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ABSTRACT

Recently, a generalization of the magnitude squared coher-
ence (MSC) spectrum for more than two random processes
has been proposed. The generalized MSC (GMSC) spectrum
definition, which is based on the largest eigenvalue of a matrix
containing all the pairwise complex coherence spectra, pro-
vides a frequency-dependent measure of the linear relation-
ship among several stationary random processes. Moreover,
it can be easily estimated by solving a generalized eigenvalue
problem. In this paper we apply the GMSC spectrum for de-
tecting the presence of a common signal from a set of linearly
distorted and noisy observations. Specifically, the new statis-
tic for the multiple-channel detection problem is the integral
of the square root of the GMSC, which can be estimated as
the sum of theP largest generalized canonical correlations
(typically P = 1 is enough in practice). Unlike previous ap-
proaches, the new statistic implicitly takes into account the
spectral characteristics of the signal to be detected (e.g., its
bandwidth). Finally, the performance of the proposed detec-
tor is compared in terms of its receiver operating characteris-
tic (ROC) curve with the generalized coherence (GC) show-
ing a clear improvement in most scenarios.

Index Terms— Generalized magnitude squared coherence
(GMSC) spectrum, canonical correlation analysis (CCA), mul-
tiple-channel signal detection.

1. INTRODUCTION

The magnitude squared coherence spectrum (MSC) provides
a frequency-dependent measure of the statistical linear re-
lationship between two stationary random processes, which
can also be interpreted as a correlation coefficient in the fre-
quency domain [1]. For Gaussian processes it also provides
a measure of the mutual information [2]. Despite its useful-
ness, when more than two signals are involved a commonly
accepted generalization of the MSC does not exist yet and
measuring all the pairwise MSC spectra is not practical. For
instance, given a set of eight random processes there would be
twenty-eight different MSC spectra and, obviously, it would
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be difficult to extract useful information for detection andes-
timation from such a high number of MSC spectra.

In an attempt to fill this gap, we have recently presented
a generalization of the MSC for several stationary processes
[3]. The generalized MSC (GMSC) is defined as a function
of the largest eigenvalue of a matrix containing all the pair-
wise complex coherence spectra and it preserves most of the
MSC properties. Moreover, in [3] we have also presented two
different techniques for the estimation of the GMSC spec-
trum; the first one, which can be viewed as an extension of
the techniques proposed in [4, 5], is based on a filterbank in-
terpretation of the cross-spectrum. The second one is based
on a generalization of canonical correlation analysis (CCA)
to several data sets [6], and also extends a recently proposed
MSC estimator [7].

In this paper, we derive a new statistic from the GMSC to
detect the presence of a common signal from a set of observa-
tions distorted by unknown frequency-selective channels and
corrupted by noise. This problem appears in many applica-
tions, such as sensor networks [8], cooperative networks with
multiple relays using the amplify-and-forward (AF) scheme
[9, 10], or radar detection with multiple antennas. In addi-
tion to solving the detection problem, the proposed statistic
provides valuable information for cognitive processing. For
instance, the frequencies with higher GMSC (corresponding
to those with higher signal-to-noise ratio) would allow us to
adapt the spectrum of the transmitted signal in cognitive radar
[11].

The proposed detection statistic to solve this multi-channel
detection problem is the integral of the square root of the
GMSC spectrum. We show in the paper that it can be esti-
mated as the sum of theP largest eigenvalues of a generalized
canonical correlation analysis (CCA) problem. In practice,
using only the largest generalized correlation (i.e.,P = 1)
provides good results and simplifies the detector. The pro-
posed statistic is compared by means of simulations with the
generalized coherence (GC) detector proposed by Cochran
[12], which is a frequency-independent measure. It is shown
that the new detector outperforms the GC in all the considered
scenarios.
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2. THE GMSC SPECTRUM

In this section we present a recently proposed generalization
of the magnitude squared coherence spectrum (MSC) for
M ≥ 2 signals [3]. Let us considerM zero-mean stationary
complex time seriesx1[n], . . . , xM [n]; and define the com-
plex coherence spectrum [1] between thei-th andj-th signals
as

Cxixj
(ω) =

Sxixj
(ω)

√
Sxixi

(ω)Sxjxj
(ω)

, ∀i, j = 1, . . . , M,

(1)
whereSxixj

(ω) is the cross-spectrum andSxixi
(ω) is the

power spectral density of thei-th signal.
In the case ofM = 2 time series, the MSC is defined as

γ2(ω) = |Cx1x2
(ω)|2 [1]. In order to extend this idea to the

general case ofM ≥ 2 stationary random processes, we de-
fine the matrixΣx(ω) ∈ CM×M containing all the pairwise
complex coherence spectra as

Σx(ω) =






Cx1x1
(ω) . . . Cx1xM

(ω)
...

. . .
...

CxM x1
(ω) . . . CxM xM

(ω)




 ,

which can be rewritten as

Σx(ω) = D−1/2
x (ω)Sx(ω)D−1/2

x (ω), (2)

where

Sx(ω) =






Sx1x1
(ω) . . . Sx1xM

(ω)
...

. . .
...

SxM x1
(ω) . . . SxM xM

(ω)




 ,

andDx(ω) is a diagonal matrix whose entries are[Dx(ω)]i,i =
Sxixi

(ω).

Definition 1: The generalized magnitude squared coherence
spectrum (GMSC) is defined asγ2(ω), where

γ(ω) =
1

M − 1
(λMAX (Σx(ω)) − 1) ,

and λMAX(Σx(ω)) is the largest eigenvalue of the matrix
Σx(ω).

From (2), it is easy to prove thatλMAX(Σx(ω)) is also
the largest eigenvalue of the following generalized eigenvalue
(GEV) problem

Sx(ω)ṽ(ω) = λ(ω)Dx(ω)ṽ(ω), (3)

whereṽ(ω) = D
−1/2
x (ω)v(ω) is the generalized eigenvector

andv(ω) is the eigenvector ofΣx(ω).

2.1. GMSC spectrum properties

Property 1: The GMSC spectrum is bounded between0 and
1, i.e.,

0 ≤ γ2(ω) ≤ 1.

Property 2: In the case ofM = 2 signals, the GMSC spec-
trum reduces to the standard MSC spectrum definition.

Property 3: The GMSC spectrum is maximum at a given fre-
quency when theM time series are perfectly pairwise corre-
lated at that frequency, and minimum when all the signals are
uncorrelated.

Proof. The proof of these properties can be found in [3].

Interestingly, thei-th coefficientvi(ω) of the eigenvector
v(ω) associated to the largest eigenvalue ofΣx(ω) measures
the contribution of thei-th signal to the GMSC at frequency
ω. For instance, if there areM ′ (M ≥ M ′ > 1) signals per-
fectly pairwise correlated at frequencyω and the remaining
M − M ′ signals are uncorrelated, then the squared modulus
of the components of the eigenvector will be|vi(ω)|2 = 1/M ′

for the perfectly correlated signals and 0 for the uncorrelated
ones. Let us clarify this with a toy example. ConsiderM = 3
random processes, withM ′ = 2 signals perfectly correlated
at frequencyω and the third one uncorrelated with them. For
this example the matrixΣx(ω) is

Σx(ω) =





1 1 0
1 1 0
0 0 1



 ,

the GMSC at frequencyω becomesγ2(ω) = 1/4 and the

corresponding eigenvector isv(ω) =
[
1/

√
2 1/

√
2 0

]T
,

which clearly indicates that the third random process does not
contribute to the GMSC spectrum, whereas the first two pro-
cesses are perfectly correlated.

Finally, we prove a property of the GMSC spectrum that
will be useful to apply it as a new statistic for the multiple-
channel detection problem.

Property 4: Consider the following signals

yi[n] = xi[n] ∗ gi[n], ∀i = 1, . . . , M,

wheregi[n] denotes impulse response of some stable filters
with frequency responseGi(ω) = |Gi(ω)|ejφi(ω), satisfying
|Gi(ω)| 6= 0, ∀ω. Then, the GMSC spectra of the signals
xi[n] andyi[n] are identical, i.e.

γ2
x(ω) = γ2

y(ω),

whereγ2
x(ω) andγ2

y(ω) are respectively the GMSC spectrum
of the original signalsxi[n] and the filtered onesyi[n].

Proof. The cross-spectrum between thei-th and thej−th fil-
tered signals is given by

Syiyj
(ω) = Gi(ω)G∗

j (ω)Sxixj
(ω), (4)

therefore, the complex coherence spectrum can be written as

Cyiyj
(ω) =

Gi(ω)G∗
j (ω)Sxixj

(ω)
√
|Gi(ω)|2Sxixi

(ω)|Gj(ω)|2Sxjxj
(ω)

=

ejφi(ω)e−jφj(ω)Cxixj
(ω), ∀i, j = 1, . . . , M.
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Hence,Σy(ω) can be rewritten as follows

Σy(ω) = Q(ω)Σx(ω)QH(ω), (5)

whereQ(ω) = diag(ejφ1(ω), . . . , ejφM (ω)) is a unitary ma-
trix. Thus, the eigenvalue problem for the filtered signals is

Σy(ω)vy(ω) = λy(ω)vy(ω),

and taking (5) into account we can rewrite it as

Σx(ω)QH(ω)vy(ω) = λy(ω)QH(ω)vy(ω),

which implies thatvx(ω) = QH(ω)vy(ω) and λy(ω) =
λx(ω). This means that the eigenvalues are unaffected by an
arbitrary linear filtering of the original signals as long asthe
filters are invertible. On the other hand, the eigenvectors are
affected by a rotation. Since the GMSC only depends on the
largest eigenvalue, and not on the eigenvectors, the GMSC
spectra of the original and the filtered signals are identical,
which concludes the proof.

3. ESTIMATION OF THE GMSC SPECTRUM

In [3] we have presented and compared two different tech-
niques to estimate the GMSC spectrum from finite registers.
In particular, we have considered a filter-bank approach and
a new technique based on the maximum variance canonical
correlation analysis (CCA) technique [6]. Here, we summa-
rize the CCA-based technique, which provides the best per-
formance and thus will be applied to the multi-channel signal
detection problem in the next section.

3.1. Estimation of the GMSC spectrum based on CCA

Let us start by considering the theoretical cross-spectrumbe-
tween thei-th andj-th signals, which is given by

Sxixj
(ω) = fH(ω)Rxixj

f(ω),

whereRxixj
is the infinite Toeplitz cross-correlation matrix

andf(ω) is the Fourier vector of infinite length at frequency
ω. Similarly, the theoretical matricesSx(ω) andDx(ω) can
be written as

Sx(ω) = FH(ω)

R

︷ ︸︸ ︷





Rx1x1
. . . Rx1xM

...
. . .

...
RxMx1

. . . RxM xM




F(ω), (6)

Dx(ω) = FH(ω)






Rx1x1
. . . 0

...
. . .

...
0 . . . RxMxM






︸ ︷︷ ︸

D

F(ω), (7)

where

F(ω) =






f(ω) . . . 0
...

. . .
...

0 . . . f(ω)




 .

Taking now into account that the matricesRxixj
are diago-

nalized by the Fourier vectors, the eigenvalue (EV) problem
Σx(ω)v(ω) = λ(ω)v(ω) can be rewritten as

D−1/2RD−1/2w(ω) = λ(ω)w(ω), (8)

whereR andD have been defined in (6) and (7), respectively,
andw(ω) = F(ω)v(ω) is the following vector

w(ω) =
[
wT

1 (ω), . . . ,wT
M (ω)

]T
,

with wk(ω) = vk(ω)f(ω).
The EV problem in (8) is the classical formulation of the

maximum variance canonical correlation analysis (CCA) tech-
nique for several data sets [6]. Analogously to (3), the CCA
problem can be rewritten as [13]

Rw̃(ω) = λ(ω)Dw̃(ω),

wherew̃(ω) = D−1/2w(ω).
From (8) it is clear that, in the asymptotic case of infi-

nite size cross-correlation matrices, the GMSC spectrum can
be directly obtained from the eigenvalues ofD−1/2RD−1/2.
However, in practice we work with finite size (L × L) cross-
correlation matrices that must also be estimated from a lim-
ited number of observations. This provokes a difference be-
tween the theoretical eigenvectorsw(ω) = F(ω)v(ω) and

the actual (estimated) oneŝw(p) =
[

ŵ
(p)T
1 , . . . , ŵ

(p)T
M

]T

,

which are obtained by solving

D̂−1/2R̂D̂−1/2ŵ(p) = λ̂(p)ŵ(p), (9)

whereD̂ ∈ CLM×LM andR̂ ∈ CLM×LM are the estimated
finite size versions ofD andR.

In order to obtain an accurate GMSC estimate from the
solutions of (9), we propose to use a reduced-rank represen-
tation of the matrixD̂−1/2R̂D̂−1/2, analogously to the tech-
nique presented in [7] for the estimation of the conventional
MSC. Specifically, the proposed GMSC estimate is obtained
as a weighted sum of the magnitude squared Fourier trans-
form of theP principal canonical vectors as follows

γ̂(ω) =
1

M − 1

P∑

p=1

M∑

k=1

(λ̂(p) − 1)
∣
∣
∣f

H(ω)ŵ
(p)
k

∣
∣
∣

2

,

whereP ≤ L is the selected rank, and̂λ(p), p = 1, . . . , P ,
are theP largest eigenvalues of (9). Finally, it is easy to prove
that in the asymptotic case whereL, P → ∞, the proposed
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estimator becomes

γ̂(ω) =
1

M − 1

∫

ω′

M∑

k=1

(λ(ω′) − 1)
∣
∣fH(ω)f(ω′)vk(ω′)

∣
∣
2
dω′

=
1

M − 1

∫

ω′

(λ(ω′) − 1) δ(ω − ω′)dω′ = γ(ω),

which coincides with the GMSC definition.

4. MULTI-CHANNEL SIGNAL DETECTION

In this section we address the problem of deciding the pres-
ence of a common signal distorted byM different unknown
channels and acquired by noisy sensors (see figure 1). Math-
ematically, it can be formulated as the problem of deciding
between the hypothesesH0 andH1, which are given by

H1 : xk[n] = hk[n] ∗ s[n] + wk[n], k = 1, . . . , M,

H0 : xk[n] = wk[n], k = 1, . . . , M,

wheres[n] is an unknown signal,hk[n] is the unknown chan-
nel impulse response between the source and thek-th sensor
andwk[n] is the spatially uncorrelated noise at thek-th sensor.
To highlight the generality of the above model, notice that we
make no assumptions about the signal, the channels, nor the
noise spectra.

The model considered in this section can be found in a
large variety of applications. For instance in a sensor network
[8] where the sensors measure a common signal generated
by a physical phenomenon, but each sensor is distorted by a
different frequency-selective and noisy channel. These sig-
nals are acquired and transmitted to a fusion center which
has to decide whether the observations are generated by a
common physical phenomenon or not. Other possible sce-
narios are cooperative networks with multiple relays using
the amplify-and-forward (AF) scheme [9, 10], or radar de-
tection with more than one receiving antenna. Let us remark
finally that the frequency-dependent information providedby
the GMSC could be used by a transmitter (for instance in
radar applications) to adapt the spectrum of the transmitted
signal in a cognitive manner, following the ideas proposed in
[11].

4.1. Generalized coherence

In this subsection we present a brief review of the generalized
coherence (GC). The GC is a related measure of linear depen-
dency among several time series proposed in [12] which will
be used for comparison purposes.

Definition 2: The generalized coherence (GC) is defined as

ζ2 = 1 − det(Ψx)

rx1x1
. . . rxM xM

,

Physical
Phenomenon

(s[n])

Sensor 1

Sensor 2

...

Sensor M

h1[n]

h2[n]

hM [n]

Fusion
Center

Wired o Wireless
Connection

Fig. 1. Schematic diagram of a sensor network.

where

Ψx =






rx1x1
. . . rx1xM

...
. . .

...
rxM x1

. . . rxM xM




 ,

and the cross-correlation coefficients are defined as

rxixj
= E[xi[n]x∗

j [n]], ∀i, j = 1, . . . , M,

whereE[·] denotes the mathematical expectation.

It is clear thatΨx can be seen as a frequency-independent
version ofΣx(ω). However, the GC uses the determinant
of Ψx whereas we use the largest eigenvalue ofΣx(ω). In
practice, the GC is estimated from a limited number of obser-
vations of the signals,N , and the detection criterion is

ζ̂2
H1

≷
H0

ν,

whereν is a properly selected threshold.

4.2. The GMSC spectrum as a multi-channel signal de-
tector

We propose to use the integral ofγ(ω) (the squared root of
the GMSC spectrum) as a detection statistic as follows

Γ =
1

2π

∫ 2π

0

γ(ω)dω
H1

≷
H0

ν,

whereν is also a threshold that must be selected according to
the Bayes or the Neyman-Pearson criteria.

When γ(ω) is estimated using the reduced-rank CCA-
based estimate described in Section 3, the proposed detection
statistic is given by

Γ̂ =
1

2π

∫ 2π

0

γ̂(ω)dω =

=
1

2π

1

M − 1

P∑

p=1

M∑

k=1

(λ̂(p) − 1)

∫ 2π

0

∣
∣
∣f

H(ω)ŵ
(p)
k

∣
∣
∣

2

dω,
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Fig. 2. ROC for the first example,M = 3, N = 256, L = 20.

which, by applying the Parseval’s theorem, reduces to

Γ̂ =
1

M − 1

P∑

p=1

(λ̂(p) − 1)
M∑

k=1

∥
∥
∥ŵ

(p)
k

∥
∥
∥

2

=

=
1

M − 1

P∑

p=1

(

λ̂(p) − 1
)

,

where we have taken into account that the eigenvectorsŵ(p) =
[

ŵ
(p)T
1 , . . . , ŵ

(p)T
M

]T

have unit norm. Therefore, when the

detection statistic is obtained from the reduced-rank GMSC
estimate the integration simplifies to the sum of theP largest
eigenvalues of the CCA problem (8).

An important aspect of the GMSC spectrum estimate, and
consequently of the proposed detector, is how to select the
model order (i.e.,P ). This is an old and complex problem
that we will not treat here in detail. As we will show in
the simulations section, for this particular application using
P = 1 is enough to get good results. Moreover, this choice
also notably reduces the computational cost of the test, since
only the largest eigenvalue of the matrixD̂−1/2R̂D̂−1/2 must
be obtained. The interpretation of this choice of the order is
that from a practical standpoint the detection statistic can be
formed using uniquely the most correlated frequency of the
GMSC spectrum.

5. SIMULATION RESULTS

In this section we evaluate the performance of the proposed
detector by means of some numerical examples. Specifically,
the performance of the proposed technique is compared with
the generalized coherence by means of the receiver operating
characteristic (ROC) curve. In all the examples the signals[n]
is a narrowband zero-mean real Gaussian process with unit
power and passband between0.1 and0.15.
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Fig. 3. ROC for the second example,M = 5, N = 256,
L = 20.

In the first two examples we assume perfect channels be-
tween the source and each sensor (i.e.,hk[n] = δ[n], ∀k),
we acquireN = 256 samples of each signal and use a time
embedding ofL = 20 to estimate the cross-correlation matri-
ces. We compare the ROC of the GMSC-based detector using
P = 1 andP = 2, and that of the GC detector. Figures 2
and 3 show the obtained results when there areM = 3 and
M = 5 sensors, respectively: it can be seen that the proposed
detector outperforms the GC-based detector in both scenar-
ios. From these figures we also see that the performance of
the proposed detector withP = 1 andP = 2 is very similar.

In the third and fourth examples we have considered nor-
malized finite impulse response (FIR) channels withT = 10
taps, where each tap is an independent random variable gen-
erated according to

hk[n] ∼ N (0, 1/T ), n = 0, . . . , T − 1.

We also use a time embedding ofL = 20 to estimate the
cross-correlation matrices in both examples. Figure 4 com-
pares the ROCs for the different detectors when there are
M = 3 sensors andN = 256 samples are acquired at each
sensor output. Finally, Fig.5 shows the results forM = 5
sensors andN = 128 samples. Again, we can conclude that
when frequency-selective channels are considered the pro-
posed detector also outperforms the GC detector.

6. CONCLUSIONS

In this paper we have proposed a new statistic to detect the
presence of a common signal distorted by a set of unknown
frequency-selective channels and corrupted by noise. Specifi-
cally, the new detector is the integral of the square root of the
generalized magnitude squared coherence (GMSC) spectrum,
which has been recently proposed as a frequency-dependent
measure of the statistical linear relationship between more
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Fig. 4. ROC for the third example,M = 3, N = 256, L =
20, T = 10.

than two stationary random processes. There is a close re-
lationship between the GMSC spectrum and canonical corre-
lation analysis (CCA): this can be exploited to develop accu-
rate reduced-rank estimators of the GMSC by solving a CCA
problem. We have also shown that this relationship allows us
to rewrite the integral in the test statistic as a summation of the
P largest eigenvalues of the corresponding CCA problem. In-
terestingly, good results are obtained by using only the largest
eigenvalue, (i.e.P = 1), thus avoiding the order selection
problem. Finally, the performance of the GMSC-based detec-
tor is compared with the generalized coherence by means of
computer simulations showing a clear improvement in most
of the situations.
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