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ABSTRACT
| Video sequenc |

How to achieve the goal of automatically classifywideo Temporal
shots by their content is still an issue under tebia this segmentation Temporal information\
paper we present a novel set of low-level desarsptor the . | Motion, audio, inter-
classification of TV video shots into meaningfulhsmtic | Video sho ( frame relations)
classes which can then be useful when browsing a TV Key frame
stations archives. The motion features we propossist of extractior Spatial information
a modified Perceived Motion Energy Spectrum desorip | Key frame: }—V (Coﬁ)our texture, shape|
for local motion and a Normalized Dominant Motion tex,t, object’s)

Histogram for camera motion. Since exclusively moti
based classification has a very limited applicabilive also
add three normalized local HSV histograms, extchétem
particular key-frames we select with a simple yiicient
approach, as color descriptors. Our experiment
implementation is tested on real-world TV videotshasing

a binary classifier based on Support Vector Machiaed
the results demonstrate that the proposed featoees
achieve high success rates not only on narrow a
specialized classes, but also on more generic ones.

Figure 1: The feature extraction process for digiideo.

Much like image indexing, video indexing is
a’r]undamentally based on the processing of a seeatifes
extracted from a video sequence. However, becaliigeo
spatiotemporal nature of video data, the extracporcess
n%onsists of multiple steps (Fig. 1). The first stipto
segment a video sequence into the shots it comdists

While a complete video sequence (such as a complete
movie) may contain several camera changes and scene
transitions, a shot is a piece of video taken fr@maingle
camera and containing no such changes. From eathvah
are then able to extract features to describe ehgparal
aspects of the shot, such as motion or audio. dhawiing

1. INTRODUCTION step is to select a limited number of characteritames
(called key-frames) from each shot, and extractsihatial

The field of content Content-Based multimedia Irdgxand aspects of these frames, such as color, textuiexbr
Retrieval is a relatively young field, attractingora and Each of these steps is an individual field of resea
more interest. The main reason for this is theeasmg Temporal segmentation means all transitions betwbets,
amount of multimedia material that becomes avaglabhd  peing gradual or abrupt, have to be automaticaected.
the need to introduce automatic processes of tggginThe segmentation of the temporal information gogghd
classification and retrieval in order to replacedadgs the scope of this text, and for our experimentalliaptions

manual approaches, which are becoming increasinglye have resorted to manual segmentation. A reviethe
inadequate in dealing with these issues. Contese®a field can be found in [5].

Index Terms— Content-based video retrieval, Video
indexing, Video Classification, Motion Descriptors.

Image Indexing and Retrieval has seen great pregrethe Taking advantage of the text and audio informatioa
recent years [1-4]. The potential of video matedal the task which poses an entirely different set of peatd. The
other hand is far from fully explored, as yet. field addressing these problems is called Multinhdddeo
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Retrieval. It has so far shown great potential, toredreader
can turn to [6-7] for details.

In this paper, we will mostly focus on temporal
information, and use a basic spatial informatioscdiptor to
achieve classification. Motion information in dagjitvideo
usually comes in the form of vector fields. A matieector
is estimated by extracting a macroblock from a frammd
then seeking its best match in another frame infuhgre,
which can be the very next frame or N frames awdye
vector field can either be dense, where the sudiogrblock
of each pixel is used for estimation, thus assigm@irvector
on every pixel, or sparse, where the macroblocksnan-
overlapping, thus assigning one vector per blodks Taw
motion information is often of low accuracy andeoff little
insight as to the content of the video, but iinisnost cases,
the basis for the motion descriptors of a videot.shois
possible to use this low-level information as acdigsor for
video motion, such as the vector magnitude andeang
distributions [8], the histograms of the x and ynpmnents
of the vectors [9-10], the histograms of the moti@ttor
angles [11] or the spatial and temporal distributidd motion
by locating series of nonzero vectors in spacetiamel [12].

However, the motion vector fields express the cetepl
motion content of a shot, and in this sense deserimixture
of the camera motion as well as the motion of thgeas
that appear in a shot. It is extremely difficult éxtract
meaningful descriptors based on this informatianwvduld
be more to our benefit to separate the two and htbeéen
separately, in order to form efficient video moticontent
descriptors.

In order to detect global motion, many models agsiim
is expressed by the majority of the motion vectora field
[13-14]. The assumption is that the majority of gdéxin
every frame represent the background, and theiriomot
vectors result exclusively from camera motion.

Following the detection of the dominant motion west

should be treated separately for such a scheme, Agswill
be shown below, we added a basic color descriptor t
increase our classifier’s capabilities.

We start with video shots and proceed with the
extraction of temporal information, key-frame sdil@e and
the extraction of spatial information. We presensed of
features for the description of motion informati@amd mix
them with color histograms we extract from key-femm
selected with a fast and efficient approach.

2. OUR PROPOSED METHODS
2.1. Local Motion Features

Ma and Zhang, in [22] propose a descriptor for gid®otion
called the perceived motion energy spectrum (PME$.a
robust, fixed length descriptor which can conveyhbthe
kpatial distribution and the overall intensity dject motion
within a video shot.

The first step is to calculate the mixture enerfjgach
macroblock, that is, the motion resulting from bodmera
motion and object motion. That is achieved by tringrand
averaging over the vector magnitudes of each bilicdugh
time. So, the mixture energy of blofkj) is calculated by:
N-|aN|

1

MixEn =— &
"N =N ], 2

Mag; (1) (1

whereN is the total number of magnitudes (in our case, th
number of vector fields extracted from a shat)js the
trimming parameter ©<0.5) and Mag;(n) is the
magnitude of elemennh. The mixture energy is then
normalized to [0, 1].

The next step is to remove the effect of camerdaamot
This is achieved by filtering through the Global tiéo

we can use that information to estimate the camerRatio (GMR). We can treat a block's motion vectogla

movements [15-16]. It is possible however, to estem
camera motion without seeking the dominant vectdms.
[17], for example, a six-parameter camera motiorehds
estimated directly from the motion vectors. Thedwing
step is then to compensate for the camera motionder to
isolate the object motions. That information caentbe used
in order to form a local motion descriptor, whicinceither
directly describe low-level information [18], orrcée used
for higher-level features, such as object trajeetofl19].

A completely different approach is the “Luminance
Field Trace”, where each grayscale frame is trea®d
point in a space whose dimensionality equals thelmau of
pixels. A video shot is then represented as adi@jg in that
space. Following dimensionality reduction, it iteatpted to
match trajectories so as to detect similar shds2[P).

Our aim was to build a classifier, which, when rieal
with a number of videos, would be able to clasaify given
future video. We decided that camera and objectiamot

195

through time as a stochastic variable and calcthaeangle
entropy through its probability distribution furmti. The
mixture energy of blocks with consistent anglesl wibst
probably be due to camera motion, and the low egtro
result for these blocks will allow us to weed theut.

To estimate the angle entropy, we first quantize th
vector angles into n directions, and form a hisiogr For
each bint, the probability distribution is calculated thrdug

PO = AR, (073 AH, (K, )

where AH;;(t) denotes the histogram value for HinThe
angle entropy for the histogram can then be found b

AngER, =—tznll H dlog # ), (3



The angle entropy is then normalized to [0, 1], clhi
gives us the GMR. The perceived motion is thenutated
by multiplying each block's mixture energy with G81R.

In our previous research, we applied the PME

descriptor for TV footage classification with sifjoant
success [23].

However, the PMES descriptor in its original forasha
number of limitations. First, it uses a large numiloé
features (one per macroblock) to describe motiatepss.
This, in classification results in a very high-dims@®nal
space which makes learning extremely difficult. etly, it
only describes the magnitudes of local motion, Whsconly
a small part of the information we can extract frone
motion fields. Third, even if we added further noaoti
descriptors, motion by itself has a limited classifion
potential. We will also need spatial descriptorgjolv will
only increase the dimensionality.

In order to reduce
classification problem, we decided to reduce thatle of

the descriptor. To achieve this, we average the $ME
measure over neighborhoods of macroblocks. We ltas t
achieve a more coarse representation of the spatiﬁ

distribution of local motion. In this manner, nonlp we
reduce the actual dimensionality of the problent,voel also
remove unwanted detail, leaving only a rough regrttion
of the distribution of local motion intensity. lordg shots,

high PMES values do not appear concentrated orlesing
Thi

blocks, but rather spread on broader regions.
information can be retained after averaging, eVeveilose
some detail.

the dimensionality of the.

order to take them into account we built a simpsatiptor.
First we quantize all motion vector angles intoictions,
plus one for zero-magnitude vectors. To deal wilse, we
threshold all vectors below a certain magnitudedant as
zero-magnitude. Then, under the assumption that
majority of pixels belong to the background, weraat the
dominant angle from each vector field. We can assthis
éo be the direction of the camera motion for therent
vector field.

Since the length of the video shots varies, we tave
different number of motion fields for every diffeteshot.
To convert it into a fixed-length descriptor, werrfo the
Dominant Direction Histogram by counting the numiér
times each dominant direction appears. We groupnitiel
9 directions into four groups: Horizontal (0° an8031),
Vertical (90° and 270°), Diagonal (45°, 135°, 22&fd
315°) and Static, since it does not make any diffee
whether, for example, a horizontal motion is leftvar
rightward. Such detail does not usually give angfuls
information on the content of a shot, and keepiregrtumber
of features as low as possible is extremely immbrta
Another result of the varying video length is tlwle
issue: The Dominant Direction Histogram as desdribe
above has a varying sum, and even two videos wiith
have exclusively horizontal motion but differenadghs will
hiave different histograms. To alleviate it, we med to

the

ormalize each histogram to [0, 1].

The Normalized Dominant Direction Histogram
(NDDH) is a compact descriptor of the camera matioha
shot which allows for multiple different camera ot to
be taken into account, thus being significantly enosbust
and general than using a descriptor which allowsafsingle
2amera motion to be modeled.

2.3. Color Features

A second modification we applied to the PMES measur

was normalization. In its initial form, the PMES asere
conveys both the intensity and the spatial distiilou of
local motion. However, in many cases, videos tleddry to
the same class present varying overall motion sgitiels but
can be identified by their spatial distribution. this end, we
should isolate the spatial distribution aspectardigss of
the magnitude of the local motion. To achieve this,can
normalize the PMES values of a shot, to make them ®
1, thus keeping only their relative values.

PNES, = E9;
%= > PMES; . (5)
i

2.2. Local Motion Features

The features we have presented so far give us emiew of
the motion patterns in a video shot: The PMES measu
gives us the spatial distribution of the local rooti
magnitudes, while the direction histogram gives the
temporal distribution of the camera motion direstio
However, most classes that we seek can also
distinguished by their color distributions. We wiitius also
need a color descriptor for classification to beaive.

The most typical color distribution descriptor iset
color histogram. To construct a color histogramguantize
the color spectrum into a number of cells and cahet
number of pixels that fall into each cell. Sevesaiiations of
the color histogram exist, as well as various psa®as to
the quantization. In our approach, since we ardirdpavith
TV footage, we know that usually the middle parttioé

be

As we mentioned before, the PMES measure completefyfame contains the items and events of interestrying to

removes the effects of camera motion and descrilpds
local motion. However, camera motion patterns oftarry
important information about the content of a viddmt. In

isolate the central part, we split the frame iregh{upper,
middle and lower) and extract three separate higtog. As
for the quantization, we use the HSV color spectiamd
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simply take 8 cells for H, completely ignoring SdaN'.
Colorwise, the H parameter carries most informatiand
since we have increased dimensionality by takingeeth
histograms from each frame, it is in our best idgeto keep
these histograms as compact as possible. Afteadidn,
each area’s histogram is also normalized so that8it
elements sum to one.

system applicable on a TV station's archives, andhis
end, we user real world TV data to evaluate itiefficy.

3. IMPLEMENTATION

3.1. Thevideo database

A very important issue when dealing with spatialWe were offered a part of the archive of the Omgya

features from video shots is key-frame selectiore @én
extract a number of histograms equal to the nundfer
frames in the shot (multiplied by three, in oureadut that
would lead to too much redundancy. We have to oh@os
small number of frames (preferably one) from which
extract the spatial information which will descrithee video
shot.

channel in Thessaloniki, Greece. The database \wasaiy
cut into 1074 single shot videos of varying contdrmm
newscasts to sports, to talk shows and theatrieaisp As
mentioned in the introduction, we bypassed theeisst
temporal segmentation and focused on classificafidre
fact that the database came from the real worldreff a
number of challenges, since we had to deal witleasdof

Ferman et al [24] proposed a simple method fotow quality, whose content had to be classifieéinumber

selecting a keyframe from a shot. The way to achibis is
by estimating the sum of each frame's histogratmsblate
differences from every other one and choosing the that
minimizes the function.

KeyH = ar%min{2| H - "H} , (6)

1=k

whereH, is the histogram of the" frame of the shot.

of classes according to the channel's needs. Orotiher
hand, this gave us the opportunity to test our @ggh on the
basis of its real world implementation potential.

3.2. Feature Extraction
To calculate the motion features, we had to extthet

motion fields from the given videos. To this ena applied
a block-matching algorithm, extracting the motigelds not

over consecutive frames, but over a temporal distaf 8

A problem with this approach is that it is frames each. A large temporal distance for the endiields
computationally expensive, since each shot contiltsge means that the motion vectors have correspondingly
number of frames. However, we know that there isncreased magnitudes. This helps eliminate poterdimera

continuity in the color distribution between franiesa shot,
since objects do not appear or disappear abrupthyd®en

shakes, and also significantly reduced the effe€troise,
since both of these will remain small in magnitaae thus

frames. We can thus chose to extract a small nurober easily detectable. The vector field was sparsecamsisted

frames from each shot (in our case, five), eveidjriduted

of 9x11 vectors, each corresponding to a 64x64! bloek.

through time, and choose one of them as the mMO$tor the PMES measure, this led to 99 features st but

representative.

Thus, after applying (6) to these five frames, wd ap
with a single frame's histograms whose color distions
roughly represent the overall color distributiorttod shot.

2.4. Classifier

Having established a set of features to describth bo

temporal and spatial features of a shot, we proaéal test
these features in a number of classes. For cleastifn, we
used a Support Vector Machine, a very popular asthw
established binary classifier [25-26].

Support Vector Machines have excellent generatinati
capabilities, and have been successfully appliedasdor

after averaging over neighborhoods of 3x3 blodhis, was
reduced to 12 features. The motion vectors, afiptying a
threshold of 10 pixels, were also used to extrdet t
Normalized Dominant Direction Histogram, consistiras
described above, of 4 features.

12 Features 4 Features 24 Features
4 A
Modified PMES| NDDH| Color Histograms

Figure 2: The proposed feature set.

relevance feedback on Content-Based Image and Video Finally, five frames were extracted from the videos

retrieval [27-29]. In our case, where we deal wileo
classification in predetermined classes, our apgraeas to
train an SVM with a number of videos from a certeliass,
to have it distinguish between future videos thelbbged to
that class and those that didn't. We are workingatds a

namely the first, the last and three more, eversyriduted
through time. From each of these frames, the Hbgiaim of
the HSV spectrum was extracted for the upper, reidatd
lower part of the frame, using 8 cells for each ti@éfse five
triplets of histograms, one was chosen to minintiiee sum
of absolute differences from the others. Thus, final
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feature vector length was 12 features for the nedliPMES
feature, 4 for the NDDH and 3x8=24 for the color
histograms, amounting to a total of 40 featuresefach of
the 1074 shots (Fig. 2).

3.3. Classification

The SVM application that we chose to use was Tharst
Joachims’ SVM-light implementation [30], being fast
efficient and user-friendly. Through direct expesimation
with linear, multinomial and radial basis kernelg came to
the conclusion that we should use a linear kersiake it
proved to be the most resistant to overfitting the
experiments described below.

Concerning the classes used, we tested four differe
ones: Two of them were extremely narrow ones that t
station could use as a primary classification, rigme
“Newscast” (consisting of 16 shots), which weretshaf the
stations daily newscast and shots from a particwieekly
talk show (19 shots, labeled as “Interview”). Thetse not
seem to provide any problems for the features.eSghmows
like that are usually captured in the same stuitiie, color
patterns are mostly identical and the camera mqiaiterns
as well. As a result, successful classificationuitssafter
training were expected be quite high. More inténgst

to impose a weight factor on the positive exampléss was
achieved by a simple trick [23]: We inserted muétip
instances of each positive training video in thaning set
until the number of positive examples became aitlda2
times the number of negative examples. The smalratdge
on the positive examples reflected the fact thdsefa
positives are more serious than false negativabjtas thus
preferable to slightly favor positive examples omegative.

4. RESULTS

The training set we used was about 35% of the tztdset,
leaving 65% for evaluation. The results presented the
mean results of 100 repetitions for each class.eéth
repetition, a training set was formed by randomilgking
35% of the positive examples for a particular ckasd 35%
of the negative examples for that class. Multiplgtances of
the positive examples were inserted, to balanceptis#tive
and negative set sizes. After training an SVM dless the
rest of the examples were used as an evaluation set

As can be seen in Table 1, the success rate foratiiew
classes was virtually perfect, with almost
misclassifications on the positive labeled shot$ ery few
misclassifications on the negative ones. As for there
generalized classes, the combination of color, atbfand

no

results concern the two more abstract classes, Ipamecamera motion patterns did give very good classific

“soccer” (174 shots), which contained shots of aasi
soccer game, with varying lighting condition andloco
patterns, and “speaker” (157 shots), containingsalbts
where a speaking person was standing in front wfoatly
(but not exclusively) static camera, with his headupying
at least 15%
interviews from the streets to political statemefigure 3
shows a sample of each class as well as four vithes
didn’t belong to any class. The classes were atescases
overlapping, and the SVM for each one was trained a
evaluated independently.

i

Figure 3: Top row: Four examples, one for eachsclas
“Newscast” “Interview”, “Soccer”, “Speaker”. Bottomow:
four examples that didn’t belong to any class.

Finally, it should be noted that, since SVMs are
sensitive to the number of positive and negatizning
examples of each class [31], and given that iclalises the
positive examples were fewer than the negative,onesad
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results. In the results presentation, 'True Pastiexpress
the number of Correct Positives as a percentagal dhe
Positive examples in the evaluation set, and thmie'T
Negatives' are defined correspondingly.

of the frame. The content varied from Table 1: The classification results for the folassles

Newscast | Interview | Soccer | Speaker
True 100% 99.0% | 92.6944 93.8%
Positives
True 99.35% | 96.6% | 88.4%  80.7%%
Negatives
Overall | g9 3505 | 06.79% | 89.19%  82.7%
Success

5. CONCLUSIONS

We presented a set of features for the contentbase
classification of video shots based on motion awidrc The
application of our proposed feature set upon pérthe
archives of a TV station demonstrated that, foumlver of
different classes, our features were very succkessfu
capturing the fundamental characteristics of thaning
examples and achieving high levels of generalimatio

Towards building a complete system for classifying
stations archives, our future work will focus onttbdhe
refinement of our existing features as well as the
incorporation of further spatial features for tertuand
shape, to make it possible to extend our classifica
scheme to a broader range of classes.
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