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ABSTRACT

In this paper, we investigate two statistical models for soeir-
ce-filter based single channel speech separation task. &tepm-
rate source-driven aspects by pitch estimation in the mddetn
method which models the vocal-tract partagriori knowledge.
This approach results in a speaker independent (Sl) soepsa
tion method. For modeling the vocal tract filters Gaussiartunée
models (GMM) and non-negative matrix factorization are sidn
ered. For both methods, the final fusion of the source and fiie
rameters results in a reformulation of the models that fyreak used
for separation. Furthermore, for the GMM method we propose
new gain compensation and pitch adjustment method. Pesfuren
is evaluated and compared to the speaker dependent (SDjidhct
Hidden Markov Model [1]. Although the SD method delivers the
best quality our SI methods show promising results and gssae
lower complexity in terms of used parameters.

v.t.pham@ugraz. at, g.kubin@eee.org

proposed by [4] to combine both, the source-driven with tloelah
driven approach. Radfar et al. [4] suggest to also consigespeech
signal characteristics and use them as an additional cueg lthis
as basis the signal can be decomposed into an excitatioal sigd
a filter representing the vocal tract. The source-driven @aracts
the fundamental frequency (FO0) of each speaker used tcecaaatr-
tificial excitation. The vocal-tract filters (VTFs) are estited based
on a probabilistic model-driven approach. This decommsite-
sults in a speaker independent (SI) system in contrast to otlosr
methods. Speaker independency is achieved by training arsl VvV
model. This paper in particular investigates the modeledripart

&nd its impact on separation performance by introducing stee

tistical methods, one based on the Gaussian mixture modéM)G
approach and the other on non-negative matrix factoriggtiMF).
We propose a new gain compensation and pitch adjustmenbtheth
for the GMM model resulting in a reduction of the model comple
ity. Additionally, we apply NMF the first time for this sourd#ter

Index Terms— single channel speech separation, source-filtedased approach. The performances of the introduced mettteds

modeling, Gaussian mixture model, non-negative matrixoféza-
tion

1. INTRODUCTION

Recently, Single Channel Source Separation (SCSS) [2]dyieg
great popularity in the field of signal processing. The tas80SS
is to separate the linear instantaneous mixiure s; + sz of two
source signals; andss.

This paper is restricted to the most challenging case of twme ¢
current speech signals, overlapping in time and frequeAsythe
number of observationg is less than the unknowns andsz, we
are talking of an under-determined problem. In princigheré exist
two main approaches to solve the problem: One, motivatetdoget
markable ability of the human auditory system to recoveividdal
sound components in adverse environments, called conqmaat
auditory scene analysis [2], also often known as sourcedrap-
proach. Based on auditory motivated features, these sgdigmno
mimic the segregation performance of the human brain. Therot
method relies on a statistical approach, incorporagipgori knowl-
edge of the sources to solve the under-determined probleimsan
called model-based method [2] emerging from the field of @lin
Source Separation (BSS) [3]. This study is based on the idgta fi

This research was carried out in the context of COAST-ROB433dint
project of Graz University of Technology, Philips Speectc&mition Sys-
tems, and Sail Labs Technology. We gratefully acknowledgelihg by the
Austrian KNet Program, ZID Zentrum fuer Innovation und Teclogy, Vi-
enna, the Steirische Wirtschaftsfoerderungsgesellschbh, and the Land
Steiermark.
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compared to the speaker dependent factorial Hidden Markase\
(F-HMM) based separation method [1].

The remaining paper is structured as follows: In sec. 2 we4int
duce the fusion of the model-driven and the source-drivgmageh.
The proposed VTF models are introduced in sec. 3. The exparim
tal setup and results are presented in sec. 4. Finally, wawi®and
give future perspectives in sec. 5.

2. COMBINING THE SOURCE-DRIVEN AND THE
MODEL-DRIVEN APPROACH

In the source-filter model the speech signal is composed exeita-
tion signal that is shaped by the vocal tract acting as a filtecess.
The final speech output is the convolutior) 6f the excitation with
the VTF in the time domain resulting in a multiplicative X relation
in the frequency domain as:

si:ei*hi—>Si:Ei><Hi,

wheres is a speech segment, withits excitation andh its VTF.
The speaker index is given asc {1,2}. Signals in time domain
are denoted by lower case and signals in the magnitude apebiy
uppercase characters.

The overall system is shown in fig. 1 and consists of the fol-
lowing building blocks: A single pitch extraction unit folived by
the excitation generation unit is representing the sodraesn part.
VTFs, know as spectral envelopes, are extracted from Stitigi
datazrqin and used to train a modalF™* or AN The exci-
tation signals:; and the model are used to formulate the speaker de-

pendent modeA§X M or AYAIF and perform separation. We recon-
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Fig. 1. Blockdiagram of the separation algorithm.

struct the underlying signals by finding the most probable signals
S; and S, having produced the mixtur¥. This paper is restricted
to the model-driven part, assuming that the speakers pichkg are
known. In a speech mixture multi-pitch detection methodsused
to extract the respective FO of the underlying signals. kodeling
the problem into two subtasks, namely, the multi-pitch déde and
the estimation of the VTFs we firstly reduce the complexitgt aec-
ondly allow to tune parameters for each system separatelythie
given FO of the respective source and the phase of the migedlsi

£(Y") the harmonic part of the excitation signal is modeled as:
U(W()i sfmax)

>

u=1

éi (t7 wo; 5 Z(}/(u))) Sin(u wo,t + A(Y(u)))7 (1)

where U denotes the number of harmonics up to a specifiedogarithmic gain factor, to the means @,

highest frequencyf,q.. set todkHz, w is FO in radians and =

[1,...,T]is the time index. For unvoiced signals, a Gaussian ran

dom signal is used as an excitation model and for voiced kigna
high-pass filtered Gaussian random signal is added to equati
above the frequency,... Equation 1 is similar to the harmonic
plus noise modeling [5] but with missing amplitude weighgsrfor
the harmonics which will be provided in our case by the VTH-est
mation algorithm.

In the training phase, the VTF or spectrum envelope, is ex

tracted using Linear Prediction (LPC) [6] and a smoothingpast-
processing. The envelopes are extracted from speech segfren
speakers of a large training database not used for separaténce,

we deal with a SI SCSS system. These envelopes are usedno tr

the model described in the next section.

3. VOCAL TRACT FILTER MODELS

In this section, two different statistical separation aijons are pro-
posed. The first is based on the Maximum Likelihood (ML) skarc
performing the separation using the mixture maximizatibhX-
MAX) approach [7] and the second uses NMF to separate thedmix
signal into its constituents.

3.1. Maximum Likelihood Based Source Separation

A GMM s trained to model the densityy, (log,,(H)) of the ex-
tracted VTFs in the log-frequency domain:

K
ph(IOglo(H)) = )‘GMM[ (07 My E) = Z Ck N(IOglo (H)7 Nk> Zk)7
k=1

whereK is the number of Gaussian componenfswith ¢, y*
andX* denote the prior probabilities, mean values and the diago-
nally assumed covariance matrices, respectively. Bedhese MM
models densities with the same shape at different gaindevith
separate components, the VTFs are mean normalized withdthe a
vantage of reducing model complexity and increasing rotesst in
the model learning. By this operation the gain informatisrast
and has to be recovered by a gain estimation proposed in ttie ne
section.

For the separation of the speech signals, we rely on theespars
nature of speech in its high-resolution time-frequencyresenta-
tion. This directly results in the MIXMAX formulation to sep
rate sparsely distributed signals. The log-spectrum of xedsig-
nallog(Y") can be approximated by the element-wise maximum of
the log-spectra of the constituent sign&ls and S2: log(Y")
max[log(S1), log(S2)]. This leads to the notion of the binary mask
(BM). Per definition the binary mask of the speakers are cempl
mentary eg.: BM = BMs. In the following, we will first construct
speaker dependent models. Afterwards we use the MIXMAX ap-
proach to combine two models and construct a model which-is ap
proximating the mixturdog,,(Y). Using an ML search the most
likely Gaussian component representing,,(Y") is selected. The
BMs are applied to the mixed signal to finally obtain the eates
of the underlying speech signals, and s respectively.

~
~

3.1.1. Gain Normalization and Speaker Dependent Model Adapta-
tion

Each components mean value of the trained GMM can be thodight o
representing a prototype VTF. Using this knowledge we camfe

late a speaker dependent (SD) GMM by incorporafih@ndg?, the

(" +log(E) +

(¢, usp,, %) each consisting of

g¥) resulting in SD modela A

K1 = Ky = K components.

As the ML approach is prone to gain mismatches, the gain has
been removed from the VTFs, hence the SD models still have to b
gain adjusted. For this purpose we use the MIXMAX approadte T
bin along frequency, comprising the maximum value of theemnd
lying signal S; can not exceed the value of the mixtureat this
frequency bin which is exactly the property we are explgitfor
‘gain compensation. The left hand side of fig. 2 shows the mextu
Y and the first components me;aL@}D1 of the first speaker without
gain compensation and the right hand side shows the samegaiith
compensation. The spectrum is zoomed in to a frequency rainge
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Fig. 2. lllustration of the gain adjustment method. The left hand
side shows one segment of the mixture’s spectrum in dB (lulié)s
and the first component? ;, of the adapted SD GMM without gain
compensation (red dashed). The right hand side shows the lsiaim
with gain compensation.

218



The gaing? is calculated for each componehtand each time
instant as follows: Calculate the difference of the maxinmuatue in
each components mean vec{ps, + log(E;)) and the value of the
mixtureY at the same frequency bin.

For pitch adjustment the approximation of the second déviva
over frequency of the mixture is investigated. The cunatifrthis
frequency bin must exhibit a local maximum, hence the valustm
be negative. If the curvature at this frequency bin is notallmax-
imum the neighbors (i.e., one frequency bin before andaétets)
are considered and if a local maximum is found there, thetspac
of the meanuy, is shifted by one bin to the local maximum sub-
jectively resulting in better results. The gajfi is recalculated and
finally used to adjust the mean value of the considered coegon
The benefit of this method is the decoupled shape and gaie &fth
GMM means and a reduction of complexity.

3.1.2. Model Construction and Source Separation

Having established the SD models the goal of separating tke m
tureY can be achieved by applying the MIXMAX approach to all
possible combinations of the respective model componeGtm-
sequently, we found the SD binary masks Bléind BM, for all
K - K> combinations. The model(é*1-%2, pF1k2 $ik1:k2) with
K, - K2 components is made up of the following parameters:

gk 0 k| ke
T 1S, - BM1 + 1, - BM2
Sik1k2 ¥ . BM; + 22 . BM,

The objective of the maximum likelihood estimator is to fihe t
component maximizing(log,,(Y)|A¢M*), defined as:

{kT, k3w =

arg max [p(loglO(Y)|AGMM(ék1’k2, i
{k1,k2}

Q 1,k27 2k1,k2))] )

The estimated component indicékT, k5 }m can be directly used
to select the associated binary masks ,Biid apply them on the
mixed signal to get the respective speakers spectrum.

3.2. Separation Using Non-Negative Matrix Factorization

For modeling the VTF distribution we have furthermore inigeted
NMF [8, 9] instead of GMMs. NMF approximates a non-negative
matrix VM*N py the product of two also non-negative matrices
WM*E gnd AN In our case the VTFs correspond t and

the basedV are the quantity we are interested in, summarized as

model \NM¥ | For factorization o/, in W and R, the method de-
scribed in [8], minimizing a distance function akin to thellkack-
Leibler distance, is used. While in the training phase theebd”
are estimated, in the separation phase the weidhdse of interest.
The weights are specifying the contribution of each basethéap-
proximation of the target signdf. Typically, in the separation step
a union of all source dependent bases is constructed by oargbi
them asiW = W3 U W, U ... U Wy. This results in anV-times
larger bases set. Similarly to the ML-based case, we hawanto-

Y, finally yields in the separation of the mixed signal. Theorec
struction is done by first splitting up the bases matiixp and the
trained weight matrix4 into the parts belonging to the correspond-
ing sources and finally reconstructing the source signals as

Si=W;-A; with 7€ {172},

whereS; is the respective spectrum of a speakers segment.

4. EXPERIMENTS

To evaluate the proposed separation algorithms, the degabeently
provided by Cooke et al. [10] for the single channel spee@ase
ration task has been selected. As at this stage of our impleme
tations no multi-pitch detection algorithm has been desetbonly
data from the training corpus, for both the training andingsare
used. The sampling frequency was resamplelbtkHz for all files.

For calculating the spectrogram the signal was cut into segsnof

32 ms with time shifts ofl0 ms. For pitch extractioRRAAT [11] has
been used. To assess the performance of our algorithm weacethp
them to the F-HMM algorithm [1]. We used the LPC method of or-
der 24 to separate the filter from the source signal and transformed
these parameters to the log-frequency representation tr&amg

the SI models for both algorithms 10 male (MA) and 10 femalg)(F
speakers each producing 30 sec. of speech are used. Theflabel
the speakers are shown in table 1. For training the SD models o

speaker
FE |4 7 8 11 15 16 21 22 23 24
MA {3 5 6 9 10 12 13 14 17 19

Table 1. Label of female and male speakers used for training speaker
independent models.

the F-HMM method, the remaining files not used for testingesme
ployed, corresponding to approximatel§ min of speech material
for each speaker. Two randomly selected male and femaléeea
each uttering 3 sentences as shown in table 2 were used fiogtes
For simplicity we will call these speakers FE1, FE2, MA1 anAM
in the future.

FE1 | speaker 18| “lwixzs” “shil4a” “prah4s”
FE2 | speaker 20| “lwwy2a”  “shil2za”  “prbubp”
MA1 | speaker 1| “pbbvén”  “sbwozn” “prwkzp”
MA2 | speaker 2| “lwwm2a” “sgai7p”  “priv3n”

Table 2. Labels of speakers and file names used for testing.

For testing all files are mixed at a level 6fdB SNR and all
possible combinations between target speakers and theifaring
speakers are evaluated, resulting in altogettt& mixed signals.
Audio examples of the mixtures and the separated files aikablea
at https://www.spsc.tugraz.at/people/michaelstar§SC

To evaluate the performance the signal-to-noise ratio (SR
been used. To avoid synthesis distortions affecting théityuss-
sessment the SNR has been measured by comparing the magnitud

duceF; into the bases to be applicable for the Sl source separatiogpectrograms of the true source and the separated signal as:

task. This is achieved by multiplying the spectrum of theiteion
signal of the first and second speaker with the bases:

Weso=W1UWoe =W -EiUW - Es.

In the last step, the spectrogram of the mixed signat given as
V the non-negative matrix to be approximated. Fixing theomntr
duced base8’sp and estimating the weight4 best approximating

a7 (d:t)
> a,0(Si(d,t) = S5(d,))?

whered = [1,...,D] is the index of the frequency bin ant;

andS*]- are the source and separated signal spectra of the cortsidere
speaker.

SNR; =
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For the NMF method we traine®00 bases for each gender, lar with only one word difference and that we investigatesbahix-
yielding an SI model ofl00 bases. The GMMs were also trained in turesY with same genders in contrast to most other literature.

a gender dependent way wifd components, which are combined
with equal weighting yielding a model with28 components alto-
gether. The dimension of the model parameters corresponittie t

number of frequency bins used in the spectrogram, whichitas
For training we use@00 iterations in the NMF case ant) EM-
steps in the GMM case. The F-HMM method was trained 00

states using one Gaussian component per state. The préoesar

sumed to be uniformly distributed. To reduce complexity arake
this method still tractable for estimating the BM, a beanrcefl 2]

restricting the search to the bé&8i00 candidates has been used. Fig-
ures 3 and 4 show the mean and the standard deviation of the S

for each target speaker to its interfering speakers.
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5. CONCLUSION AND OUTLOOK

We have presented two statistical approaches for moddlagTFs,
a maximum likelihood (ML) based one and one using non-negati
matrix factorization, and we have used them for the souita-fi
based single channel speech separation task. The decoimpadi
the speech signals into a source and a filter component was mot
vated by the work of [4] yielding a speaker independent (§pesa-
tion method. For the ML-based method we trained SI Gaussign m
re models (GMM) used aa& priori knowledge. For this method
proposed a new algorithm for gain compensation baseden th
mixture-maximisation approach. NMF bases have been tlaise
ing the same data as the GMM method. The synthesis has been car
ried out using only the artificially generated signals arghitws su-
perior performance compared to the GMM and lower varianoesac
different mixed signals compared to the method of Roweisrevio
over, the proposed methods have the advantage of beingdess ¢
plex in terms of the used number of parameters and they asiape
independent. As next step, a multi-pitch tracking algoniils going
to be implemented and further refinements in the generafidheo
excitation signal and envelope modeling are going to beidernsd.
Finally, listening tests will be carried out.
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