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ABSTRACT

Feature selection for classification working in high-dimensional
feature spaces can improve generalization accuracy, reduce clas-
sifier complexity, and is also useful for identifying the important
feature “markers”, e.g., biomarkers in a bioinformatics or biomed-
ical context. For support vector machine (SVM) classification, a
widely used feature selection technique is recursive feature elimi-
nation (RFE). In recent work, we demonstrated that the RFE objec-
tive is not generally consistent with the margin maximization ob-
jective that is central to the SVM learning approach. We thus pro-
posed explicit margin-based feature elimination (MFE) for SVMs
and demonstrated both improved margin and improved general-
ization accuracy, compared with RFE for the case of linear SVMs.
In this paper, after reviewing MFE, we first introduce an exten-
sion which achieves further gains in margin at small computational
cost. This extension solves the SVM optimization problem to max-
imize the classifier’s margin at each feature elimination step, albeit
in a lightweight fashion by optimizing only two degrees of freedom
– the weight vector’s slope and intercept. We next consider the
case of a nonlinear kernel. We show that RFE defined for the non-
linear kernel case assumes that the weight vector length is strictly
decreasing as features are eliminated. We demonstrate experimen-
tally that this assumption is not in general valid for the Gaussian
kernel and that, consequently, RFE may give poor results in this
case. An extension of MFE for the nonlinear kernel case gives
both better margin and generalization accuracy. This approach
may help nonlinear kernel SVMs to avoid overfitting and, thus, to
achieve better results than linear SVMs in some high-dimensional
domains where use of nonlinear kernels has not to date been found
very favorable.

Keywords: support vector machines, classifier margin, recur-
sive feature elimination, Gaussian kernel

1. INTRODUCTION

1.1. Feature Selection in Classification

In high-dimensional classification domains such as text categoriza-
tion, image and image sequence classification, and classification in
genomics and proteomics, one often encounters problems where
there are very few labeled training samples, or at any rate very
few samples relative to the very high-dimensionality of the fea-
ture measurements for each exemplar/sample. In bioinformatics in

particular, with training databases derived e.g. from clinical trials,
there may be at most several hundred (patient) samples, each rep-
resented by e.g. tens of thousands of DNA microarray features. In
all of the abovementioned domains as well as many others, there
are several compelling reasons for reducing feature dimensional-
ity. First, many of the features may have at best weak discrimina-
tion power. In [10], a type of “curse of dimensionality” (COD) was
demonstrated, wherein, in the small sample case, the parameter
estimation error for the parameters that model the (many) features
with modest discrimination power (those with high variance and/or
small distance between class means) defeats the generalization ac-
curacy benefit derived from using these features for classification
– i.e for fixed sample size, the generalization accuracy may de-
grade as the feature dimensionality is increased beyond a certain
point. This phenomenon is related to the bias-variance dilemma
in statistics [8] which essentially suggests that, for best generaliza-
tion, model complexity should be matched to the available training
data resources. Even in domains where generalization accuracy
tends to monotonically improve with increasing feature dimen-
sionality, complexity of the classification operation (both compu-
tation and memory storage required for decisionmaking) may out-
weigh marginal gains in accuracy achieved by using a large num-
ber of features. Finally, in some contexts, it is useful to identify a
small set of “marker” features that have unusual correlation with
the class variable. In document classification, these markers may
represent class(topic)-specific key words/terms. In image-based
classification, these features may identify the best descriptors for
representing images/objects of a certain type. In bioinformatics,
gene “biomarkers” may shed light on the underlying disease mech-
anism and/or help to identify targets for drug therapy. Decision-
making based on a small set of features is also highly interpretable,
which is important e.g. in explaining credit card approval deci-
sions.

There are several approaches for avoiding model overfitting/COD.
One is to fit the original high-dimensional data (with M features),
by using simple models, e.g. naive Bayes models [4] or those that
share parameters in modeling distributions for multiple features.
Another approach is to limit the amount of model training, e.g.
through use of regularization costs or early stopping [4]. Support
vector machines (SVMs) attempt to avoid overfitting by finding a
discriminant function that maximizes the margin1. In SVMs, the

1The minimum distance of any sample point to the decision boundary.
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number of free model parameters is upper-bounded by the num-
ber of training samples (a subset of which are support vectors with
nonzero Lagrange multiplier parameters), rather than controlled
by the feature dimensionality. However, whether using linear or
nonlinear kernels, SVMs are not immune to the curse of dimen-
sionality [8]. Thus, feature selection, wherein only a small subset
of the original features are retained, is often an essential step for
achieving good, generalizeable classification accuracy, for SVMs,
as well as other classifiers.

Unfortunately, there are 2M − 1 possible feature subsets, with
exhaustive search practically prohibited even for modest M , let
alone M on the order of thousands. Practical feature selection
techniques are thus heuristic; there are a variety of such methods,
exercising a large range of tradeoffs between accuracy and com-
plexity [7]. Front-end methods apply knowledge of the class la-
bels to evaluate discrimination power of individual genes or small
gene groups prior to classifier training. Wrapper-based approaches
combine feature selection and classifier training, with the classi-
fier learning algorithm repeatedly applied for different feature sub-
sets and with the best subset chosen based on a specified criterion
such as training set error rate. These methods improve predictive
power by capturing joint feature effects. Wrapper algorithms entail
higher computation than front-end methods because they embed
classifier training within the feature search. There is greedy for-
ward selection, with “informative” features added starting from a
null set, backward search, which starts from the full space and then
eliminates features, bidirectional searches, and more complex al-
gorithms such as simulated annealing [7]. Backward search starts
by assessing joint predictive power of all features. In principle,
one would like to retrain the classifier in conjunction with each
backward elimination step that removes a single feature (optimiz-
ing the classifier for the new feature space). However, considering
large M , this requires either M classifier retrainings (if retraining
is done after a feature elimination step) or M(M−1)

2
(if retrain-

ing is done before feature elimination, i.e., after trial- elimination
of each remaining feature, at every feature elimination step). For
SVM- based classifier training, considered in the sequel, neither
of these is computationally feasible because even a single run of
SVM training takes significant computation for large M . Thus, for
large M , retraining can only be done periodically, after a “batch”
of features has been removed.

1.2. Feature selection for SVMs

SVMs have become nearly a standard classification technique in
many domains. There are a number of reasons. First, the SVM ob-
jective, maximizing the classifier’s margin, has a strong theoretical
basis tied to the achievement of good generalization accuracy [3].
Second, there is a unique, globally optimal solution to the SVM
training problem. Third, there are improvements in representation
power achieved through the use of nonlinear kernels, which map
to a high or even infinite-dimensional feature space and, via the
“kernel trick”, do so without requiring a large increase in the com-
plexity of decisionmaking and classifier training. Fourth, SVMs
have achieved good results on a variety of domains, including e.g.
document classification and bioinformatics applications. Finally,
precisely because SVMs are so widely used, any improvements to
the existing methodology are likely to have a large impact and to

be widely disseminated.
A number of feature selection methods have been investigated

for SVMs, including some customized ones. Front-end filtering
has been applied in numerous prior works. In [11], wrapper com-
plexity was reduced by replacing the SVM training objective with
an upper bound that is less complex to optimize. Other approaches
are not wrapper-based, but modify the SVM objective to encour-
age sparse solutions, e.g., [12]. A widely used method is recursive
feature elimination (RFE) [6], wherein at each step one removes
the feature with least weight magnitude in the SVM solution. This
method is very lightweight and thus easily scales to very large M 2.
The authors in [6] essentially argue that the RFE objective for lin-
ear SVMs is consistent with the SVM objective of margin maxi-
mization. They note that the SVM primal optimization problem
poses minimization of the square of the weight vector length sub-
ject to (margin-related) constraints involving each training point.
Eliminating the feature with smallest weight magnitude has the
least effect on the weight vector length and, thus, [6] argues, on the
SVM solution. In recent work [1], we have shown experimentally,
however, that RFE is not in close agreement with margin maxi-
mization. The reason is that RFE ignores the margin constraints
in the SVM problem, focusing solely on minimally reducing the
weight vector length. In this work, we first review our recently pro-
posed margin-based feature elimination (MFE) method [1], which
explicitly performs margin-optimal backward feature elimination
for SVMs. We then introduce an extension which achieves fur-
ther gains in margin at small additional computational cost. This
extension solves an SVM optimization problem to maximize the
classifier’s margin at each feature elimination step, albeit in a very
lightweight fashion by choosing only two degrees of freedom –
the weight vector’s slope and intercept. We then consider the case
of a nonlinear kernel. We show that RFE defined for the nonlin-
ear kernel case [6] assumes that the weight vector length is strictly
decreasing as features are eliminated. We demonstrate experimen-
tally that this assumption is not valid for the Gaussian kernel and
that, consequently, RFE may give poor results in this case. An
extension of MFE for the nonlinear kernel case gives both better
margins and generalization accuracies.

2. MARGIN-BASED FEATURE ELIMINATION IN SVMS

2.1. Brief review of linear SVMs

Consider a labeled training set {xn, yn} for 1 ≤ n ≤ N where
N is the number of samples, yn ∈ {±1} is the class label, and
xn ∈ RM is the nth data sample. Assuming the data set is
linearly separable (highly likely in the small sample, very high-
dimensional feature space case), a linear SVM will find a separat-
ing hyperplane

f(x) ≡ wTx + b =

MX
m=1

wmxm + b,

w ∈ RM , b ∈ R. We denote the perpendicular from xn to the
hyperplane by p

n
and note the standard results p

n
≡ f(xn)

||w||2 w

2However, as discussed earlier, if classifier retraining is performed for
each eliminated feature or, worse, for each candidate feature elimination,
computational complexity may be practically infeasible for large M .
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(where || · || is the Euclidean norm) and ynf(xn)

||w|| for the signed
distance from xn to the hyperplane. Denoting g(xn) ≡ ynf(xn),
the hyperplane is a separating one if it satisfies g(xn) > 0 for all
xn. The margin of the separating hyperplane f is thus defined as
γ ≡ minn g(xn)

||w|| . We will denote N ≡ minn g(xn), D ≡ ||w||,
L ≡ D2 and write γ ≡ N

D . The basic SVM training problem,
finding the hyperplane yielding largest margin, is:

minw,b
1
2
||w||2

s.t. yn(wT xn) + b) ≥ 1, n = 1, . . . , N

2.2. Limitations of RFE: linear case

Under RFE [6], the index m∗ of the first feature to be eliminated
is arg min

m∈{1,2,...,M}
|wm|, and, more generally, at step k, the mini-

mization is performed over the M − k remaining features. While
[6] does suggest a close tie between the RFE choice and the SVM
objective (margin maximization), RFE is equivalent to margin-
maximizing feature elimination if and only if the equation below
is always satisfied, with RFE’s margin on the right and the margin
achieved by an approach which explicitly eliminates the feature
that preserves maximum margin on the left:

maxm minn
ynf(xn)−ynxn,mwm√

||w||2−w2
m

= minn
ynf(xn)−ynxn,m∗wm∗√

||w||2−w2
m∗

.

In [2], we prove via a simple 2-dimensional counterexample
that eliminating features according to RFE is in fact not equivalent
to eliminating according to margin. In general, direct margin max-
imization leads to significant gains in margin and may also lead
to improved generalization accuracy over RFE, as demonstrated
experimentally both in [1] and in the sequel.

2.3. Direct margin-based approach

Since maximizing margin is the (theoretically motivated) goal of
SVM training [3], eliminating features such that the margin is left
as large as possible should be “stepwise superior” to RFE. Sur-
prisingly, while there are some related approaches [9]3, we had
not seen direct, margin-based feature elimination previously pro-
posed. In recent work [1], we developed just such a technique,
along with its efficient implementation. We note that at each elim-
ination step i, it may appear that the hypothetical margins γ(i),m

(after eliminating feature m at step i) need to be computed under
candidate elimination of every remaining feature m and then the
maximum over m needs to be found. When M is very large, this
will require some computation (albeit not so much greater than the
(very lightweight) RFE computation). Regardless, we developed a
Margin-optimal Feature Elimination (MFE) method that, without
sacrificing optimality, only requires explicit margin evaluations for
a subset of the candidate features and which achieves further com-
putational efficiency via a recursive implementation.

2.3.1. MFE algorithm pseudocode for SVMs: linear case

Below, we will use the following notation: q(i),m ≡ quantity q at
feature elimination step i upon elimination of feature m.

0. Let M be the set of eliminated features, with M = ∅ ini-
tially. First run SVM training on the full space to find a sep-
arating hyperplane f (parameterized by w, b), with weight

3The method in this paper eliminates features to maximize the aver-
age distance to the hyperplane, over all the training points, rather than to
maximize margin.

norm-squared L(−1),0 ≡ ||w||2.4 For each feature m, com-
pute the following quantities as a preprocessing step:

δm
n = ynxn,mwm, ∀n and δ∗

m ≡ max
n

δm
n

Recall that g(xn) ≡ ynf(xn) so that δm
n is the ∆g quan-

tity δ
(j),m
n ≡ (g

(j−1),mj−1
n − g

(j),m
n ) whose value is the

same at every elimination step for a given m and n. The
δ∗

m

are initially sorted in increasing order to facilitate de-
termination of “candidate feature sets” for elimination. This
sorting step is executed only once.
Finally, recalling N ≡ minn g(xn), set i ← 0 and com-
pute the following quantities:

g(−1),0
n = ynb +

MX
m=1

δm
n and N (−1),0 = min

n
g(−1),0

n

The proposed method [1], performing margin-optimal fea-
ture elimination, then takes the following steps:

1. Determine the candidate feature set

S(i) = {m 6∈ M | δ∗m ≤ N (i−1),mi−1}.

If S(i) is empty (the data is nonseparable) then stop.5

2. For m ∈ S(i), using recursion, compute6

g(i),m
n = g

(i−1),mi−1
n − δm

n and L(i),m = L(i−1),mi−1 − w2
m,

and determine

N (i),m = min
n

g(i),m
n and γ(i),m = max

m∈S(i)

N (i),m

√
L(i),m

.

3.1. Eliminate feature

mi ≡ arg max
m∈S(i)

γ(i),m

(which maximizes the resulting margin), i.e., M → M∪
{mi}.

3.2. Keep for the next iteration only the recursive quantities for
the eliminated feature: g

(i),mi
n ∀n,N (i),mi , L(i),mi

3.3. i → i + 1 and go to step 1.

In Figure 1, we demonstrate that MFE achieves both larger margin
and better overall test set generalization accuracy than RFE on the
UC Irvine flag data set7. Similar results are achieved on other data
sets from the UC Irvine repository. More extensive evaluation on
eight data sets from UC Irvine is given in [2].

4Here, i = −1 means before eliminating any features and the 0 is a
dummy placeholder index value, m−1.

5The set S(i) consists of the features at step i that, if singly eliminated,
will preserve a positive margin. Note that S(i) can be very efficiently
computed given sorted δ∗

m
values. For example, a 1-D bisection search

can be used. Margin will only be evaluated for features in the set S(i).
6Note that the terms δm

n and w2
m need only be computed for m ∈ S(i)

(and do not need to be computed during elimination steps if stored for all
m and n during preprocessing (step 0)).

7Results are based on averaging over 21 trials created by three ran-
domly chosen training/test splits of the data set and seven randomly chosen
training subsets of the training set of each split.
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Fig. 1. Margin versus number of retained features (on left), and test error rate versus number of retained features (on right)
for UC Irvine flag data set.

3. EXTENSIONS OF MARGIN-BASED FEATURE
ELIMINATION

3.1. “Little Optimization” (LO): further increases in margin
with modest computation

As noted earlier, for large M , it is not computationally practical to
retrain the SVM in the reduced feature space, in conjunction with
each feature elimination step. However, here we introduce a type
of classifier retraining at every feature elimination step that is con-
sistent with margin maximization and yet is exceptionally modest
computationally, compared to full SVM retraining. The idea is to
solve the SVM problem but while optimizing drastically fewer pa-
rameters than the full complement of SVM feature weights. Let
(w−M, b) denote the weight vector (and affine parameter) after a
set M of features are eliminated. Suppose we consider the new
parameterized weight vector (Aw−M, w0), where A and w0 are
scalar parameters to be optimized, with w−M held fixed. That
is, we allow adjusting the weight vector’s length, and the affine
parameter, but with the weight vector direction determined solely
by the feature elimination steps. We thus pose the standard SVM
training problem, but optimizing only in this two-dimensional pa-
rameter space:

minA,w0 A2 s.t. yn(A(w−M
T
x−Mn )+w0) ≥ 1, n = 1, . . . , N

It turns out [2] that solving this minimization problem requires
almost no computation. In particular, the feasible region is defined
by two cones in the (A, w0) plane, with the minimum weight vec-
tor length (A2) in each cone achieved at the cone’s tip, which is
easily found. Thus, the minimization is performed by identifying
the tip of each cone and choosing the one with smaller A2. Since
there is virtually no computation required, this “little optimization”
can be performed in conjunction with each (margin-optimizing)
feature elimination step. At each elimination step, this optimiza-
tion is guaranteed to increase margin compared to the basic MFE

technique described previously8. Figure 2 demonstrates improve-
ment in margin (with a modest increase in generalization accuracy
in this particular case) provided by the “little optimization” on the
UCI hepatitis data set. In addition to this form of classifier retrain-
ing, for large M , it is practicable to periodically intersperse full
SVM retrainings after a batch of features has been eliminated.

3.2. Limitations of RFE: nonlinear kernel case

For the case of a nonlinear kernel, a natural extension of the RFE
method was proposed in [6]. In this case, the weight vector is
only implicitly defined by the support vectors and the kernel func-
tion. However, using the “kernel trick”, the squared weight vector
length can be expressed and easily evaluated as:

||w||2 =
X

k∈S

X

l∈S
λsk

ysk
λsl

ysl
K(sk, sl). (1)

Here, {s1, ..., sT } is the set of support vectors (a subset of the
original training points), with index set S = {1, 2, ..., T}, λsk

is
the (positive) Lagrange multiplier associated with support vector
sk, and K(·, ·) is the kernel function. Of particular interest, for
the discussion that follows, is the choice of the Gaussian kernel
K(u, v) = exp(−β||u − v||2), β > 0. In [6], it was proposed
to evaluate the weight vector length (1) both before and after a
candidate feature elimination and, at the i-th stage of feature elim-
ination, to remove the feature that minimizes the difference:

∆||w||2 = (||w||2)(i−1),m∗i−1 − (||w||2)(i),m∗i , (2)

8Since this optimization is performed within a greedy (stepwise-
optimal) framework, there is no guarantee that the margin curve for MFE
applied in conjunction with “little optimization” will lie strictly above the
margin curve for the basic MFE method – the “little optimization” will in
general alter the (greedily chosen) sequence of margin-maximizing feature
eliminations. There is only guaranteed strict improvement in the margin
curve if the same feature elimination sequence is used by the two methods.
However, experimentally we have found that the “little optimization” does
typically lead to strictly positive shifts in the margin curve.
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Fig. 2. Margin versus number of retained features (on left), and test classification error rate versus number of retained features
(on right) for UC Irvine hepatitis data set.
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Fig. 3. Weight vector length squared versus number of retained features (at top), and margin versus number of retained
features (on left), test classification error rate versus number of retained features (on right) for UC Irvine cylinder data set.
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i.e. the length before elimination minus the length after elimina-
tion. This criterion is the natural extension of the linear RFE crite-
rion and is consistent with the objective of reducing the weight
vector length the least, assuming that the weight vector length
is in fact monotonically decreasing as the feature dimensional-
ity is reduced. For example, in the case of the polynomial ker-
nel, K(u, v) = (1 + uT v)d, the kernel function maps an orig-
inal feature vector u to a new, finite-dimensional feature vector
φ(u) whose coordinates φi(u) are products raised to powers of
the original feature coordinates. Since the weight vector length is

||φ(u)||2 =
L(M)P
i=1

|φi(u)|2, where L(M) is the dimension in the

kernel-mapped space, it is clear for the polynomial case that elim-
inating an original feature coordinate zeroes out some components
of φ(u) while leaving all others unchanged. This effects zeroing
(removing) the associated scalar weights. Thus, the weight vec-
tor length is monotonically decreasing as features are eliminated.
However, we have also considered the Gaussian kernel. It is not
so easy to analytically evaluate the Gaussian case. Instead, we
have measured the weight vector length experimentally and found
it is neither monotonically decreasing nor monotonically increas-
ing with feature eliminations. Consider the consequences for the
RFE objective (2): the RFE-optimal feature elimination (assuming
some eliminations increase weight vector length) will in fact be the
feature whose removal increases the weight vector length the most;
this is the choice that will decrease (2) as much as possible (only, in
this case, making ∆||w||2 negative). In Figure 3, on the UC Irvine
cylinder data set, for the Gaussian kernel, we evaluated both RFE
and a modified method we dub RFE abs which eliminates the fea-
ture that results in the smallest change (either decrease or increase)
in the weight vector length (This method is based on [9]). Note that
standard RFE gives a steep rise in the weight vector length (aver-
aged over different training trials) as features are eliminated, over
a range of feature eliminations and, over this range, both margin
and generalization accuracy are poor. Clearly, RFE abs gives mar-
gin and generalization accuracy that are superior on this data set.
We further note again, however, that RFE abs is itself suboptimal
with respect to classifier margin. In the nonlinear kernel case, the
distance from a data point xn to the decision boundary is evaluated
via:

yn(w0 +
P

k∈S
λsk

ysk
K(sk, xn))

rP
k∈S

P
l∈S

λsk
ysk

λsl
ysl

K(sk, sl)

Similar to the pseudocode in Section 2.3.1, we propose a recursively-
implemented margin-optimizing feature elimination algorithm for
kernel-based SVMs. In this case, the recursion is on the ker-
nel computation. For example, for the Gaussian kernel, denoting
K(i),m

k,n ≡ K(s
(i),m
k , x(i),m

n ) at elimination step i, we have the re-
cursion:

K(i),m
k,n = K(i−1),mi−1

k,n exp(β(sk,m − xn,m)2),∀k, ∀n (3)

Figure 3 demonstrates increases in margin and generalization
achieved by MFE kernel over both RFE and RFE abs on the cylin-
der UC Irvine data set. In some domains, e.g. on microarray data
sets, it has been reported that linear SVMs achieve accuracy as

least as good as nonlinear, kernel-based SVMs [5]. We believe a
possible reason is that maximizing margin during feature elimina-
tion (which was not done in past work) may be especially an im-
perative in the nonlinear kernel case, if one is to avoid overfitting
in high dimensions, with few training samples. Our MFE kernel
approach may allow not only improved results for large M com-
pared with RFE (and RFE abs), but it may also allow demonstrable
gains in accuracy over linear SVMs as well, i.e. our approach may
make kernel-based SVMs more attractive for domains with large
M and few training samples. This will be explored in future work.

4. CONCLUSIONS

In this paper, we first reviewed our previous work on margin-based
feature elimination for SVMs. We then introduced several exten-
sions of this approach. One extension performs a very lightweight
SVM training that adjusts the current solution in the reduced fea-
ture space to improve the margin. The second extension addresses
the nonlinear kernel case. Here, we identified shortcomings of the
standard RFE approach and demonstrated improved margin and
accuracy achieved by a kernel version of MFE. In future work, we
will consider extensions of our feature elimination method that al-
low for slackness in the margin constraints. At the conference, we
will present full technical details for our methods and extensive
simulation results, including results for large M .
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