tion method. For the ML-based method we trained SI Gaussian mix-
ture models (GMM) used asa priori knowledge. For this method
we proposed a new algorithm for gain compensation based on the
mixture-maximisation approach. NMF bases have been trained us-
ing the same data as the GMM method. The synthesis has been car-
ried out using only the artificially generated signals and itshows su-
perior performance compared to the GMM and lower variance across
different mixed signals compared to the method of Roweis. More-
over, the proposed methods have the advantage of being less com-
plex in terms of the used number of parameters and they are speaker
independent. As next step, a multi-pitch tracking algorithm is going
to be implemented and further refinements in the generation of the
excitation signal and envelope modeling are going to be considered.
Finally, listening tests will be carried out.
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