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ABSTRACT

The objective of pattern classification is minimizing gen-
eralization errors for innumerable unknown samples. In the
structural risk minimization (SRM) principle, both empirical
errors and complexities of classifiers are minimized instead
of minimizing generalization errors. We define a criterion
about both of empirical errors and complexities for multi-
class classifiers directly, and propose a perceptron-based lin-
ear classifier obtained as the minimum solution of the crite-
rion. Due to this direct measurement, our classifier is robust
against outliers and mislabeled training samples. We discuss
the advantages of our classifier by comparing with conven-
tional classifiers such as support vector machines and neural
networks. We verify classification ability of our classifier by
experiments on benchmark datasets.

Index Terms— support vector machines, structural risk
minimization, regularization, multi-class classification

1. INTRODUCTION

The objective of pattern classification is minimizing general-
ization errors for innumerable unknown samples. Since we
cannot collect infinite samples and estimate probability den-
sities of them, we minimize an error of finite samples instead
of that of infinite ones. This is called empirical risk mini-
mization (ERM). However it is well-known that ERM does
not always minimize generalization errors. Let η = R − Remp

be a difference between a generalization error R and an em-
pirical error Remp. In the structural risk minimization (SRM)
principle, Remp + η is minimized instead of minimizing R [1].

It is well-known that η has following two properties:

1. η is monotonically decreasing with respect to the num-
ber of samples.

2. η is monotonically increasing with respect to complex-
ities of classifiers.

The first property is derived from statistics. The second is
so-called Occam’s razor principle which is mainly derived
from experiences, and also suggested from bias-variance de-
composition, minimum description length (MDL) principle,

and probably approximately correct (PAC) learning frame-
work [2, 3].

Since the number of samples is limited in general classifi-
cation problems, η should be suppressed by using the second
property, and several approaches are proposed. For example,
we can apply “early stopping” to iterative learning such as
the back propagation in multi-layer neural networks, and use
model selection such as selection of the number of hidden
units for neural networks. In subspace classifiers and rank
reduced regressions, rank limitation can be applied to them.
The cost functions of support vector machines (SVMs) in-
clude (Tikhonov-Phillips) regularization [4], and regulariza-
tion is also used in weight decay neural networks [2].

In this paper, we propose a perceptron-based linear classi-
fier that is designed with novel learning algorithms for multi-
class classification problems. In our learning, a criterion is
defined by measuring Remp and η directly using regulariza-
tion. Due to this direct measurement, our learning is robust
against outliers and mislabeled training samples compared to
SVMs. In a classification phase, an unknown sample is clas-
sified into the class that maximizes an inner product of an un-
known sample and model parameters. The minimum empiri-
cal error classifier is introduced [5]. However, it is only for bi-
nary classification problems, and there is no learning method
that counts error in learning samples and regularization simul-
taneously. Since we explain our classifier in comparison to
SVMs, we start from brief explanation of SVM in Section 2.
Then Section 3 describes our learning algorithms. Experi-
mental results for benchmark datasets are shown in Section 4.
We discuss our classifier with conventional classifiers in Sec-
tion 5.

2. SUPPORT VECTOR MACHINES

Let x ∈ Rd be an input vector. The decision function of linear
SVM is given by

f (x) = sign(〈w, x〉 + b), Rd → {−1,+1}, (1)

where 〈·, ·〉 denotes an inner product, sign(a) indicates a sign
of a, and w ∈ Rd and b ∈ R are model parameters.

Let {(xi, yi)}li=1 ⊂ Rd×{−1,+1} be a set of labeled training
samples. In hard margin SVM, w and b can be obtained from
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solution of a convex quadratic optimization problem [1]:

min
w

:
1
2
‖w‖2

subject to : yi(〈w, xi〉 + b) ≥ 1 ∀i.
(2)

Usually the problem is solved by using its dual problem. Note
that the constraint means that an empirical error Remp is zero,
and a complexity of the model is measured by ‖w‖2.

For non-linearly separable cases, a softmargin technique
is adopted to hard margin SVM as follows:

min
w,ξi

:
1
2
‖w‖2 +C

l∑
i=1

ξi

subject to : yi(〈w, xi〉 + b) ≥ 1 − ξi ∀i
ξi ≥ 0 ∀i,

(3)

where ξi (i = 1, . . . , l) are called slack variables. In this
case, the first term of the objective measures a complexity
of the model and the second measures an empirical error, and
a hyper-parameter C controls balances of the complexity and
the empirical error.

SVMs are binary classifiers, we therefore should often
use extensions of binary classifiers such as one-against-all
method that does not give an optimal boundary for multi-
class problems. For overcoming this difficulty, Multi-class
SVM has been proposed for solving multi-class problems di-
rectly [6]. However, since softmargin SVM and multi-class
SVM measure an empirical error with summation of excesses
from its boundary, they are sensitive against outliers and mis-
labeled training samples [7].

3. OPTIMAL BOUNDARY CLASSIFIER

Now we discuss our perceptron-based linear classifier with
learning. In our learning, we define a criterion about both of
empirical errors and complexities for multi-class classifiers
directly. The model parameters are given by minimizing the
criterion. The objective function of our learning is not con-
vex, so we derive the local minimum of it by gradient-based
optimization. In a classification phase, an unknown sample is
classified into the class that maximizes an inner product of an
unknown sample and model parameters.

3.1. Model

Consider a multi-class perceptron model:

f (x) = argmax
i=1,...,c

〈ei,W>x〉, Rd → {1, . . . , c}, (4)

where c is the number of classes, and ei ∈ Rc is a vector of
which the ith element is one and the others are zero. W =

[w1 . . . wc] ∈ Rd×c is a parameter matrix of the model. In
this model, an unknown sample x is classified into the class
that maximizes 〈wi, x〉.

The model that contains a constant term can be realized by
pre-mapping x 7→ [x> 1]>. Also higher model can be realized
by pre-mapping such as a quadratic model of two dimensional
input vector; [x1, x2]> 7→ [x1, x2, x2

1, x1x2, x2
2]>.

3.2. Measurement of empirical error

Let {(xi, yi)}li=1 ⊂ Rd × {1, . . . , c} be a set of labeled training
samples. The ith sample is classified correctly if the following
inequality is satisfied:

〈eyi ,W
>xi〉 > max

j={1,...,c}\{yi}
〈e j,W>xi〉.

This condition has an ambiguity with respect to a scalar multi-
plier of W. In other words, infinitesimal W and huge W might
be equivalent, and the complexity cannot be suppressed by
regularization. To remove the ambiguity, consider the follow-
ing function h

h(xi, yi,W) = max
j={1,...,c}\{yi}

〈e j − eyi ,W
>xi〉 + δ, (5)

where δ is a positive constant. h(xi, yi,W) ≤ 0 denotes the ith
sample classified correctly. The constant δ corresponds to the
minimum margin in SVMs. By using this function h, the total
empirical error Remp is given by

Remp(W) =
1
l

l∑
i=1

u
(
h(xi, yi,W)

)
, (6)

where u(·) is a step function:

u(x) =
{

1 (x ≥ 0)
0 (x < 0). (7)

In learning, optimization procedure requires derivations
of objective functions. Hence, a sigmoid function s(x, a) or
a robust hinge function r(x, a) [7] is used instead of the step
function u(x).

s(x, a) =
1

1 + exp(−ax)
(8)

r(x, a) =


0 (x < 0)

1
a x (0 ≤ x < a)
1 (x > a).

(9)

3.3. Measurement of complexity

The complexity of our model is measured by regularization
as well as multi-class SVMs:

L1(W) = ‖W‖2F =
c∑

i=1

‖wi‖2, (10)

where ‖ · ‖F denotes the Frobenius norm.
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1. Initialize W.

2. Iterate the following steps until W converges

(a) Calculate the gradient ∂J(W)
∂W .

(b) Solve the following linear search problem:

α̂ = argmin
α>0

J(W − α∂J(W)
∂W

) (12)

(c) Update W

W ←W − α̂∂J(W)
∂W

(13)

Fig. 1. Learning algorithm using a gradient method

This measurement can be extended to Tikhonov regular-
ization [8] by using a semi-positive definite regularization ma-
trix P:

L2(W) = 〈W, PW〉S = ‖P1/2W‖2F , (11)

where 〈·, ·〉S denotes the Hilbert-Schmidt inner product. If P
is an identity matrix, L2(W) is equivalent to L1(W).

If input vectors are added the constant term by pre-mapping,
multiplier to the constant term may not be loss of a complex-
ity. For example, in the criteria of SVM (2) and (3), the ob-
jective ‖w‖2 does not contain the constant term b. In this case,
P = diag([1, . . . , 1, 0]) is used, where diag(v) is a diagonal
matrix of which diagonal elements are v.

3.4. Learning algorithms

The objective function is defined by linear combination of the
empirical error and the model complexity:

J(W) = Remp(W) + βL(W), (14)

where β is a regularization parameter that controls the balance
of the empirical error Remp(W) and the complexity L(W), and
L(W) is acceptable either L1(W) or L2(W). The optimal Ŵ
such that minimizes J(W) is expected to minimize general-
ization errors derived from the SRM theory.

The objective function J(W) is minimized by existing op-
timization techniques such as a gradient method, a conjugate
gradient method or a (quasi-)Newton method. Here, we show
learning algorithms based on a gradient method and a conju-
gate gradient method.

Let ∂ f
∂W be a matrix of which (i, j) element is ∂ f

∂Wi j
. For

current W, let ki be

ki = max
j={1,...,c}\{yi}

〈e j,W>xi〉, (15)

1. Initialize W.

2. Iterate the following steps until W converges

(a) Calculate the gradient ∂J(W)
∂W , and let S =

∂J(W)
∂W .

(b) Solve the following linear search problem:

α̂ = argmin
α>0

J(W − αS) (19)

(c) Update W

W ←W − α̂S (20)

(d) If the number of iterations is the multiple
number of c × d, go to (a), else

S← ∂J(W)
∂W

− λS, (21)

where λ = ‖ ∂J(W)
∂W ‖2F/‖S‖2F .

Fig. 2. Learning algorithm using the conjugate gradient
method

that indicates the maximum class label except yi for xi. Then
we have

∂J(W)
∂W

=
∂Remp(W)
∂W

+ β
∂L(W)
∂W

, (16)

where

∂Remp(W)
∂W

=
1
l

l∑
i=1

u′(h(xi, yi,W))xi(eki − eyi )
>, (17)

and

∂L(W)
∂W

= 2P1/2W, (18)

where u is replaced by either the sigmoid function (8) or the
robust hinge function (9). Consequently, the learning algo-
rithms using gradient and conjugate gradient methods are given
as Figs. (1) and (2), respectively. To avoid local minima, the
parameter of sigmoid and robust hinge functions a is reduced
from a larger value to smaller one during learning.

The objective function J(W) includes max() in the func-
tion h, its derivation therefore is not continuous. However, it
is rare case that samples are on this edge. Even if samples are
on the edge, linear search programs (12) and (19) are eval-
uated by the original objective function J(W), and J(W) de-
creases monotonically. The gradient learning algorithm can
be extended to adaptive or on-line learning easily. In such
case, a fixed small learning coefficient ε > 0 is used instead
of α̂. This algorithm is useful when new labeled samples are
added after W are fixed.
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Table 1. Classification errors and standard deviations for UCI
benchmarks

Problem Proposed [%] SVM [%] p-value[%] MSVM [%]
Balance-scale 12.97 ± 4.24 12.10 ± 4.22 7.36> 11.06 ± 3.97

Ecoli 13.54 ± 6.64 12.88 ± 6.23 23.24> 12.58 ± 6.11
glass 32.57 ± 9.22 34.90 ± 8.80 3.44< 37.90 ± 9.10
iris 3.93 ± 5.20 4.80 ± 5.37 12.37< 18.40 ±10.2

letter 20.23 ± 0.78 43.23 ± 4.97 0< 24.46 ± 0.78
new-thyroid 4.00 ± 4.48 3.86 ± 4.52 41.13> 5.56 ± 5.56

optdigits 3.09 ± 0.72 3.31 ± 0.70 1.52< 3.29 ± 0.68
pendigits 4.39 ± 0.56 6.49 ± 0.68 0< 5.12 ± 0.57

teaching-ae 44.13 ±12.6 49.40 ±13.5 0.71< 46.20±11.1
wine 1.67 ± 3.01 1.67 ± 2.90 = 3.78 ± 4.24

4. EXPERIMENTS

We show experimental results for the UCI benchmark datasets
[9] and the handwritten digit dataset USPS [10]. First, accu-
racies of our classifier for UCI and USPS datasets are shown.
Next, the robustness against mislabeled samples of our learn-
ing is shown using the USPS dataset. Our classifier is imple-
mented with C using the gradient method with robust hinge
function (9) on a standard PC that has Core 2 Quad 2.66GHz
CPU, 8GB RAM. We used SVMlight [11] and SVMmulti-
class [12] for SVM and multi-class SVM (MSVM), respec-
tively.

4.1. UCI benchmarks

We tested our classifier on the several UCI benchmark datasets
by comparing with linear SVM and linear MSVM. Table 1
lists classification errors, their standard deviations and p-values
of one side t-test. Inequality sings indicate better accuracy
rate in our classifier and linear SVM. Mean values of accu-
racies and standard deviations were estimated from 100 inde-
pendent outcomes. Parameters were estimated with 10-fold
cross validation. As shown in this table, our learning outper-
formed linear SVM and linear MSVM in many cases. Es-
pecially, in the case of the large number of classes such as
letters, optdigits and pendigits, one-against-all linear SVM
did not perform well. Note again that our learning is formal-
ized as multi-class problems directly, so we do not require
some extensions of binary classifiers such as a one-against-all
method.

Figure 3 shows an error rate for training samples during
learning using the iris dataset. As shown in this figure, the
error decreased with the number of iteration increased. This
means that our algorithms converge stably.

4.2. Handwritten digits recognition

We tested our classifier on the handwritten digit image dataset
USPS [10]. The USPS dataset consists of 7,291 training and
2,007 test images. The size of images is 16 × 16 pixels. In
experiments, intensities of images were directly used as fea-
ture vectors. For preprocessing, we normalized x/‖x‖ for

number of iterations
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Fig. 3. Training error during learning.

Table 2. Error rates for handwritten digits recognition prob-
lem

Method Parameter Error rate [%]
Proposed β = 10−7, δ = 2 8.47
Linear SVM C = 10 8.42
Linear Multi-class SVM C = 5 × 106 8.57
Fisher discriminant — 11.81
Perceptron — 12.31

‖x‖ = 1. We compared our classifier with other classifiers:
linear SVM, linear MSVM, Fisher discriminant, and percep-
tron using multi-regression.

Table 2 shows error rates of individual classifiers with
their parameter values. Parameters were estimated with 10-
fold cross validation. As shown in this table, the general-
ization ability of our classifier was almost the same as those
of SVM and MSVM. In addition, our learning outperformed
Fisher discriminant and perceptron.

Finally, we examined the robustness against mislabeled
samples of our classifier by randomly replacing training class
labels. We randomly separated 7,291 training data and 2,007
test data from whole dataset, then we replace labels of part of
training samples randomly. The mean error rates and standard
deviations of SVM and our classifier over 100 trials are shown
in Table 3 and Figure 4. As shown in these table and figure,
our classifier is robust to mislabeled samples more than SVM.

5. DISCUSSION

5.1. Calculation cost

From Eq. (17), calculation cost of our learning is the first or-
der with respect to the number of samples l. It takes about 15
minutes for 1,000 iterations for USPS training data of which
size is 7,291, and this is longer than linear SVM. However,
as we describe in the next section, our learning admits of
improvement regarding calculation cost. In a classification
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Table 3. Error rates for handwritten digits recognition prob-
lem including label errors

rate of mislabeled training data [%]
Method 0 10 20 30

Proposed 5.69 ± 0.50 5.93 ± 0.53 6.35 ± 0.50 6.33 ± 0.49
SVM 5.59 ± 0.47 6.40 ± 0.55 7.30 ± 0.54 8.66 ± 0.61

MSVM 5.35 ± 0.45 6.57 ± 0.57 7.81 ± 0.60 9.00 ± 0.64
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Fig. 4. Error rates for handwritten digits recognition problem
including label errors

phase, d × c times multiplications and search of c elements
are required. This is the same as other linear classifiers.

5.2. Further extensions

In the learning process, samples that are far from a margin,
in other words, xi such that h(xi, yi,W) is very large or very
small, are not effective for learning. In the case of mak-
ing use of the robust hinge function (9), derivation is zero
if h(xi, yi,W) < 0 or h(xi, yi,W) > a. These samples can
be removed from a learning set temporary, and this removing
would improve speed of learning. These samples are corre-
spond to a non-support vector set in SVMs.

This model can be easily extended to a multi-labeling case
that means one sample belongs to several classes. Suppose
that xi belongs to ni classes y1

i , . . . , y
ni
i . Then an empirical

error can be measured by

h(xi, yk
i ,W) = max

j={1,...,c}\{y1
i ,...,y

ni
i }
〈e j − eyk

i
,W>xi〉 + δ

Remp =
1
l

l∑
i=1

1
ni

ni∑
k=1

u
(
h(xi, yk

i ,W)
)
.

For example, in text genre labeling problems, a multi-labeling
model is important.

Kernel methods using non-linear mapping Φ(·) and a ker-
nel function k(·, ·) [13] can be also applied to our classifier.
Then W can be expressed by linear combination of mapped

samples:

wi =

l∑
j=1

a jiΦ(x j) (22)

W = [Φ(x1) Φ(x2) . . . Φ(xl)]A, (23)

where A ∈ Rl×c is a matrix of which ( j, i) element is a ji. Then

W>Φ(x) = A>[Φ(x1) Φ(x2) . . . Φ(xl)]>Φ(x)
= A>k(x), (24)

and

‖W‖2F = Trace(A>[Φ(x1) Φ(x2) . . . Φ(xl)]>

[Φ(x1) Φ(x2) . . . Φ(xl)]A)
= Trace(A>KA) = ‖K1/2A‖2F , (25)

where a vector k(x) = [k(x1, x), k(x2, x), . . . , k(xl, x)]> ∈ Rl

is called empirical kernel map, and a matrix K ∈ Rl×l of which
(i, j) element is k(xi, x j) is called a kernel gram matrix [13].
Thus by replacing input samples to an empirical kernel vector:
x 7→ k(x) and let a regularization matrix P in Eq. (11) be a
kernel gram matrix, P = K, then the algorithm to obtain W
is changed to the algorithm to obtain A directly, and kernel
methods can be realized easily.

5.3. Comparison with other classifiers

5.3.1. Support vector machines

As described above, our classifier has many similarities with
SVMs. Here, the difference between SVMs and our classifier
are discussed. As described in Section 2, SVM is sensitive
against outliers and mislabeled training samples because the
summation of ξi is used for a measurement of an empirical er-
ror. On the other hand, our classifier is robust against outliers
and mislabeled samples because it employs direct an empiri-
cal error measurement.

One of the advantages of SVMs is that optimization prob-
lems are convex that guarantees the global minimum, whereas
the objective function of our learning is not convex. How-
ever, from several simulation, if a in a sigmoid or robust hinge
function is annealed from a larger number to a small one, so-
lutions are almost the same even if W is initialized randomly.
This means our classifier converged to almost a global mini-
mum.

Sparse solutions are also an advantage of SVMs. The so-
lution of our original learning is not sparse because it is not
solved in its dual problem. However, if kernel methods are
applied to our classifier, it is expected that W is sparse when
the robust-hinge function is used because an empirical error
is measured by the first order of W as well as SVM.

Multi-class SVM was proposed for multi-class classifica-
tion problems [6]. However it is also sensitive against outliers
or mislabeled samples because it uses the same measurement
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of an empirical error as SVM. Robust SVM (RSVM) [7] was
also proposed. It is a binary classifier, and since its optimiza-
tion problem includes semi-definite constraint, the problem is
difficult to solve.

5.3.2. Neural networks

Neural networks may include a sigmoid function in models,
whereas our learning includes it in our objective function.
Weight decay neural networks are also introduced for regu-
larization [2]. In these methods, an empirical error is usually
measured by the squared error between target variables vector
ti and output f (xi);

Remp =

l∑
i=1

‖ti − f (xi)‖2. (26)

This measurement differs from a true empirical error. Thus it
requires too much complexities to achieve smaller empirical
errors, and it is expected that the generalization error is low.

6. CONCLUSIONS

In this paper, we proposed a perceptron-based linear classifier
that was designed with novel learning algorithms for multi-
class classification problems. In a classification phase, an un-
known sample is classified into the class that maximizes an
inner product of an unknown sample and model parameters
that are obtained with gradient-based optimization. We veri-
fied classification abilities of our classifier by experiments on
benchmark datasets called UCI and USPS. Experimental re-
sults showed that our classifier outperformed other classifiers
such as SVMs. Furthermore, our classifier was robust to mis-
labeled samples more than SVM.

In our learning, we defined a criterion about both of em-
pirical errors and complexities for multi-class classifiers di-
rectly and minimized the criterion using gradient-based opti-
mization. Due to this direct measurement, our classifier has
several advantages over SVMs and other conventional classi-
fiers. For example, our classifier does not require some ex-
tensions of binary classifiers such as a one-against-all method
because our method is designed as multi-class classification
problems directly. In addition, our classifier is robust against
outliers or mislabeled samples because our objective function
is defined with an empirical error and a model complexity.
We plan to apply our classifier to multi-labeling pattern clas-
sification and extend our classifier to a kernel one.
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