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ABSTRACT 
 
How to achieve the goal of automatically classifying video 
shots by their content is still an issue under debate. In this 
paper we present a novel set of low-level descriptors for the 
classification of TV video shots into meaningful semantic 
classes which can then be useful when browsing a TV 
stations archives. The motion features we propose consist of 
a modified Perceived Motion Energy Spectrum descriptor 
for local motion and a Normalized Dominant Motion 
Histogram for camera motion. Since exclusively motion-
based classification has a very limited applicability, we also 
add three normalized local HSV histograms, extracted from 
particular key-frames we select with a simple yet efficient 
approach, as color descriptors. Our experimental 
implementation is tested on real-world TV video shots using 
a binary classifier based on Support Vector Machines and 
the results demonstrate that the proposed features can 
achieve high success rates not only on narrow and 
specialized classes, but also on more generic ones. 
 

Index Terms— Content-based video retrieval, Video 
indexing, Video Classification, Motion Descriptors. 
 
 

1. INTRODUCTION 
 
The field of content Content-Based multimedia Indexing and 
Retrieval is a relatively young field, attracting more and 
more interest. The main reason for this is the increasing 
amount of multimedia material that becomes available, and 
the need to introduce automatic processes of tagging, 
classification and retrieval in order to replace today’s 
manual approaches, which are becoming increasingly 
inadequate in dealing with these issues. Content-Based 
Image Indexing and Retrieval has seen great progress in the 
recent years [1-4]. The potential of video material on the 
other hand is far from fully explored, as yet.  

 
Figure 1: The feature extraction process for digital video. 

 
Much like image indexing, video indexing is 

fundamentally based on the processing of a set of features 
extracted from a video sequence. However, because of the 
spatiotemporal nature of video data, the extraction process 
consists of multiple steps (Fig. 1). The first step is to 
segment a video sequence into the shots it consists of. 

While a complete video sequence (such as a complete 
movie) may contain several camera changes and scene 
transitions, a shot is a piece of video taken from a single 
camera and containing no such changes. From each shot, we 
are then able to extract features to describe the temporal 
aspects of the shot, such as motion or audio. The following 
step is to select a limited number of characteristic frames 
(called key-frames) from each shot, and extract the spatial 
aspects of these frames, such as color, texture or text.  

Each of these steps is an individual field of research. 
Temporal segmentation means all transitions between shots, 
being gradual or abrupt, have to be automatically detected. 
The segmentation of the temporal information goes beyond 
the scope of this text, and for our experimental applications 
we have resorted to manual segmentation. A review of the 
field can be found in [5]. 

Taking advantage of the text and audio information is a 
task which poses an entirely different set of problems. The 
field addressing these problems is called Multimodal Video 
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Retrieval. It has so far shown great potential, and the reader 
can turn to [6-7] for details.  

In this paper, we will mostly focus on temporal 
information, and use a basic spatial information descriptor to 
achieve classification. Motion information in digital video 
usually comes in the form of vector fields. A motion vector 
is estimated by extracting a macroblock from a frame and 
then seeking its best match in another frame in the future, 
which can be the very next frame or N frames away. The 
vector field can either be dense, where the surrounding block 
of each pixel is used for estimation, thus assigning a vector 
on every pixel, or sparse, where the macroblocks are non-
overlapping, thus assigning one vector per block. This raw 
motion information is often of low accuracy and offers little 
insight as to the content of the video, but it is, in most cases, 
the basis for the motion descriptors of a video shot. It is 
possible to use this low-level information as a descriptor for 
video motion, such as the vector magnitude and angle 
distributions [8], the histograms of the x and y components 
of the vectors [9-10], the histograms of the motion vector 
angles [11] or the spatial and temporal distribution of motion 
by locating series of nonzero vectors in space and time [12].  

However, the motion vector fields express the complete 
motion content of a shot, and in this sense describe a mixture 
of the camera motion as well as the motion of the objects 
that appear in a shot. It is extremely difficult to extract 
meaningful descriptors based on this information. It would 
be more to our benefit to separate the two and model them 
separately, in order to form efficient video motion content 
descriptors.  

In order to detect global motion, many models assume it 
is expressed by the majority of the motion vectors in a field 
[13-14]. The assumption is that the majority of pixels in 
every frame represent the background, and their motion 
vectors result exclusively from camera motion.  

Following the detection of the dominant motion vectors, 
we can use that information to estimate the camera 
movements [15-16]. It is possible however, to estimate 
camera motion without seeking the dominant vectors. In 
[17], for example, a six-parameter camera motion model is 
estimated directly from the motion vectors. The following 
step is then to compensate for the camera motion in order to 
isolate the object motions. That information can then be used 
in order to form a local motion descriptor, which can either 
directly describe low-level information [18], or can be used 
for higher-level features, such as object trajectories [19]. 

A completely different approach is the “Luminance 
Field Trace”, where each grayscale frame is treated as a 
point in a space whose dimensionality equals the number of 
pixels. A video shot is then represented as a trajectory in that 
space. Following dimensionality reduction, it is attempted to 
match trajectories so as to detect similar shots [20-21].  

Our aim was to build a classifier, which, when trained 
with a number of videos, would be able to classify any given 
future video. We decided that camera and object motion 

should be treated separately for such a scheme. Also, as will 
be shown below, we added a basic color descriptor to 
increase our classifier’s capabilities. 

We start with video shots and proceed with the 
extraction of temporal information, key-frame selection and 
the extraction of spatial information. We present a set of 
features for the description of motion information, and mix 
them with color histograms we extract from key-frames 
selected with a fast and efficient approach. 

 
2. OUR PROPOSED METHODS 

 
2.1. Local Motion Features 
 
Ma and Zhang, in [22] propose a descriptor for video motion 
called the perceived motion energy spectrum (PMES). It is a 
robust, fixed length descriptor which can convey both the 
spatial distribution and the overall intensity of object motion 
within a video shot.  

The first step is to calculate the mixture energy of each 
macroblock, that is, the motion resulting from both camera 
motion and object motion. That is achieved by trimming and 
averaging over the vector magnitudes of each block through 
time. So, the mixture energy of block (i, j) is calculated by: 

 

( ), ,
1

1

2

N N

i j i j
n N

MixEn Mag n
N N

α

αα

−  

= +  

=
−   

∑ , (1) 

 
where N is the total number of magnitudes (in our case, the 
number of vector fields extracted from a shot), α is the 
trimming parameter (0≤α≤0.5) and Magi,j(n) is the 
magnitude of element n. The mixture energy is then 
normalized to [0, 1]. 

The next step is to remove the effect of camera motion. 
This is achieved by filtering through the Global Motion 
Ratio (GMR). We can treat a block's motion vector angle 
through time as a stochastic variable and calculate the angle 
entropy through its probability distribution function. The 
mixture energy of blocks with consistent angles will most 
probably be due to camera motion, and the low entropy 
result for these blocks will allow us to weed them out.  

To estimate the angle entropy, we first quantize the 
vector angles into n directions, and form a histogram. For 
each bin t, the probability distribution is calculated through 
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where AHi,j(t) denotes the histogram value for bin t. The 
angle entropy for the histogram can then be found by 
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The angle entropy is then normalized to [0, 1], which 

gives us the GMR. The perceived motion is then calculated 
by multiplying each block's mixture energy with its GMR. 

 

, , ,i j i j i jPMES GMR MixEn= × , (4) 
 
In our previous research, we applied the PMES 

descriptor for TV footage classification with significant 
success [23].  

However, the PMES descriptor in its original form has a 
number of limitations. First, it uses a large number of 
features (one per macroblock) to describe motion patterns. 
This, in classification results in a very high-dimensional 
space which makes learning extremely difficult. Secondly, it 
only describes the magnitudes of local motion, which is only 
a small part of the information we can extract from the 
motion fields. Third, even if we added further motion 
descriptors, motion by itself has a limited classification 
potential. We will also need spatial descriptors, which will 
only increase the dimensionality.  

In order to reduce the dimensionality of the 
classification problem, we decided to reduce the length of 
the descriptor. To achieve this, we average the PMES 
measure over neighborhoods of macroblocks. We can thus 
achieve a more coarse representation of the spatial 
distribution of local motion. In this manner, not only we 
reduce the actual dimensionality of the problem, but we also 
remove unwanted detail, leaving only a rough representation 
of the distribution of local motion intensity. In long shots, 
high PMES values do not appear concentrated on single 
blocks, but rather spread on broader regions. This 
information can be retained after averaging, even if we lose 
some detail.  

A second modification we applied to the PMES measure 
was normalization. In its initial form, the PMES measure 
conveys both the intensity and the spatial distribution of 
local motion. However, in many cases, videos that belong to 
the same class present varying overall motion intensities but 
can be identified by their spatial distribution. To this end, we 
should isolate the spatial distribution aspect, regardless of 
the magnitude of the local motion. To achieve this, we can 
normalize the PMES values of a shot, to make them sum to 
1, thus keeping only their relative values. 
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2.2. Local Motion Features 
 

As we mentioned before, the PMES measure completely 
removes the effects of camera motion and describes only 
local motion. However, camera motion patterns often carry 
important information about the content of a video shot. In 

order to take them into account we built a simple descriptor. 
First we quantize all motion vector angles into 8 directions, 
plus one for zero-magnitude vectors. To deal with noise, we 
threshold all vectors below a certain magnitude to count as 
zero-magnitude. Then, under the assumption that the 
majority of pixels belong to the background, we extract the 
dominant angle from each vector field. We can assume this 
to be the direction of the camera motion for the current 
vector field.  

Since the length of the video shots varies, we have a 
different number of motion fields for every different shot. 
To convert it into a fixed-length descriptor, we form the 
Dominant Direction Histogram by counting the number of 
times each dominant direction appears. We group the initial 
9 directions into four groups: Horizontal (0° and 180°), 
Vertical (90° and 270°), Diagonal (45°, 135°, 225° and 
315°) and Static, since it does not make any difference 
whether, for example, a horizontal motion is leftward or 
rightward. Such detail does not usually give any useful 
information on the content of a shot, and keeping the number 
of features as low as possible is extremely important.  

Another result of the varying video length is the scale 
issue: The Dominant Direction Histogram as described 
above has a varying sum, and even two videos which both 
have exclusively horizontal motion but different lengths will 
have different histograms. To alleviate it, we proceed to 
normalize each histogram to [0, 1].  

The Normalized Dominant Direction Histogram 
(NDDH) is a compact descriptor of the camera motions of a 
shot which allows for multiple different camera motions to 
be taken into account, thus being significantly more robust 
and general than using a descriptor which allows for a single 
camera motion to be modeled. 

 
2.3. Color Features 

 
The features we have presented so far give us an overview of 
the motion patterns in a video shot: The PMES measure 
gives us the spatial distribution of the local motion 
magnitudes, while the direction histogram gives us the 
temporal distribution of the camera motion directions. 
However, most classes that we seek can also be 
distinguished by their color distributions. We will thus also 
need a color descriptor for classification to be effective.  

The most typical color distribution descriptor is the 
color histogram. To construct a color histogram we quantize 
the color spectrum into a number of cells and count the 
number of pixels that fall into each cell. Several variations of 
the color histogram exist, as well as various proposals as to 
the quantization. In our approach, since we are dealing with 
TV footage, we know that usually the middle part of the 
frame contains the items and events of interest. In trying to 
isolate the central part, we split the frame in three (upper, 
middle and lower) and extract three separate histograms. As 
for the quantization, we use the HSV color spectrum and 
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simply take 8 cells for H, completely ignoring S and V. 
Colorwise, the H parameter carries most information, and 
since we have increased dimensionality by taking three 
histograms from each frame, it is in our best interest to keep 
these histograms as compact as possible. After extraction, 
each area’s histogram is also normalized so that its 8 
elements sum to one.  

A very important issue when dealing with spatial 
features from video shots is key-frame selection: We can 
extract a number of histograms equal to the number of 
frames in the shot (multiplied by three, in our case), but that 
would lead to too much redundancy. We have to choose a 
small number of frames (preferably one) from which to 
extract the spatial information which will describe the video 
shot. 

Ferman et al [24] proposed a simple method for 
selecting a keyframe from a shot. The way to achieve this is 
by estimating the sum of each frame's histograms' absolute 
differences from every other one and choosing the one that 
minimizes the function. 
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where Hn is the histogram of the nth frame of the shot. 

A problem with this approach is that it is 
computationally expensive, since each shot contains a large 
number of frames. However, we know that there is 
continuity in the color distribution between frames in a shot, 
since objects do not appear or disappear abruptly between 
frames. We can thus chose to extract a small number of 
frames from each shot (in our case, five), evenly distributed 
through time, and choose one of them as the most 
representative.  

Thus, after applying (6) to these five frames, we end up 
with a single frame's histograms whose color distributions 
roughly represent the overall color distribution of the shot. 

 
2.4. Classifier 

 
Having established a set of features to describe both 
temporal and spatial features of a shot, we proceeded to test 
these features in a number of classes. For classification, we 
used a Support Vector Machine, a very popular and well-
established binary classifier [25-26].  

Support Vector Machines have excellent generalization 
capabilities, and have been successfully applied so far for 
relevance feedback on Content-Based Image and Video 
retrieval [27-29]. In our case, where we deal with video 
classification in predetermined classes, our approach was to 
train an SVM with a number of videos from a certain class, 
to have it distinguish between future videos that belonged to 
that class and those that didn't. We are working towards a 

system applicable on a TV station's archives, and, to this 
end, we user real world TV data to evaluate its efficiency. 

 
3. IMPLEMENTATION 

 
3.1. The video database 
 
We were offered a part of the archive of the Omega TV 
channel in Thessaloniki, Greece. The database was manually 
cut into 1074 single shot videos of varying content, from 
newscasts to sports, to talk shows and theatrical plays. As 
mentioned in the introduction, we bypassed the issue of 
temporal segmentation and focused on classification. The 
fact that the database came from the real world offered a 
number of challenges, since we had to deal with videos of 
low quality, whose content had to be classified in a number 
of classes according to the channel’s needs. On the other 
hand, this gave us the opportunity to test our approach on the 
basis of its real world implementation potential. 
 
3.2. Feature Extraction 
 
To calculate the motion features, we had to extract the 
motion fields from the given videos. To this end, we applied 
a block-matching algorithm, extracting the motion fields not 
over consecutive frames, but over a temporal distance of 8 
frames each. A large temporal distance for the motion fields 
means that the motion vectors have correspondingly 
increased magnitudes. This helps eliminate potential camera 
shakes, and also significantly reduced the effects of noise, 
since both of these will remain small in magnitude and thus 
easily detectable. The vector field was sparse and consisted 
of 9×11 vectors, each corresponding to a 64×64 pixel block. 
For the PMES measure, this led to 99 features per shot, but 
after averaging over neighborhoods of 3×3 blocks, this was 
reduced to 12 features. The motion vectors, after applying a 
threshold of 10 pixels, were also used to extract the 
Normalized Dominant Direction Histogram, consisting, as 
described above, of 4 features.  
 

 
 
Figure 2: The proposed feature set. 

 
Finally, five frames were extracted from the videos, 

namely the first, the last and three more, evenly distributed 
through time. From each of these frames, the H histogram of 
the HSV spectrum was extracted for the upper, middle and 
lower part of the frame, using 8 cells for each. Of these five 
triplets of histograms, one was chosen to minimize the sum 
of absolute differences from the others. Thus, the final 

Modified PMES NDDH Color Histograms 

12 Features 4 Features 24 Features 
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feature vector length was 12 features for the modified PMES 
feature, 4 for the NDDH and 3×8=24 for the color 
histograms, amounting to a total of 40 features for each of 
the 1074 shots (Fig. 2). 
 
3.3. Classification 
 
The SVM application that we chose to use was Thorsten 
Joachims’ SVM-light implementation [30], being fast, 
efficient and user-friendly. Through direct experimentation 
with linear, multinomial and radial basis kernels, we came to 
the conclusion that we should use a linear kernel, since it 
proved to be the most resistant to overfitting for the 
experiments described below. 

Concerning the classes used, we tested four different 
ones: Two of them were extremely narrow ones that the 
station could use as a primary classification, namely 
“Newscast” (consisting of 16 shots), which were shots of the 
stations daily newscast and shots from a particular weekly 
talk show (19 shots, labeled as “Interview”). These did not 
seem to provide any problems for the features. Since shows 
like that are usually captured in the same studio, the color 
patterns are mostly identical and the camera motion patterns 
as well. As a result, successful classification results after 
training were expected be quite high. More interesting 
results concern the two more abstract classes, namely 
“soccer” (174 shots), which contained shots of various 
soccer game, with varying lighting condition and color 
patterns, and “speaker” (157 shots), containing all shots 
where a speaking person was standing in front of a mostly 
(but not exclusively) static camera, with his head occupying 
at least 15% of the frame. The content varied from 
interviews from the streets to political statements. Figure 3 
shows a sample of each class as well as four videos that 
didn’t belong to any class. The classes were at some cases 
overlapping, and the SVM for each one was trained and 
evaluated independently. 
 

    

    
 
Figure 3: Top row: Four examples, one for each class: 
“Newscast” “Interview”, “Soccer”, “Speaker”. Bottom row: 
four examples that didn’t belong to any class. 

 
Finally, it should be noted that, since SVMs are 

sensitive to the number of positive and negative training 
examples of each class [31], and given that in all classes the 
positive examples were fewer than the negative ones, we had 

to impose a weight factor on the positive examples. This was 
achieved by a simple trick [23]: We inserted multiple 
instances of each positive training video in the training set 
until the number of positive examples became at least 1.2 
times the number of negative examples. The small advantage 
on the positive examples reflected the fact that false 
positives are more serious than false negatives, and it is thus 
preferable to slightly favor positive examples over negative. 
 

4. RESULTS 
 
The training set we used was about 35% of the total dataset, 
leaving 65% for evaluation. The results presented are the 
mean results of 100 repetitions for each class. At each 
repetition, a training set was formed by randomly picking 
35% of the positive examples for a particular class and 35% 
of the negative examples for that class. Multiple instances of 
the positive examples were inserted, to balance the positive 
and negative set sizes. After training an SVM classifier, the 
rest of the examples were used as an evaluation set. 

As can be seen in Table 1, the success rate for the narrow 
classes was virtually perfect, with almost no 
misclassifications on the positive labeled shots and very few 
misclassifications on the negative ones. As for the more 
generalized classes, the combination of color, object and 
camera motion patterns did give very good classification 
results. In the results presentation, 'True Positives' express 
the number of Correct Positives as a percentage of all the 
Positive examples in the evaluation set, and the 'True 
Negatives' are defined correspondingly. 
 

Table 1: The classification results for the four classes 
 Newscast Interview Soccer Speaker 

True  
Positives 

100% 99.0% 92.6% 93.8% 

True  
Negatives 

99.35% 96.6% 88.4% 80.7% 

Overall  
Success 

99.36% 96.7% 89.1% 82.7% 

 
5. CONCLUSIONS 

 
We presented a set of features for the content-based 
classification of video shots based on motion and color. The 
application of our proposed feature set upon part of the 
archives of a TV station demonstrated that, for a number of 
different classes, our features were very successful in 
capturing the fundamental characteristics of the training 
examples and achieving high levels of generalization.  

Towards building a complete system for classifying TV 
stations archives, our future work will focus on both the 
refinement of our existing features as well as the 
incorporation of further spatial features for texture and 
shape, to make it possible to extend our classification 
scheme to a broader range of classes. 
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