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ABSTRACT

This short paper concerns the task of identifying the
element of a set which is probably the most useful,
based on previous incomplete experiments on simi-
lar tasks. It is shown that this problem can be solved
effectively using a quadratic program, while a prob-
abilistic guarantee is given that such a prediction
will solve the problem on the average. We com-
ment on the relation and difference of this setting
with amongst others the structured output learning
model, transductive inference and the multi-task learn-
ing setting. Finally, a number of immediate appli-
cations are described.

Index Terms— Machine Learning, Ranking,
PAC bound.

1. INTRODUCTION

Many problems in cognitive information process-
ing can be reduced to the problem of predicting
which element in a given set will be most relevant.
For example, in statistical decision theory, the aim
is to come up with an optimal action to cope with
a given situation. An intelligent agent in this set-
ting would provide the most relevant action in a yet
unseen situation. We restrict attention to the case
where only a finite number of such actions (ele-
ments) exist, as occurring in a context of discrete
control where a plant can only choose amongst a
limited number of control actions. The notion of
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generalization - or prediction - is tackled from a
context of machine learning where one tries to come
up with a good predictor based on past observa-
tions. This paper focusses on a setting where such
past observations consist of partial information only.
More specifically, one has access only to the most
relevant element of a subset of all possible actions.

The following probabilistic model is adopted.
Consider a set S consisting ofm different elements,
representing objects as e.g. documents, antennas or
products. Let L tuples TL = {(Sl, rSl , xl)}Ll=1 be
observed, where Sl consists of nl uniformly sam-
pled elements of S, rSl ∈ Sl is the index of the
element in Sl which is found (observed) to be most
relevant, and xl denotes the remaining information
available (taken from an appropriate domain X).
We will use the index rl ∈ Sl and rSl ∈ Sl inter-
changeably, to emphasize that rl is the best one in
Sl. To make life easier, we let n1 = · · · = nL = n.
We refer to such a pair as to a task denoted as
tl = (Sl, rl, xl) in spirit of the work [1]. Now
the observed tasks TLare assumed to be sampled
i.i.d. from a universe of possible tasks with a cer-
tain probability rule Pr(·), as are the task which
will be encountered in the future.

The above question was already explored in var-
ious machine learning settings. We will comment
on the relations and (subtle) differences.

1. Structured Output Learning. The frame-
work resembles closely the setting studied in
structured output learning. Specifically, the
’argmax’ formulation, and the resulting op-
timization formulation will resemble closely
the one studied in that context, see e.g. [2]
and the recently edited book [3]. This set-
ting improves on the structured output learn-
ing setting in that we assume each task gives
only partial information about the most rele-
vant element.

2. Transductive Inference Since S is a finite
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set, the setting hints towards the transductive
learning setting, where one restricts attention
to predicting the values of a finite number
of predefined points. As such, there is no
need for building a general predictive model
which can be evaluated on any new point. If
we would restrict attention to only one sin-
gle task, this framework would be appropri-
ate. Now, we only retain the use of the device
of hypergeometric distributions which plays
a crucial role in the transductive setting, see
e.g. [4, 5, 6].

3. Selective Inference. Given a finite set S, se-
lective inference amounts to selecting an un-
labeled point which belongs most certainly to
the (true) positively (negatively) labeled set
of points. This learning scheme was conjec-
tured in [7] as being easier to learn than ei-
ther inductive or transductive learning schemes.
recently, in [8] one considers the task of find-
ing the best instances based on a bipartite
ranking. This setting is reminiscent of the
adopted setting here, except for the assump-
tion of observed binary labels.

4. Missing Values. In the analysis of missing
values, one considers the case where in each
sample some covariates are missing [9]. Specif-
ically, the above setting can be viewed from
this respective with the assumption of Miss-
ing Completely At Random (MCAR). Our
setting deviates in that the considered uni-
verse has much more structure than in the
typical cases, and in that no parametric as-
sumptions are imposed on the involved prob-
ability laws.

5. Multi-task Learning. Our setup is directly
related to the context of multitask learning
where one tries to exploit the fact that many
learning tasks in a certain context are related.
This notion of relation is then used as a reg-
ularization mechanism to fill in the details of
a learning task when one has not enough ob-
servations for this case at its disposal. A sec-
ond objective is to find a model which gen-
eralizes well towards new sample tasks, see
e.g. [1] and followup work. The difference
in our case is that one observes only a par-
tial piece of information in each task. and
that we only try to come up with the most
relevant element instead of learning the full
labeling of all elements. The terminology in
the multitask setup was used in our context.

A first application can be found in the context of
recommender systems. Here, one has access the
most relevant item bought by a customer, wile it is
in general unlikely that the decision of the customer
was preceeded by a study of the full catalogue. The
task of the recommender system is to come up with
a prediction of the globally most relevant product
for the customer, indicating the applicability of the
described learning model. Specifically, each user
is modelled as an individual task, where at each
instance, it is up to the learning system to predict
the next purchase will be. The rationale is that it
is most relevant for an advertiser or recommender
system to predict the interest of the user in order to
provide the most relevant information on products.
Here, we are ignoring the fact that the set of items
a customer did consider is probably not an inde-
pendent sample of products. Extensions where the
set Sl are non-uniform will be considered in future
work.

Secondly, in query-relevance learning - or learn-
ing to rank answers to queries on a database - one
is typically only interested in the top-ranked results.
For example, in a search on the WWW, a user does
typically only consider the first relevant ’hits’ of the
search query. In our framework, a task tl would
correspond to a query, and the bag of all results re-
turned by the search-engine based on matching cri-
teria. An application study towards this goal was
described in [13]. Only in recent literature, it be-
came apparent that one gets more efficient learn-
ing schemes when attention is restricted to the top-
ranked results. This notion is often formalized in
terms of the Discounted Cumulative Gain (DCG)
measures and others as e.g. in [14]. The present
work pushes this reasoning even further by only
considering the topranked item.

The following notational convention is used through-
out the paper. Scalars and vector are denoted using
lower case letters, capitals denote matrices. The let-
ters i, j, k, l are reserved for indices. The vector ui
of appropriate dimension is the unit coordinate vec-
tor consisting of zeros and having 1 at the i-th en-
try. This paper studies a practical algorithm based
on a SVM (Section 2), derives PAC bounds using
an elementary reduction argument (Section 3), and
discusses the results of a preliminary experiment
(Section 4).
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2. MAXIMAL MARGIN MACHINE FOR
TOPRANKING

A practical learning scheme is derived based on the
Support Vector Machine (SVM). Let for each ele-
ment i in the l-th task ϕtl,i ∈ Rdϕ denote a feature
vector capturing all relevant information which is
known for this element - one has e.g. ϕtl,i = φ(xl).
This includes for example external properties of the
object represented by this element, or the set of
closely related elements in Sl. Then given a global
function f for task t∗, one would predict the most
relevant element in S∗ as

r(S∗) = arg max
i

f (ϕt∗,i) . (1)

We consider the hypotheses f that are linear in the
feature vector, or H = {f(ϕ) = wTϕ}. At first,
we start with the case where such a function can
be assumed to capture the topranking exactly (the
realizable case).

min
w

1
2
wTw s.t.

wTϕS1,r1 − wTϕt1,i ≥ 1 ∀i ∈ Sl\r1
...
wTϕSL,rL

− wTϕtL,i ≥ 1 ∀ ∈ SL\rL.

(2)

Remark that there is no need for an intercept term
here. Let N be defined as N = Ln, then there
are exactly N − L constraints in this problem. Let
Φ ∈ RN×dϕ denote the matrix containing all pos-
sible values of ϕtl,i for all l = 1, . . . , L and i =
1, . . . , n, such that Φ(l−1)n+i = ϕtl,i. Then we
can write the learning problem (2) shortly as

min
w

1
2
wTw s.t. D(Φw) ≥ 1N−L, (3)

with the matrix D ∈ {−1, 0, 1}(N−L)×N defined
as D = [D1; . . . ;DL] and Dl

i = url
− uSl(i+1) for

all i = 1, . . . , n−1. This problem can be solved ef-
ficiently as a convex Quadratic Programming (QP)
problem. The dual expression becomes

min
α≥0N−L

1
2
αT (DKDT )α− αT 1N−L, (4)

where the kernel matrix K ∈ RN×N contains the
kernel evaluations such that Kn(l−1)+i,n(h−1)+j =
ϕTtl,iϕth,j for all l, h = 1, . . . , L and i, j = 1, . . . , n.
The prediction in t∗ can be done by evaluating

r̂(S∗) = arg max
i

Kt∗,iD
T α̂, (5)

where α̂ solves (4), Kt∗,i ∈ R1×N and
Kt∗,i;n(l−1)+j = ϕTt∗,iϕtl,j for all l = 1, . . . , L
and j = 1, . . . , n. It is interesting to note that the
design of the matrix decides on the comparisons
which have to be (can be) made. If the elements rl
and j cannot be ranked disambiguously, one may
omit the corresponding entry in D. Alternatively,
if one believes extra ordering constraints have to be
incorporated, this can be done via proper choice of
D. The agnostic case deals with the case where one
is not prepared to make the assumption that a func-
tion exist which will extract in all cases the most
relevant element. Using slack variables as in soft
margin SVMs, one can formalize the learning ob-
jective for a fixed value of γ > 0 as follows.

min
w,e

1
2
wTw + γ

L∑
l=1

el s.t.
wT (ϕS1,r1 − ϕS1,i) ≥ 1− e1 ∀i 6= r1
...
wT (ϕSL,rL

− ϕSL,i) ≥ 1− eL ∀i 6= rL

el ≥ 0 ∀l = 1, . . . , L.
(6)

and the dual problems becomes

min
α

1
2
αT (DKDT )α− αT 1N−L

s.t. 0N−L ≤ α ≤ γ1N−L. (7)

We sidestep the issue of how to choose the hyper-
parameters γ and the choice of the kernel (parame-
ters) althoug of great concern in practice.

3. PROBABILISTIC GUARANTEES

The PAC-Bayesian framework is adopted to pro-
vide a probabilistic guarantee that this mechanism
indeed fulfills the objective on the average. This is
somewhat surprising in that each ’sample task’ tl is
never required to reveal his globally most relevant
index, only the index of the most relevant entry in
the set of observations Sl. The rationale is that the
full ranking function emerges through the few or-
derings which can be extracted of the sample tasks.
To make precise statements, the following notion
of actual risk R(f) of a specific function f is used

R(f) = Pr

(
r∗ 6= arg max

i∈S
f(ϕt∗,i)

)
, (8)

where the probability concerns the choice of the
task t∗ = (S, r∗, Xt). This quantity is equiva-
lent to Pr (∃i 6= r∗ : f(ϕt∗,i) > f(ϕt∗,r∗)), or the
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probability that one can find an element besides r∗
which is deemed more relevant by f . Furthermore,
we will need the notion of risk restricted to sets
|S∗| = n, formally

Rn(f) = Pr

(
rS∗∗ 6= arg max

i∈S∗
f(ϕt∗,i)

)
, (9)

where the probability concerns the choice of the
task t∗ on the one hand, and the uniform sampled
subset S∗ with |S∗| = n on the other. Finally, the
empirical counterpart to Rn(f) becomes

RnL(f) =
1
L

L∑
l=1

I

(
rSl

l 6= arg max
i∈Sl

f(ϕtl,i)
)
,

(10)
with the indicator I(z) equal to one if statement z
holds, and zero otherwise. For later convenience,
let the term I

(
rSl

l 6= arg maxi∈Sl
f(ϕtl,i)

)
be de-

noted as the random variable Z(f ;Tl) ∈ {0, 1}.
The generalization analysis will approach the ques-
tion how muchR(f) deviates fromRnL(f) for func-
tions in f ∈ H. The following reduction provides
the crucial means for the analysis.

Lemma 1 (Reduction of Rn(f) to R(f)) For a δ >
0, one has with probaility exceeding 1 − δ that for
any f ∈ H

R(f) ≤ nSRn(f) (11)

where nS ∈ N is defined as

nS ≥ ln
(

(m− 1)2

m2 − n2

)
− ln(δ). (12)

Proof: Assume at first that an index j ∈ S exists
such that j 6= r and f(ϕt∗,j) > f(ϕt∗,r∗). The
probability that the comparison between elements
(j, r) does occur in a set S1 sampled from S equals
n(n−1)
m(m−1) , or the probability that an random subset
contains 2 of the 2 relevant elements j and r. This
follows from an application of the hypergeometric
distribution.

Pr ((j, r) 6∈ {Sl}l)
≤ (1− Pr ((j, r) ∈ S1))nS

=
(

1− n(n− 1)
m(m− 1)

)nS

≤
(
m2 − n2

(m− 1)2

)nS

.

(13)

Suppose one like to guarantee the inequality to a
level 1− δ, then(
m2 − n2

(m− 1)2

)nS

≤ δ ⇔ nS ≥ ln
(

(m− 1)2

m2 − n2

)
−ln(δ).

(14)

In conclusion, assume the learning scheme errs with
probability Rn(f) on a random subset S∗. Follow-
ing Bonferroni (or the union bound) guarantees that
the probability of erring at nS such cases is at most
nSR

n(f), proving the above statement.

�

Remark that this inequality is in general not tight
as for a specific sample one can exploit transitivity
properties (i.e. if fi ≥ fj and fj ≥ fk, then fi ≥
fk). Now, a similar argument can be used to give
a guarantee on recovering the full ranking of all m
items given Rn(f). We however restrict attention
to the case where n = 2 in order to guarantee that
every pair of elements is ranked according to f with
high probability.

Corollary 1 (Recovering the Full Ranking) Fix n =
2 and δ > 0. Let the actual ordering of the elements
of S in task T∗ be reflected as the set of couples
π∗ = {(i, j) : u(ϕt∗,i) ≥ u(ϕt∗,j)} with u re-
flecting the actual ordering. Then with probability
exceeding 1− δ

Pr
(
∃(i, j) ∈ π∗ : f(ϕt∗,i) < f(ϕt∗,j)

)
≤ n′SRn(f),

(15)
where n′S is defined as

n′S ≥ ln
(

m(m− 1)
m(m− 1)− 2

)
− ln(δ). (16)

Proof: Given a learning scheme which guaran-
tees a risk Rn(f), or which is expected as such
to recover the best element of a subset S∗ ⊂ S
with size |S∗| = 2. The question now reads how
many such sets one would need to deduce the full
ranking. Assume two different indices (i, j) ∈ π∗
exist such that f(ϕt∗,i) > f(ϕt∗,j). To deduce
such a ranking from the toplearning scheme, ele-
ment i should occur as the best element in a set
S1. As above, the hypergeometric distribution de-
scribes what the probability would be of sampling
the set S∗ = {i, j}, orPr(S∗ = {i, j}) = 2

m(m−1) .

Pr ((i, j) 6∈ {Sl}l) ≤
(
m(m− 1)− 2
m(m− 1)

)nS

.

(17)
and inverting the statement again proves the result.

�

Remark that one runs into problems when n > 2,
as one could never recover the ranking between the
two lowest ranking entries in this way. Consequently,
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the above result is in a sense the best one could
do. This is in direct contrast with the topranking
case which improves if m grows. This bound again
(even more so) ignores the transitivity properties,
and it may be clear that incorporating this property
should yields a more tight bound.

Given those results, we can proceed deriving
the PAC guarantees as desired. First we show that
the topranking function can be learned with fast
rate if each task reveals its most relevant element,
or equivalently n1 = · · · = nL = m. This result
follows completely the lines set out in the case of
the zero/one loss, using each task as a full sample.

Proposition 1 (A PAC bound for Sl = S) GivenL
tasks {Tl = (Sl, rl, xl)}Ll=1 with Sl = S. Consider
a class of hypothesis H with finite cardinality, i.e.
|H| < ∞, and say that one has always an f ∈ H
with RnL(f) = 0. Then with probability exceeding
1 − δ, the inequality Rn(f) ≤ ε is satisfied if the
number of sample tasks L exceeds

L ≥ ln(|H|)− ln(δ)
ε

(18)

The proof follows completely along the lines de-
scribed in e.g. [7, 10, 11, 5]: the number (proba-
bility mass) of events where the hypothesis fails to
reproduce the most relevant element cannot be too
big. Indeed otherwise, such an event would turn up
almost inevitably among the L samples with prob-
ability 1 − (1 − ε)L ≥ 1 − exp(−Lε). The ex-
tension to the infinite case where |H| = ∞ can be
done using the device of VC dimensions as in one
of the previous reference works. Lemma 1 results
immediately results into the following generaliza-
tion bound, much in the same vain as Corollary 1.

Lemma 2 (A PAC bound for |Sl| = n < m) Given
L tasks {Tl = (Sl, rl, xl)}Ll=1 with Sl = S. Con-
sider a class of hypothesis H with finite cardinal-
ity, i.e. |H| < ∞, and say that one has always
an f ∈ H with RnL(f) = 0. Then with probabil-
ity exceeding 1 − δ, the difference R(f) ≤ ε if the
number of sample tasks L exceeds

L ≥ (ln(|H|)− ln(δ/2)) ln(δ/2)
ε ln
(
1− n

m

) (19)

Proof: The proof consists of two main steps. At
first, note that one has that for f ∈ H achieving
zero empirical risk RnL(f) = 0 (such a function
exists always due to the realizable assumption) that
for any given ε > 0, one has

Pr (∀f ∈ H : Rn(f) ≥ ε) ≤ |H| exp(−Lε)
(20)

using Zl(f) = I
(
rSi = arg mini∈Sl

f(ϕtl,i))
)
∈

{0, 1} as the events of interest. In the second step,
the relation betweenRn(f) andR(f) is established.
It will be argued that the guarantee onRn(f) has to
hold uniformly over a (small) number of samples
over S∗ ⊂ S with |S∗| = n. Indeed, if the perfor-
mance is guaranteed for enough sets, the function
f will prefer r over any other i at least once. A
classical union bound argument for enforcing this,
gives

Pr

(
∀f ∈ H : Rn(f) ≥ ε

nS

)
≤ |H| exp

(
−L ε

nS

)
, (21)

or ε < ln(|H|)−ln(δ/2)

n−1
S L

as desired.

�

If n = m, the bound reduces to the statement of
Proposition 2. If n < m, one needs slightly more
samplesL to learn effectively, governed by the frac-
tion (1−n/m). This one does not need for n grow-
ing to m to have convergence, unlike one could ex-
pect. We now focus attention to infinite function
sets using the practical device of Rademacher vari-
ables. Let the relevant Rademacher complexity ex-
pression be defined as

RL(H) = E

[
sup
f∈H

1
L

L∑
l=1

σlZl(f)
∣∣∣ T1, . . . , Tn

]
(22)

This measure characterizes how flexible the hypoth-
esis set is to either reconstruct or err in the toprank-
ing task as controlled by a random guidelines. It
gives a datadependent measure of richness of the
hypothesis set H. Alternatively, one could think of
this quantity as measuring how likely one is to over-
fit on the data. Many structural results and deriva-
tions of this quantity for different learning schemes
were described in [12] and citations. This measure
can then be used to characterize the generalization
error, completely along the lines of the Rademacher
results for the binary classification case.This result
however slightly differentiates with the classical re-
sult described in [12] by considering the termsR(f),
Rn(f) as well as RnL(f).

Corollary 2 (Rademacher bound) With probabil-
ity exceeding 1 − δ for fixed δ > 0, one has for all
f ∈ H that

R(f) ≤ nS

(
RnL(f) +RL(H) +

√
ln(1/δ)
L

)
.
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The proof again follows from Lemma 1 stating that
R(f) ≤ nSR

n(f). Application on the standard
Rademacher bound gives the result.

4. ILLUSTRATION

We conduct a Monte-Carlo experiment to illustrate
the practical use of the method. The following setup
was adopted. An artificial warehouse with m =
100 products is generated. Each customer was pre-
sented with n products, where in three different ex-
periments n = 2, 10, 50. Furthermore, each cus-
tomer is characterized with d = 10 different fea-
tures - in this artificial case sampled from a distri-
bution (which consists of a sum of Gaussians). The
dataset is constructed that a function exists which
puts the actual most relevant element on top - i.e.
there is a f ∈ H such that R(f) = 0. A model was
learned as described in (2), and the performance of
the learned model ŵ was assessed by trying to pre-
dict the most relevant product for 10000 new cus-
tomers. Figure 1 indicates the performances as a
function of the number of observed customers and
of the size n of the given subsets.
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Fig. 1. Performances of the artificial recommender sys-
tem for increasing number of observed tasks L, and for
different sizes n of the considered subset m. Remark
that the difference in performance in terms of m is mul-
tiplicative - giving evidence for the reduction argument.

5. DISCUSSION

This short work discussed the task of predicting
the best element in a set, termed ’topranking’. Di-
rect relationships with standard learning schemes
as structured output learning, transductive and se-
lective inference and multiple tasks learning were
discussed, and a straightforward modification of the
SVM for this setting was derived. The main con-
tribution of this work is a simple reduction argu-
ment, indicating how one can cope with partial ob-
servations in order to learn a global scheme. Dif-
ferent application settings are described indicating
the usefulness of the learning scheme. A impera-
tive requirement is to conduct practical experiments

to validate the proposed learning algorithm. indeed
gives a formalization of what one would understand
as ’cognitive intelligence’ in a number of cases.
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