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ABSTRACT 
 
This paper presents a three-dimensional mobile robot 
localization system using visual landmarks. We use the 
scale-invariant feature points as visual landmarks. This 
feature is independent of camera view point, thus it is 
proper to use the landmark. The keypoints detected by SIFT 
are invariant to scale change and rotations, thus we use the 
keypoint as a landmark. Since the image coordinates for the 
landmarks are projected depending on the camera pose, the 
camera pose is determined using the relation between the 
two-dimensional image coordinates and three-dimensional 
world coordinates for the landmarks. The camera pose is 
considered the same as the robot pose, as the camera taking 
the images is fixed to the robot. The inclusion of falsely 
detected landmarks has an adverse effect on the accuracy of 
the robot localization. Therefore, the proposed method 
estimates the robot pose, while eliminating any falsely 
detected landmarks. To evaluate the proposed method, 
experiments are performed using a mobile blimp robot in an 
indoor environment. The results confirm that the proposed 
method can estimate the robot pose with a good accuracy. 
 

Index Terms— robot, localization, visual landmark, SIFT 
 

1. INTRODUCTION 
 
Mobile robot localization has recently become an active 
area of study, and involves estimating the relative position 
and orientation of a robot in a particular environment. 
Although various types of sensor can be used for 
localization, including sonar, lasers, and cameras [1][2][3], 
the improved computational capabilities of processors have 
facilitated the use of more vision-based approaches, among 
which the landmark based method is simple and robust for 
accurate localization [4][5][6]. 

Accordingly, this paper presents a vision-based robot 
localization system that uses a single camera. In this paper, 
we consider the robot localization as a robot pose estimation 
problem. To estimate the robot pose, scale-invariant feature 
points are used as visual landmarks. The keypoints detected 
by the SIFT algorithm are invariant to scale changes, 
rotation, affine transformations, and illumination changes 

[7], making them independent of the camera viewpoint, and 
suitable landmarks for robot localization. The proposed 
method then estimates the robot pose using the relation 
between the image coordinates and the corresponding world 
coordinates. Since this relation depends on the pose of the 
camera, the camera pose is estimated using landmarks. 
When the camera is fixed to the robot, the camera pose is 
considered as the robot pose. 

An overview of the proposed system is presented in 
Fig.1. It is assumed that the world coordinates of the 
landmarks are known. Thus, before running the system, a 
landmark database is built. When the robot then travels the 
environment, images are periodically captured by a camera,  
and landmarks are detected in the input images. The 
landmarks are detected by matching the keypoints in the 
image with the landmarks in the landmark database. When 
matches are found, the relation between the image 
coordinates and the corresponding world coordinates is 
calculated. Then the camera pose can be determined by 
applying a camera calibration method to several matched 
points [8]. The RANSAC algorithm is used to remove the 
effect of falsely matched data [9][10]. To evaluate the 
described robot localization method, the pose of a mobile 
blimp robot is estimated in an indoor environment. Since the 
blimp can travel in all directions without any constraint, the 
height of the blimp also needs to be estimated. As a result, 
the robot pose is estimated using only the visual information. 
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Fig.1. System overview. 
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Section 2 explains the method used to detect the 
landmarks and construct the database, section 3 describes 
how the robot pose is estimated based on the relation 
between the image coordinates and the world coordinates. 
Experimental results using the proposed method are 
presented in section 4, and some conclusions are given in 
section 5. 
 

2. VISUAL LANDMARKS 
 
The proposed system for the mobile robot localization uses 
visual landmarks that must be recognizable features in the 
image. We use feature points with world coordinates that 
are known to the robot as landmarks, and they are stored in 
a database. The robot pose is then determined from its 
position relative to these landmarks. When a robot travels 
an environment, the images change continuously. Therefore, 
in the case of a vision-based localization method, the 
landmarks must be invariant under rotation and scale 
changes. For this purpose, we use the keypoints which are 
detected by the SIFT algorithm as the landmarks. 

This section then describes the methods used to detect 
the keypoints using the SIFT algorithm, along with the 
structure of the landmark database. 

 
2.1. Keypoint detection using SIFT 
 
The SIFT-based keypoint extraction procedure is composed 
of the following four steps [7]: 
1) Scale space extrema detection: the candidate keypoints 
are detected by finding the maxima and minima pixels in the 
images based on the DoG (Difference of Gaussian). 
2) Keypoint localization: the unstable keypoints are rejected, 
and the remaining keypoints are assigned a location and 
scale. 
3) Orientation assignment: each keypoints is assigned one 
or more orientations based on the local image gradient. 
4) Keypoint descriptor generation: each keypoint is assigned 
a 128-dimensional descriptor. 
 

 
Fig.2. Image with SIFT keypoints marked. 

After above steps, the detected keypoints are assigned 
locations, scales, orientations, and SIFT descriptors. 

Fig. 2 shows the detected keypoints in an input image 
when using the SIFT algorithm described above, where the 
center of each circle represents the coordinates of the 
detected keypoint, the radius of the circle denotes the 
extrema scale, and the line in the circle indicates the 
orientation of the keypoint. 

 
2.2. Landmark database 

 
When localizing a mobile robot, it is assumed that the world 
coordinates for each landmark are known. Thus, a landmark 
database needs to be constructed before starting the 
localization procedure. For this purpose, we construct a 
landmark database as follows. First, several images are 
captured of the given environment within which the robot 
travels. Keypoints are then detected within these images 
using the SIFT algorithm, and some selected as the visual 
landmarks. The landmark database entries are as follows: 
 

[ ]128, SIFTML ii =  (1)

 
where i is the index for each landmark. Mi represents the 
three-dimensional world coordinates for the i th landmark, 
which are measured manually, and SIFT128 is the 128-
dimensional descriptor. This vector is used when we 
searching for landmarks that match the keypoints in an input 
image. Fig. 3 shows two-dimensional projection of the 
world coordinates for all the landmarks in the constructed 
database. 

 

 
Fig.3. Landmarks in database. 

 
 

3. ROBOT LOCALIZATION 
 
This paper considers the mobile robot localization as 
determining the pose of a mobile robot. A camera fixed to 
the robot captures periodic images while the robot travels 
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the given environment. The robot pose is then estimated 
using visual landmarks in the input images. As the 
landmarks are projected in the input images according to the 
camera pose, the robot pose can be determined using the 
relation between the image coordinates and corresponding 
world coordinates for the landmarks using the camera 
calibration theory [8]. Therefore, the proposed method 
includes a procedure for landmark detection in the input 
images. Plus, any falsely detected landmarks, which can 
drastically increase the pose error, are removed using the 
RANSAC algorithm [9][10]. 

This then section describes the procedure used to detect 
landmarks in the input image, followed by the estimation of 
the robot pose. 
 
3.1. Landmark detection  
 
The proposed robot localization method involves obtaining 
the two-dimensional coordinates of the landmarks in the 
input image. The first step is to detect landmarks in the 
input image. The landmark detection is performed by 
matching between every detected keypoint in the input 
image with all the landmarks in the database. If matches are 
found, the corresponding two-dimensional image 
coordinates are obtained for that landmark. The criterion for 
a match is based on a similarity test between the SIFT 
descriptor for a detected keypoint and the SIFT descriptor 
for a landmark in the database.  The criterion of a match is 
whether the following relation is satisfied: 
 

( ) ( ) simba ThLkdLkd ×< ,,  (2)

 
In the above equation, k is the identifier for the keypoint 
detected in the input image, La is the identifier for the 
database landmark with the least distance between the 
descriptor vector for the keypoint and that for the database 
landmark, Lb is the identifier for the database landmark with 
the second least distance, and Thsim is a predefined threshold 
value, which was 0.8 in this study according to Lowe [7]. 
Meanwhile, d(P, Q) is the distance between the two 128-
dimensional vectors identified by P and Q. If the vector 
components of the two 128-dimensional SIFT descriptors 
are as follows: 
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the Euclidean distance between the two vectors is then 
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3.2. Robot pose estimation  
 
The robot pose is then estimated using the matched 
landmarks. The camera pose is considered the same as the 
robot pose, as the camera that captures the images is fixed to 
the robot. A robot pose p is a pair of a position vector t and 
an orientation vector θ . 
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(5)

 
The camera pose is determined based on the relation 

between the image coordinates and world coordinates of the 
landmarks. The relation is calculated using a camera 
projection function that transforms the 3D world 
coordinates into 2D image coordinates. Here, the pinhole 
camera model is used as the projection function [8]. Pinhole 
camera model uses homogeneous coordinates. Using the 
pinhole camera model, the camera projection function f  is 
expressed as 
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, where Mi represents the world coordinates for the ith 
landmark in the database. K represents the internal 
parameter, and R and T are the external parameters. As such, 
the external parameters transform the world coordinates into 
camera coordinates, then K projects the camera coordinates 
into the image coordinates. The camera pose is determined 
using these parameters. K is a 3×3 matrix composed of the 
internal parameters, including the camera focal length and 
center coordinates. The internal parameters can be 
calculated using the camera and the images captured by the 
camera [11]. Meanwhile, the camera pose p is calculated 
using the external parameters, R and T. R is a 3×3 rotation 
matrix that can be expressed as 
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and T is a 3×1 translation vector. After obtaining R and T, 
the camera pose p is calculated as follows. The camera 
position is defined as the point where the camera 
coordinates are [0, 0, 0]T. Therefore the camera position 
represents the world coordinates that satisfy the following 
equation 
 

161



[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1

|
0
0
0

z

y

x

t
t
t

TR  
(8)

 
The camera orientation is then calculated using the 
calculated rotation matrix. 

A disparity occurs between the projected image 
coordinates and the image coordinates of a landmark, when 
the world coordinates of a landmark are projected onto the 
image plane using equation (6). This disparity is defined 
using the energy E. The energy is defined as the average 
distance in image pixel units between the coordinates for the 
landmarks in the image plane and the 2D projected 
coordinates for the matching world coordinates with a pose 
parameter p. 
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, where mi represents the two-dimensional image 
coordinates for the landmark in the image plane. The 
camera pose p is then determined based on minimizing the 
energy E. 
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When the number of matched pairs is high (the more 

landmarks are detected in the image), the accuracy of the 
robot localization is also higher. However, the existence of 
falsely matched pairs has a drastic impact on the accuracy of 
the camera pose estimation. The matched pair can contain 
the falsely matched pair. Therefore, the RANSAC algorithm 
is applied to remove the effect of falsely matched pairs 
[9][10]. Thus, the following procedure is used to estimate 
the camera pose p from the matched pairs: 

 
1) Select k (which was 3 in this paper) random pairs.  
2) Calculate the hypothesis (tentative pose p̂ ).  
3) For each matched pair that is not selected in 1), check 

whether it is an inlier using the following criterion: 
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4) When the ratio of the number of inliers is larger than a 
predefined threshold value Thrate, stop the iterations. 
Otherwise repeat from step 1). 

 

4. EXPERIMENTAL RESULTS 
 
Experiments were performed using a mobile robot in an 
indoor environment. The image data were processed using a 
Pentium 2.8 GHz PC with a Windows XP operating system. 
The software was implemented using Visual C++ 6.0. The 
image size taken by the camera was QVGA(320 ×  240). 

The indoor environment where the robot could travel 
was a 7m × 7m area, and the predetermined database 
included 781 landmarks generated from 6 images. In this 
experiment, we use a blimp as the mobile robot, which is 
shown in Fig. 4. The blimp had three propellers, which 
enabled it to travel without constraint in all directions, 
including up and down. As shown Fig. 4, a camera is fixed 
to the blimp, and the images are taken by the camera. 

 

 
Fig.4. Mobile blimp robot. 

 
Estimating the robot pose using the proposed system 

requires the determination of Thdist which is the threshold 
value for whether a matched keypoint is an inlier or not, and 
Thrate which is the rate of the number of inliers to the 
number of all matched pairs. To determine these parameters, 
we manually classified the matched pairs into the inliers and 
the outliers for sample images. Then we calculated the 
energy of the landmarks in case of inliers and outliers and 
the ratio of inliers and outliers to all pairs. Table 1 shows 
the energy of inliers and outliers, the rate of them. In table 1, 
the ratio of the number of inliers was 36.75% and the mean 
energy of the inliers was 4.71. Thus, based on experimental 
results, Thdist was set at 10 and Thrate set at 30%. 
 
Table 1. Experimental results for a parameter determination.  

 Inliers Outliers 
Energy 4.71 90.89 

Rate 36.75% 63.25% 
 

To demonstrate the effectiveness of the proposed 
mobile robot localization method, the estimated robot pose 
was compared with the real robot pose. Then, the real 
camera pose was manually measured. The experimental 
results then showed that the mean distance error for the 
robot position was 26cm, whereas the orientation error was 
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about 7.5°. Fig. 5 shows the several estimated poses with 
the corresponding real robot poses. In Fig. 5, the center of 
the circle represents the position of the robot, while the line 
through the circle represents the orientation of the robot. 

 

 
Fig.5. Estimated robot poses:  is the real robot poses,   
is the estimated robot poses using the proposed method. 
 
 
 

5. CONCLUSION 
 
In this paper, we have presented a robot localization system 
using scale-invariant visual landmarks. The landmarks are 
feature points with world coordinates that are known to the 
robot, and stored in a landmark database before running the 
system. When using the system, a camera fixed to the robot 
captures the periodic images. And the keypoints in the input 
images are detected using the SIFT algorithm. The detected 
keypoints are then matched to the landmarks in the 
landmark database. The pose of the robot is estimated using 
the relation between the two-dimensional image coordinates 
and the three-dimensional landmark coordinates. The 
RANSAC algorithm was applied to eliminate any falsely 
matched keypoints. Experimental results demonstrate the 
proposed method works well for estimating the three-
dimensional position and orientation of a robot. 
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