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ABSTRACT 
 
A novel approach of decoding convolutional codes using a 
multi-class support vector machine is presented in this 
paper. Support vector machine is a recently developed and 
well recognized algorithm for constructing maximum margin 
classifiers. Unlike traditional adaptive learning approaches 
such as a multi-layer neural network, it is able to converge to 
a global optimum solution, hence achieving a better 
performance. However, up to this date so far, no work has 
yet been done on applying support vector machine on error 
control coding. In this investigation, decoding is achieved by 
treating each codeword as a unique class. Hence the 
decoding procedure becomes a multi-class pattern 
classification problem. Simulation results show that the bit 
error rate performance of decoder based on such approach 
compare favorably with a conventional soft decision Viterbi 
Algorithm under a noisy channel with additive white 
Gaussian noise and achieve an extra 2 dB coding gain over 
the conventional method in a Rayleigh’s fading channel. 

Index Terms— convolutional codes, Viterbi decoding, 
support vector machines, pattern classification 
 

1. INTRODUCTION 
 
Convolutional code is a widely used class of error control 
codes that has applications from space satellite 
communication to digital video broadcasting [1-3]. The 
Viterbi Algorithm (VA) proposed in 1967 is well known for 
decoding convolutional code because it is based on 
maximum likelihood (ML) decoding. However, it is 
commonly known that the complexity of the VA decoders 
grows exponentially with the number of constraint length of 
the encoder, hence makes it less suitable for modern 
communication systems which employ encoders with a 
higher constraint length. Moreover, the VA is optimized for 
memory-less noise, for example an additive Gaussian white 
noise (AWGN) channel. Therefore for other types of noise 
impairments in the channel, for example one that 
experiences Rayleigh’s fading, another procedure of 
interleaving is commonly introduced, which inevitably 
increases further latency and complexity in the decoding 
process [3, 4]. 

During the past few decades a lot of effort was devoted 
into finding different alternatives to VA, hoping to 

overcome this challenge. Application of methods of artificial 
intelligence has caught a considerable amount of attention 
lately because of their ability to solve large scale complex 
problems. Some examples neural network applications on 
error control coding and the problem of local minima was 
revealed by Berber and Wicker in [5, 6].  

Support vector machine (SVM), which was first 
introduced by Vapnik and his co-workers in 1992 becomes 
immensely successful in the fields of pattern classification 
and data mining [7-9]. In the recent years, researchers start 
to recognize the feasibility and the performance of SVMs 
hence various types of work have been gradually developed 
to apply such principles in the field of digital 
communications [10, 11].  

In 1995, Dietterich and Bakiri have proposed to solve a 
multi-class learning problem via error-correcting output 
codes (ECOC) [12]. Essentially this is using a unique binary 
codeword to represent one class of object. Thus 
classification can be realized by solving a series of simpler 
binary problems within each codeword. Once the codeword 
is estimated, the unknown object can be identified by 
maximum likelihood (ML) selection. This method is widely 
accepted as a way to achieve multi-class learning and 
studied extensively in [13]. This technique demonstrates that 
error control coding can be applied since the goal of 
decoding is to estimate the transmitted codeword and 
retrieve the original information. However up to this date so 
far, no literature can be found of applying SVM on error 
control coding (or channel coding).  

In this paper therefore, an algorithm of decoding 
convolutional code using a multi-class pairwise support 
vector machine is developed and presented. Based on the 
theory of SVM, a simulator was designed to test the 
algorithm by comparing its bit error rate (BER) performance 
to the BER of the conventional VA decoder. 
 

2. SVM DECODER ANALYSIS 
 

Conventionally SVM are formulated to classify only two 
types of objects, or so-called classes. Classification is 
achieved in two stages: the initial learning or training stage, 
and the actual decoding stage. At the first stage, some 
training examples are given to the machine to create certain 
decision functions in order to differentiate the two classes. 
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During the second stage, the unforeseen object is then 
classified by those decision rules. 

To deal with more sophisticated problems, Kreßel 
introduced a pairwise support vector machine, also known as 
the one-against-one support vector machine to handle a 
multi-class problem [14]. In this algorithm, the decision is 
made from comparing all the combinations of class pairs. 
Therefore, for a N-class problem, N(N-1)/2 classifiers are 
constructed. Studies by Hsu [15] and Abe [16] have shown 
that this algorithm in general is well-suited for a large multi-
class problem in terms of performance-complexity tradeoff. 
Therefore this algorithm is chosen to be applied in the 
decoder. 

Consider a set of N message words, m={m1, m2,…, mN,}, 
where each message word contains k number of binary bits, 
mi={b1,b2,…,bk}. Each message is associated with a class 

label, (mi, yi). The message is encoded into an unique 
codeword xi={x1, x2,…,xt}, which is corrupted by noise after 
passing through a noisy channel. In another word, the 
encoder’s task is to map a binary word of k bits long to an 
encoded word of t bits. Therefore each individual codeword 
can be regarded as a class with t number of parameters (or 
features) in each class, where each parameter represents a 
modulated bit in the codeword. 

 
2.1. Training phase 
 
This is an initial stage which only needs to be performed 
once only, unless the channel condition has varied 
significantly. The input of the SVM decoder is a set of  l 
number of corrupted sequence that is transmitted from the 
encoder, which can be represented as (x1, y1), (x2, y2), …, 
(xl, yl), where xi ∈ ℜt, i = 1,…, l and yi ∈ {1,…, N}.  

The output is a reduced set of those training data from 
each codeword pair. These are used as decision variables, 
also called the support vector (SV). Every SV, denoted by 
xv, is associated a weighting value αv and a hard decision 
output ov ∈{+1,-1} to indicate the desired decision result. As 
this algorithm is comparing two codewords at one time, 
therefore all combinations of codeword pairs are used during 
training. Hence this method is also known as one-versus-one 
SVM. The basic schematic of the training stage is shown in 
figure 1. 

During the initial training stage, a decision function for a 
non-linear SVM is constructed for each combination of 
codeword pair via, 
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where Sij denotes the set of SVs for the codeword pair ij, 
K(x,xv)=φT(xv)φ(x) is a kernel function, where φ(x) maps the 

training data vector xv into the high-dimensional feature 
space, and bij is a bias term. 

Define a coefficient vector, wij, such that 

1

( )
ijl

ij
q q q

q

o α φ
=

=∑w x           (2) 

where lij is the number of training data for the ith and jth 
codeword. 

To determine the appropriate parameters for wij and bij, 
the following optimization problem is solved for the training 
data from comparing the codword i and j [15] 
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where C is the tradeoff parameter between the training error 

and the margin of the decision function, and ij
tξ  is the slack 

variable to compensate for any non-linearly separable 
training points.  
 

 
 
 
 
 
 
 

Fig. 1. Overview of the SVM decoder in the training phase. 
 
2.2. Decoding phase 
 
At the actual decoding stage, the receiver will observe a 
noisy sequence, z = {z1,z2,…,zt}. This becomes a new test 
object for the SVM decoder. The problem of decoding thus 
becomes a multi-class pattern classification problem. The 
likelihood of the noisy sequence z is transmitted from the ith 
codeword can be calculated via, 
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This procedure is commonly referred as ‘voting’, and it 

carries on for i = 1,…,N. Finally the received noisy sequence 
z is classified to the class label yi which has the highest 
number of votes. This class label represents the estimate of 
the transmitted codeword. Once it has been identified, the 

m1 

· 

· 

· 

mN 

 

Encoder 

x1 

· 

· 

· 

xN 

SVM  
Decoder 

⊕ 

AWGN 

 αv, xv, ov 

183



task of retrieving the associated message mi is not difficult, 
which is the same as in VA. 

 
2.3. Advantages of SVM decoder 

 
The main reason for employing SVM to apply to the 
decoding problem, over other conventional methods of 
artificial intelligence, such as a multi-layer neural network, 
is because there are no local minima problems. Unlike 
neural networks, SVM is formulated as a quadratic 
programming (QP) problem. Therefore the global optimum 
solution, instead of local ones, can be obtained. Moreover, it 
is more robust to any outliers. In this particular SVM 
algorithm the training time is reduced because there are less 
support vectors produced [16].  

Like other artificial intelligence systems, the distinct 
advantage of such algorithm is the adaptability. Through the 
learning stage, the receiver can have a physical awareness 
and the ability to adapt to its communication environment, 
where noise and other types of undesired interferences are 
impairing the data.  

Another benefit of an adaptable decoder is that the 
tradeoff between complexity and error control capability can 
be controlled according to the application. For traditional 
error control algorithms, the decoding procedures are 
usually fixed, regardless to the quality of the channel. 
Therefore the bit error rate may exceed to the user’s 
requirement, especially when the signal-to-noise ratio (SNR) 
is increased. This may imply that some extra time and 
energy is wasted for the performance that the user does not 
need. In support vector machines, both the accuracy and the 
complexity of the decoder are governed by the number of 
the support vectors produced during the training stage, 
which are relatively under the designer’s control. Therefore 
this algorithm has great potentials for the emerging software-
defined radios where adaptability becomes the essential 
consideration. 

 
2.4. Complexity of SVM decoder 

 
Currently the main assumption in employing such a 
technique is that the number of possible messages N must be 
finite so the receiver can create the decision rules for all the 
possible outcomes. If N gets greater, more decision functions 
need to be constructed hence the decoding complexity is 
increased. This could be considered as one of possible 
constraints in application of this method. 

The analysis of complexity of SVM is completely 
different for the two phases. The complexity of SVM during 
the training phase is related to the optimization algorithm 
that it is used to solve the QP problem [10]. At the testing 
phase, where all the support vectors have been identified, the 
complexity will be the same, regardless of the training 
algorithm. For the application of error control coding, it 
mainly concerns with the computational complexity at the 

testing stage because the training stage only constitutes a 
very insignificant amount of time comparing to the total 
decoding time. 

Table 1 compares the computational complexity of SVM 
at the decoding stage with other conventional methods for 
decoding convolutional code, such as the soft-output Viterbi 
Algorithm (SOVA) and the maximum a posteriori (MAP) 
algorithm. The complexity of SVM is derived from 
examining the number of operators required for a complete 
classification, which is based on equation (5). The 
conventional methods are taken from the study in [3]. The 
comparison is made on these two algorithms because they 
are currently the two most popular decoding algorithms for 
convolutional codes [3]. Also, the current SVM decoder 
uses a radial basis function (RBF) kernel, which requires 
exponential operations, similar to the conventional MAP 
algorithm. 

It is interesting to observe from table 1 that the 
complexity of SVM decoder has a vastly different 
characteristic comparing to conventional methods. It is 
completely controlled by the number of support vectors and 
the length of codeword to be processed, whereas the 
conventional algorithms depend heavily on the structure of 
the encoder. Therefore, as the number of memory elements 
increases in the encoder, the decoding complexity for SOVA 
and MAP must increase exponentially as shown from table 
1. This is a major drawback of those techniques for 
applications such as deep space communication where the 
order of memory can reach to 10 [17]. However, this would 
not have any effect for the SVM decoder as long as the 
length of each codeword remains the same. The 
independency of encoder structure becomes another 
advantage for the SVM decoder.  Although the SVM 
decoder can only process t bits at a time, multiple decoders 
can be employed in parallel to increase the decoding speed. 

 
3. DESIGN OF SVM DECODER 

 
A simulator of a communication system that consists of a 
rate 1/2 convolutional encoder, AWGN channel and a 
pairwise-SVM decoder are designed in order to evaluate the 
BER performance of SVM decoder. The convolutional 
encoder can be defined with the octal form of G=4/5. Figure 
2 shows the structure of the rate 1/2 convolutional encoder 
used. 
 

 
 
 
Fig. 2. The rate 1/2 convolutional encoder used in the simulator. 
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TABLE I  
COMPUTATIONAL COMPLEXITY OF SVM AND OTHER DECODING ALGORITHMS. 

 SVM* SOVA** MAP** 

# Multiplications 
− +( 1)

( ( 2))
2

N N
s t  ( )2 2 2k vT ⎡ ⎤⋅⎣ ⎦  ( )5 2 2 6k vT ⋅ ⋅ +  

# Subtractions 
−( 1)

( )
2

N N
st  - - 

# Additions 
− +( 1)

( )
2

N N
st s  ( )2 2 2 2 9k vT ⎡ ⎤⋅ ⋅ +⎣ ⎦  ( )2 2 2 6k vT ⋅ ⋅ +  

# Exponentials 
−( 1)

( )
2

N N
s  - ( )2 2 2k vT ⋅ ⋅  

* A RBF kernel function is assumed; t is the length of the whole codeword to classify; N is the total number of possible 
codewords; s is the number of support vector in each class. 
** k and v is the number of input and the memory elements of the encoder respectively; T is the number of time stages 
required to decode the same amount of information as the SVM decoder. 
 

A readily available software called LIBSVM [18], is 
implemented for constructing the pairwise SVM and for 
training and testing the data points. The radial basis function 
(RBF) is chosen as the kernel function to map the input 
space to the higher dimensional feature space. The RBF 
function with a width of γ is defined as, 

γ= − −
2

( , ) exp( )K x y x y                             (6) 

where the value of γ is set at the recommended value of 1/N. 
According to [19], the performance of RBF kernel is 

much comparable to other types of kernel, such as a 
polynomial or linear function. Hence at this stage there is no 
need to consider those other kernels. 

To produce the training data, all the possible codewords 
from a message of certain length, were corrupted by additive 
Gaussian noise at SNR of 0 dB and sent repeatedly to the 
pairwise SVM decoder to generate the decision functions. It 
was deliberately set at a high noise level to represent the 
‘worst-case’ scenario. Then at the testing stage, monte carlo 
simulations were conducted of random codeword and tested 
in various levels of noises. The received signal was 
classified by the pairwise SVM decoder and hence the 
original message word can be estimated directly because of 
the one to one correspondence between the message and 
code word is assumed. This cycle is repeated while 
recording the number of errors that the decoder makes. 

 
 Message 

Source 
Conv. 

Encoder 

Data 
Sink 

SVM 
Decoder 

BPSK 
Modulator 

AWGN 
Channel 

BPSK 
Demodulator  

 
Fig. 3. Schematic blocks of the simulating system. 

In all simulations, simple binary phase shift keying 
(BPSK) was used for modulation. In addition, a well-known 
soft-decision Viterbi decoder, which is a conventional 
convolutional decoder, was implemented in the simulator as 
a benchmark to compare the bit error rate (BER). Figure 3 
shows the schematic of the simulated system. 
  

4. SIMULATION RESULTS AND DISCUSSION 
 
4.1. Effect of training size 
 
The initial simulation investigates the impact of using 
different number of training data on the decoding accuracy. 
There are a total of 16 possible codewords to classify at the 
decoder’s side. For simulation purposes, the length of 
codeword to be processed at one time is 8 bits. The channel 
consists of additive Gaussian noise with a zero mean and 
variance (i.e. noise power) of N0/2. Table 2 summarizes the 
results of the SVM decoder. 
 

TABLE II  
SVM PERFORMANCE UNDER DIFFERENT TRAINING SIZES 

Training 
Size 

Training 
time (s)* 

#SVs 
BER 

 (SNR 0 dB) 

160 0.0625 153 0.012 
480 0.0938 372 0.008 

1,600 0.2344 879 0.006 
* Simulations were conducted on an Intel Pentium 4 computer with 
a CPU of 2.4 GHz running Matlab®. 
 

Figure 4 shows the BER curve obtained by the SVM 
decoder in comparison with the traditional Viterbi decoder, 
which is based on maximum likelihood (ML). The results 
are comparable with the Viterbi decoder if adequate training 
data is given, suggesting that SVM does tend to converge to 
a global optimum solution (similar to ML decoding). The 
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small training time, shown from table 2, is an advantage of 
using a pairwise algorithm. Moreover, with a higher training 
size hence a larger number of support vectors (decision 
variables), the BER results are generally better as expected.  

However, there is a limit that the training data can 
improve the decoder’s performance. Beyond that, not only 
the decoding accuracy is saturated, also the decoding time 
will be extended if more support vectors are generated from 
the trained model. Figure 5 displays the result of such 
investigation, showing that the performance gain is generally 
saturated when the number of training data reaches over 
1000. 

 

0 1 2 3 4

10
−4

10
−3

10
−2

10
−1

B
E

R

E
s
/N

o
 (dB)

No Coding
SVM − training size = 160
SVM − training size = 480
SVM − training size = 1600
Viterbi

 
Fig. 4. BER of the SVM decoder for each different training sizes. 
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Fig. 5. BER of the SVM decoder under different training sizes; 
Es/No fixed at 2 dB. 
 
 
 
 
 
 

4.2. Effect of codeword size 
 
The number of classifiers will increase exponentially as the 
number of codewords increases, which is due to a longer 
message size. This also implies a much longer processing 
time. This problem, also known as the curse of 
dimensionality, is one of the drawbacks of pairwise SVM. 

Figure 6 shows that a longer code sequence in general 
performs slightly better than a shorter code. This is possibly 
due to more input features for the SVM decoder to classify 
or a higher hamming distance to separate each codeword. 
Nevertheless the trade-off is the long decoding time. This 
would possibly limit the size of the codeword to be 
processed at one time. More investigations are undertaken to 
overcome this difficulty. 
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Fig. 6.  BER of the SVM decoder for different number of 
codewords to classify; training size is 1600. 
 
4.3. Effect of Rayleigh’s fading 
 
To further explore the BER characteristic and the system 
performance of the SVM decoder, the AWGN channel in the 
simulator is replaced with a Rayleigh fading channel. It is a 
popular model for estimating the fading characteristics in a 
land mobile radio channel [1]. In the simulation, no 
interleaver was used as a compensation for the bursting 
errors in the fading channel. Figure 7 demonstrated a coding 
gain of 2 dB from the SVM decoder over the conventional 
Viterbi decoder. Such improvement is due to the adaptive 
nature of this decoding scheme, which makes it suitable for 
more erratic channel conditions. In this example, the Viterbi 
algorithm is optimized for Gaussian, memory-less channel, 
therefore it is less effective for a fading channel, in which 
the noise and the fading signal have a memory-like behavior. 
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Fig. 7.  BER of the SVM decoder under Rayleigh’s fading; training 
size is 1600. 
 

5. CONCLUSIONS 
 
This paper presents a completely new approach to decode 
convolutional code using support vector machines. By 
treating each codeword as a unique class, classification can 
be realized by a pairwise SVM. Simulation results suggest 
that the BER of the SVM decoder is comparable and even 
better than the conventional Viterbi Algorithm for the 
simulated cases; and a coding gain of 2dB is achieved under 
a Rayleigh’s fading channel. However, the number of 
codewords to identify is currently a limiting factor for the 
decoder, which can be compensated by parallel processing. 
Nevertheless, the independency of encoder structure and 
adaptability to channel conditions makes this decoder 
scheme stand out from other conventional decoders. 
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