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ABSTRACT be difficult to extract useful information for detection agst

Recently, a generalization of the magnitude squared cohefimation from such a high number of MSC spectra.

EHCZ(MSC) spect(;umhfor more l';hag two random processes In an attempt to fill this gap, we have recently presented
as been proposed. The generalize MS.C (GMSC) SF_"ac'[ruépgeneralization of the MSC for several stationary processe
definition, which is based on the largest eigenvalue of aimatr 3]. The generalized MSC (GMSC) is defined as a function
c%nta|n|rf'1g all the p:wwsi complex cohefreﬂcispectra:, Pt the largest eigenvalue of a matrix containing all the pair
vides a frequency-dependent measure of the linear relatioq;;cq complex coherence spectra and it preserves most of the

.Sh'p among _Se"e”?" stationary ra_ndom Processes. MoreOVWISC properties. Moreover, inl[3] we have also presented two
it can be easily estimated by solving a generalized eigasval different techniques for the estimation of the GMSC spec-

pro*?'em- In this paper we apply the. GMSC spectrum for defrum; the first one, which can be viewed as an extension of
tgctlng the presence ofa common S|gngl_from aset of !lnear%e techniques proposed I [4, 5], is based on a filterbank in-
d_|storted and noisy observations. _Specmcally, _the ngmta terpretation of the cross—spéctrum. The second one is based
tic for the multiple-channel detection problem is the inidg ;' generalization of canonical correlation analysis (FCA

Og the squ?rier;olt of the GMSCIZ Wz'Ch can bel est|m|atgd several data sets|[6], and also extends a recently prdpose
the sum of t argest generalized canonical correlationsy ;g estimator 7).

(typically P = 1 is enough in practice). Unlike previous ap-

proaches, the new statistic implicitly takes into accounmet t In this paper, we derive a new statistic from the GMSC to
spectral characteristics of the signal to be detected, (#sg. detect the presence of a common signal from a set of observa-
bandwidth). Finally, the performance of the proposed deteaions distorted by unknown frequency-selective channets a
tor is compared in terms of its receiver operating charégster corrupted by noise. This problem appears in many applica-
tic (ROC) curve with the generalized coherence (GC) showtions, such as sensor networks [8], cooperative networks wi
ing a clear improvement in most scenarios. multiple relays using the amplify-and-forward (AF) scheme

Index Terms— Generalized magnitude squared coherend®: [10], or radar detection with multiple antennas. In addi-

(GMSC) spectrum, canonical correlation analysis (CCA)I,-mu“O” to solving the detection problem, the proposed statist
tiple-channel signal detection. provides valuable information for cognitive processingr F

instance, the frequencies with higher GMSC (corresponding
to those with higher signal-to-noise ratio) would allow os t

1. INTRODUCTION adapt the spectrum of the transmitted signal in cognitidara

The magnitude squared coherence spectrum (MSC) providl:%l]'

a frequency-dependent measure of the statistical linear re  The proposed detection statistic to solve this multi-clenn
lationship between two stationary random processes, Whicfletection problem is the integral of the square root of the
can also be interpreted as a correlation coefficient in the fr gpmsc spectrum. We show in the paper that it can be esti-
quency domain_[1]. For Gaussian processes it also providgfated as the sum of the largest eigenvalues of a generalized
a measure of the mutual informatiad [2]. Despite its usefulzgnonical correlation analysis (CCA) problem. In practice
ness, when more than two signals are involved a commonIMSing only the largest generalized correlation (i.= 1)
accepted generalization of the MSC does not exist yet angrovides good results and simplifies the detector. The pro-
measuring all the pairwise MSC spectra is not practical. Foposed statistic is compared by means of simulations with the
instance, given a set of eight random processes there weuld generalized coherence (GC) detector proposed by Cochran
twenty-eight different MSC spectra and, obviously, it wibul [12], which is a frequency-independent measure. It is shown

This work was supported by the Spanish Government, MEC, undethat the new detector outperforms the GC in all the consttiere
project TEC2007-68020-C04-02/TCM and FPU grant AP2006529 scenarios.
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2. THE GMSC SPECTRUM Property 2: In the case of\/ = 2 signals, the GMSC spec-
trum reduces to the standard MSC spectrum definition.

In this section we present a recently proposed generalizati Property 3: The GMSC spectrum is maximum at a given fre-
of the magn:tuqe squared cor_\derence spectrum (MSC) fcHuency when thé/ time series are perfectly pairwise corre-
M > 2 signals[[3]. Let us considey/ zero-mean stationary |5t at that frequency, and minimum when all the signals are

complex time series1[n],...,zpm([n]; a_nd defir_1e thg coM- ncorrelated.

plex coherence spectrum [1] between itttk andj-th signals

as Proof. The proof of these properties can be found_in [3[J
Core, (W) = Sasz; (W) L Yij=1,..., M, Interestingly, the-th coefficientv; (w) of the eigenvector

/S22 (W) Sz, 2, (W) v(w) associated to the largest eigenvaluélfiw) measures
(1)  the contribution of the-th signal to the GMSC at frequency
where S, (w) is the cross-spectrum antl, ., (w) is the . For instance, if there ar&/’ (M > M’ > 1) signals per-
power spectral density of theth signal. fectly pairwise correlated at frequenecyand the remaining
In the case of\/ = 2 time series, the MSC is defined as A/ — M’ signals are uncorrelated, then the squared modulus
Y} (w) = |Cayas(w)[? []. In order to extend this idea to the of the components of the eigenvector will fpg(w)|> = 1/M’
general case of/ > 2 stationary random processes, we de-for the perfectly correlated signals and 0 for the uncoteela
fine the matrix®, (w) € CM*M containing all the pairwise ones. Let us clarify this with a toy example. Considér= 3
complex coherence spectra as random processes, withl’ = 2 signals perfectly correlated
Covon () c (@) at frequencyv and the third one uncorrelated with them. For
R o TmrM this example the matri, (w) is
¥o(w) = )

1 1 0
C"L‘Z\/I"L‘l (w) A CJCJ\/IJCJ\/I (W) 293(0)) — 1 1 0
which can be rewritten as 0 0 1

Y. (w) = D;Y2(w)S, (w)D; Y2 (w), (2) the GMSC at frequency becomesy?(w) = 1/4 and the
corresponding eigenvectorigw) = [1/v2 1/v2 O}T,
which clearly indicates that the third random process doés n
Serer (W) oo Seiay (W) contribute to the GMSC spectrum, whereas the first two pro-
S.(w) = : : cesses are perfectly correlated.
S (@) et Sprren (@) Finally, we prove a property of the GMSC spectrum that
M MM will be useful to apply it as a new statistic for the multiple-
andD, (w) is a diagonal matrix whose entries ¥, (w)];; = channel detection problem.

Spiz (W) Property 4: Consider the following signals
Definition 1: The generalized magnitude squared coherence
spectrum (GMSC) is defined a$(w), where

1 whereg;[n] denotes impulse response of some stable filters
71 (Avax (Bz(w)) — 1), with frequency respong@; (w) = |G;(w)|e’? (), satisfying

|Gi(w)| # 0, Yw. Then, the GMSC spectra of the signals

and A\ ax (X, (w)) is the largest eigenvalue of the matrix g, [n] andy;[n] are identical, i.e.
3, (w). 20N 2

From [2), it is easy to prove thaty 4 x (X, (w)) is also Vo) =7 (@),
the largest eigenvalue of the following generalized eigry ~ where+2(w) and~; (w) are respectively the GMSC spectrum
(GEV) problem of the original signalsc;[»] and the filtered oneg;[n].

where

yi[n] = xi[n] * gi[n], Vi=1,..., M,

Y(w) =

S:(w)V(w) = AMw)Dy (w)v(w), (3) Proof. The cross-spectrum between thh and thej—th fil-

12 _ ) ) tered signals is given by
wherev(w) = D, ' “(w)v(w) is the generalized eigenvector .
andv(w) is the eigenvector aE,, (w). Sy, (W) = Gi(w)G5 (W) Sz, (W), (4)

therefore, the complex coherence spectrum can be written as

_ Gi(w) G (@) Sz, () _
VIGi(W)PSe.0, (WG (W) Sz, (W)

0< 72(w) <1 ej%(w)e*jcbj(w)cwﬂj (w), Vi,j=1,..., M.

2.1. GMSC spectrum properties

Property 1: The GMSC spectrum is bounded betweemd Cyiy; (W)
1,i.e.,
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Hence X, (w) can be rewritten as follows where

¥y(w) = Q(W)Ew(W)QH(W)a (5) F(w) =

whereQ(w) = diag(e’?*(), ... /%M ()) is a unitary ma- 0 ... fw)

trix. Thus, the eigenvalue problem for the filtered signals i Taking now into account that the matrichs, . are diago-

B nalized by the Fourier vectors, the eigenvalue (EV) problem
By (W)vy (W) = Ay (W) vy (@), 3. (w)v(w) = Aw)v(w) can be rewritten as

and taking[(b) into account we can rewrite it as D_I/QRD_I/QW(M) — Aw)w(w), )

H _ H
2 (@W)QT(W)vy(w) = Ay (0)QT(W)vy (W), whereR andD have been defined ifl(6) arid (7), respectively,

which implies thatv, (w) = Q (w)v,(w) and A, (w) = andw(w) = F(w)v(w) is the following vector
Az (w). This means that the eigenvalues are unaffected by an . . T
arbitrary linear filtering of the original signals as longthe w(w) = [W1 (W), Wiy (W)] )

filters are invertible. On the other hand, the eigenvectms a

affected by a rotation. Since the GMSC only depends on th&ith wi(w) = v (w)f(w).

largest eigenvalue, and not on the eigenvectors, the GMSC The EV problem in[(B) is the classical formulation of the

spectra of the original and the filtered signals are idehticamaximum variance canonical correlation analysis (CCA)tec

which concludes the proof. 0 nique for several data sefs [6]. Analogously[ib (3), the CCA
problem can be rewritten as [13]

3. ESTIMATION OF THE GMSC SPECTRUM R (w) = A(w)DW(w),

Iq [3] we haye presented and compared two fjifferent_tecr\hherew(m =D 2w(w).

niques to estimate the GMSC spectrgm from finite registers. From [B) it is clear that, in the asymptotic case of infi-
In particular, we have considered a filter-bank approach angle gj;e cross-correlation matrices, the GMSC spectrum ca
a new tgchnique k_Jased on the maximum variance canonicgl, directly obtained from the eigenvalueddf 1/2RD /2.
c_orrelaﬂon analysis (CCA)_technqu_e [6]. I—!ere, WE SUMMayqvever, in practice we work with finite sizé. (x L) cross-
rize the CCA-based technique, which provides the best pef, ro|ation matrices that must also be estimated from a lim-

Lormar_wce andbfhus.wilrI} be applied to the multi-channel signaje 4 nymper of observations. This provokes a difference be-
etection problem in the next section. tween the theoretical eigenvectorgw) = F(w)v(w) and

T
the actual (estimated) ones® = |w{P” .. w®7T|
which are obtained by solving
Let us start by considering the theoretical cross-spechem

3.1. Estimation of the GMSC spectrum based on CCA

tween the-th andj-th signals, which is given by D Y2RD V2w = AP (P 9)
Spia; () = F7 (W) Ry0, f (W), whereD € CEM*LM gndR ¢ CEM*IM gre the estimated
finite size versions oD andR.
whereR;,;; is the infinite Toeplitz cross-correlation matrix  |n order to obtain an accurate GMSC estimate from the

andf(w) is the Fourier vector of infinite length at frequency solutions of [9), we propose to use a reduced-rank represen-
w. Similarly, the theoretical matrices, (w) andD,(w) can  tation of the matrixD~/2RD~1/2, analogously to the tech-

be written as nigue presented in [7] for the estimation of the conventiona
MSC. Specifically, the proposed GMSC estimate is obtained

R
- as a weighted sum of the magnitude squared Fourier trans-
Rujey oo Rajey form of the P principal canonical vectors as follows
Se(w) =F(w) | . |F, ®
- Tw) = M_1 W)W ,
Riz, --- 0 p=1k=1
D,(w) = F"(w) D | Fw), (D )
0 R ' whereP < L is the selected rank, and?, p = 1,..., P,
- y MM are theP largest eigenvalues dfl(9). Finally, it is easy to prove
D that in the asymptotic case whefe P — oo, the proposed
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estimator becomes

e .w
M - =~~~ ~» Fusion
Z ()‘(wl) - 1) |fH (W)f(w/)Uk (w') |2 dw' Physical -~ —M”]— “ @: __ : Center

/“J k=1 Phenomenon
1 (i)
Mw') — 1) (w — w)dw = vy(w S huln Wired o Wireless
/w ( ) ) ( ) 7( )7 Pl Connection

—~

which coincides with the GMSC definition.

Fig. 1. Schematic diagram of a sensor network.
4. MULTI-CHANNEL SIGNAL DETECTION

In this section we address the problem of deciding the presyhere
ence of a common signal distorted By different unknown

Tera oo Trim
channels and acquired by noisy sensors (see figure 1). Math- T o ) o
ematically, it can be formulated as the problem of deciding v : E : ’
between the hypothese& and’;, which are given by Teyey oo Toyzu
M s anln] = haln]  s[n] + weln], k=1,..., M, and the cross-correlation coefficients are defined as
Ho : wr[n] = wg[n], k=1,...,M, Toiw; = Elzin]atn]], Vi,j=1,...,M,

J

wheres[n] is an unknown signahy[n] is the unknown chan- - \whereE[.] denotes the mathematical expectation.

nel impulse response between the source and-thesensor
n isth ially uncorrel Noi nsor. . :

anduy[n] is the spatially uncorrelated noise at itith senso version ofX;(w). However, the GC uses the determinant

To highlight the generality of the above model, notice that w .
make no assumptions about the signal, the channels, nor tﬁ(f—:t W whereas we use the largest eigenvalu@ofw). In

. practice, the GC is estimated from a limited number of obser-
noise spectra. vations of the signaldy, and the detection criterion is

The model considered in this section can be found in a e
large variety of applications. For instance in a sensor agtw M
[8] where the sensors measure a common signal generated Gz,
by a physical phenomenon, but each sensor is distorted by a
different frequgncy—selective apd noisy channel. Thege sj wherev is a properly selected threshold.
nals are acquired and transmitted to a fusion center which
has to decide whether the observations are generated by a
common physical phenomenon or not. Other possible sce.2. The GMSC spectrum as a multi-channel signal de-
narios are cooperative networks with multiple relays usingector
the amplify-and-forward (AF) schemg![9,]10], or radar de- )
tection with more than one receiving antenna. Let us remarl/é Propose to use the integral pfw) (the squared root of
finally that the frequency-dependentinformation providgd the GMSC spectrum) as a detection statistic as follows
the GMSC could be used by a transmitter (for instance in

Itis clear that¥,, can be seen as a frequency-independent

2m Hy
radar applications) to adapt the spectrum of the transthitte I = 1 Y(w)dw = v,
signal in a cognitive manner, following the ideas proposed i 21 Jo Ho
[11].

wherev is also a threshold that must be selected according to
the Bayes or the Neyman-Pearson criteria.
4.1. Generalized coherence When y(w) is estimated using the reduced-rank CCA-

In this subsection we present a brief review of the genedliz bas_ed_ e;tlmate described in Section 3, the proposed detect
statistic is given by

coherence (GC). The GC is arelated measure of linear depen-
dency among several time series proposed in [12] which will

27
be used for comparison purposes. I = 1 F(w)dw =
Definition 2: The generalized coherence (GC) is defined as T P M
) 1 27 . 2
2 det(¥,) T M1 Z (A - 1>/ ‘fH(W)W(p) -
C g detWe) p=1k=1 0
T‘"L‘lfl«‘l PR T';];Z\/I:];]\/j
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Fig. 2. ROC for the firstexample\/ = 3, N = 256, L =20.  Fig. 3. ROC for the second examplé/ = 5, N = 256,
L = 20.

which, by applying the Parseval’s theorem, reduces to
In the first two examples we assume perfect channels be-

tween the source and each sensor (hg[p] = d[n], VEk),

P M

po_ 1 S -y V;,](CMH2 _ we acquireN = 256 samples of each signal and use a time

M-1 =1 =1 embedding ofL = 20 to estimate the cross-correlation matri-
ces. We compare the ROC of the GMSC-based detector using

__ 1 Z (5\(1)) _ 1) 7 P = 1andP = 2, and that of the GC detector. Figuigs 2

M—1 =1 and[3 show the obtained results when thereMre= 3 and

M = 5 sensors, respectively: it can be seen that the proposed
where we have taken into account that the eigenvedttts=  detector outperforms the GC-based detector in both scenar-

- (p)T . (p)T ios. From these figures we also see that the performance of
Wi

T
o War } havg unit norm. Therefore, when the o proposed detector with = 1 and P = 2 is very similar.
detection statistic is obtained from the reduced-rank GMSC | the third and fourth examples we have considered nor-

estimate the integration simplifies to the sum of theargest - 1i-ad finite impulse response (FIR) channels Witk 10

eigenvalues of the CCA problei (8). _ taps, where each tap is an independent random variable gen-
An important aspect of the GMSC spectrum estimate, angd ated according to

consequently of the proposed detector, is how to select the

model order (i.e.P). This is an old and complex problem hi[n] ~N(0,1/T), n=0,...,T —1.

that we will not treat here in detail. As we will show in

the simulations section, for this particular applicatiging We also use a time embedding bf = 20 to estimate the

P = 1is enough to get good results. Moreover, this choiceross-correlation matrices in both examples. Fidure 4 com-
also notably reduces the computational cost of the testesin pares the ROCs for the different detectors when there are
only the largest eigenvalue of the matfix />RD~'/2must M = 3 sensors andV = 256 samples are acquired at each
be obtained. The interpretation of this choice of the order isensor output. Finally, F[g.5 shows the results fér = 5

that from a practical standpoint the detection statistitloe  sensors andv = 128 samples. Again, we can conclude that
formed using uniquely the most correlated frequency of thevhen frequency-selective channels are considered the pro-
GMSC spectrum. posed detector also outperforms the GC detector.

5. SIMULATION RESULTS 6. CONCLUSIONS

In this section we evaluate the performance of the propose this paper we have proposed a new statistic to detect the
detector by means of some numerical examples. Specificallpresence of a common signal distorted by a set of unknown
the performance of the proposed technique is compared witlnequency-selective channels and corrupted by noise.ifspec
the generalized coherence by means of the receiver opgratically, the new detector is the integral of the square roohef t
characteristic (ROC) curve. In all the examplesthe sighgl  generalized magnitude squared coherence (GMSC) spectrum,
is a narrowband zero-mean real Gaussian process with unithich has been recently proposed as a frequency-dependent
power and passband between and0.15. measure of the statistical linear relationship betweenemor
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Fig. 4. ROC for the third example}/ = 3, N = 256, L =
20, T = 10.

than two stationary random processes. There is a close re-
lationship between the GMSC spectrum and canonical corre-
lation analysis (CCA): this can be exploited to develop accu
rate reduced-rank estimators of the GMSC by solving a CCA [6]
problem. We have also shown that this relationship allows us
to rewrite the integral in the test statistic as a summatfdhe

P largest eigenvalues of the corresponding CCA problem. In-
terestingly, good results are obtained by using only thgelstr
eigenvalue, (i.e.P = 1), thus avoiding the order selection
problem. Finally, the performance of the GMSC-based detec-
tor is compared with the generalized coherence by means of
computer simulations showing a clear improvement in most
of the situations.

[7]

(8]

7. REFERENCES
[9]
[1] P. Stoica and R. MosesSpectral Analysis of Signals
Prentice Hall, 2005.

L.L. Scharf and J.T. Thomas, “Wiener filters in canoni- [10]
cal coordinates for transform coding, filtering and quan-
tizing,” IEEE Trans. Signal Processol. 46, no. 3, pp.
647-654, March 1998.

(2]

D. Ramirez, J. Via, and |. Santamaria, “A generalgat [11]
of the magnitude squared coherence spectrum for more
than two signals: definition, properties and estimation,”

in Proc. IEEE Int. Conf Acoust., Speech and Signal Prollz]
cess. (ICASSPApril 2008.

[4] G.C. Carter, C.H. Knapp, and A.H. Nuttall, “Estimation
of the magnitude-squared coherence function via over-
lapped Fast Fourier Transform processingEE Trans.
Audio Electroacoustvol. 21, no. 4, pp. 331-344, Aug.
1973.

(3]

[5] J. Benesty, J. Chen, and Y. Huang, “Estimation of the
coherence function with the MVDR approach,’Rnoc.

109

. 5. ROC for the fourth example}/ = 5, N
=20,T7 = 10.

3] J. Via, I. Santamaria, and J. Pérez,

=4

Detection probability

S o o

-*-Generalized Coherence|
|—GMSC (P=1)
|--cMsc (P=2)
0.8

0.2 0.4 0.6
False alarm probability

128,

IEEE Int. Conf. Acoust., Speech and Signal Process.
(ICASSP)May 2006.

J. R. Kettenring, “Canonical analysis of several sets
of variables,” Biometrikg vol. 58, no. 3, pp. 433-451,
1971.

|. Santamaria and J. Via, “Estimation of the mag-
nitude squared coherence spectrum based on reduced-
rank canonical coordinates,” iAroc. IEEE Int. Conf.
Acoust., Speech and Signal Process. (ICAS3Bjil
2007.

F. Zhao and L. GuibasWireless Sensor Networks: An
Information Processing Approaciklsevier, 2004.

F. H. P. Fitzek and M. D. Katz, Eds., Coopera-
tion in Wireless Networks: Principles and Applications
Springer, 2006.

N. Laneman, D. Tse, and G. Wornell, “Cooperative
diversity in wireless networks: Efficient protocols and
outage behavior,IEEE Trans. Inf. Theoryol. 50, no.
12, pp. 3062-3080, Dec. 2004.

S. Haykin, “Cognitive radar: A way of the futurd EEE
Signal Process. Magpp. 30—40, Jan. 2006.

D. Cochran, H. Gish, and D. Sinno, “A geometric
approach to multiple-channel signal detectionEEE
Trans. Signal Processvol. 43, no. 9, pp. 2049-2057,
Sep. 1995.

“A Learning Al-
gorithm for Adaptive Canonical Correlation Analysis of
Several Data SetsNeural Networksvol. 20, no. 1, pp.
139-152, Jan. 2007.



	 Introduction
	 The GMSC Spectrum
	 GMSC spectrum properties

	 Estimation of the GMSC spectrum
	 Estimation of the GMSC spectrum based on CCA

	 Multi-channel signal detection
	 Generalized coherence
	 The GMSC spectrum as a multi-channel signal detector

	 Simulation Results
	 Conclusions
	 References

