
ERROR CONTROL CODING BASED ON SUPPORT VECTOR MACHINE

Johnny W.H. Kao, Stevan M. Berber

Department of Electrical and Computer Engineering, University of Auckland, Auckland, New Zealand

ABSTRACT

A novel approach of decoding convolutional codes using a
multi-class support vector machine is presented in this
paper. Support vector machine is a recently developed and
well recognized algorithm for constructing maximum margin
classifiers. Unlike traditional adaptive learning approaches
such as a multi-layer neural network, it is able to converge to
a global optimum solution, hence achieving a better
performance. However, up to this date so far, no work has
yet been done on applying support vector machine on error
control coding. In this investigation, decoding is achieved by
treating each codeword as a unique class. Hence the
decoding procedure becomes a multi-class pattern
classification problem. Simulation results show that the bit
error rate performance of decoder based on such approach
compare favorably with a conventional soft decision Viterbi
Algorithm under a noisy channel with additive white
Gaussian noise and achieve an extra 2 dB coding gain over
the conventional method in a Rayleigh’s fading channel.

Index Terms— convolutional codes, Viterbi decoding,
support vector machines, pattern classification

1. INTRODUCTION

Convolutional code is a widely used class of error control
codes that has applications from space satellite
communication to digital video broadcasting [1-3]. The
Viterbi Algorithm (VA) proposed in 1967 is well known for
decoding convolutional code because it is based on
maximum likelihood (ML) decoding. However, it is
commonly known that the complexity of the VA decoders
grows exponentially with the number of constraint length of
the encoder, hence makes it less suitable for modern
communication systems which employ encoders with a
higher constraint length. Moreover, the VA is optimized for
memory-less noise, for example an additive Gaussian white
noise (AWGN) channel. Therefore for other types of noise
impairments in the channel, for example one that
experiences Rayleigh’s fading, another procedure of
interleaving is commonly introduced, which inevitably
increases further latency and complexity in the decoding
process [3, 4].

During the past few decades a lot of effort was devoted
into finding different alternatives to VA, hoping to

overcome this challenge. Application of methods of artificial
intelligence has caught a considerable amount of attention
lately because of their ability to solve large scale complex
problems. Some examples neural network applications on
error control coding and the problem of local minima was
revealed by Berber and Wicker in [5, 6].

Support vector machine (SVM), which was first
introduced by Vapnik and his co-workers in 1992 becomes
immensely successful in the fields of pattern classification
and data mining [7-9]. In the recent years, researchers start
to recognize the feasibility and the performance of SVMs
hence various types of work have been gradually developed
to apply such principles in the field of digital
communications [10, 11].

In 1995, Dietterich and Bakiri have proposed to solve a
multi-class learning problem via error-correcting output
codes (ECOC) [12]. Essentially this is using a unique binary
codeword to represent one class of object. Thus
classification can be realized by solving a series of simpler
binary problems within each codeword. Once the codeword
is estimated, the unknown object can be identified by
maximum likelihood (ML) selection. This method is widely
accepted as a way to achieve multi-class learning and
studied extensively in [13]. This technique demonstrates that
error control coding can be applied since the goal of
decoding is to estimate the transmitted codeword and
retrieve the original information. However up to this date so
far, no literature can be found of applying SVM on error
control coding (or channel coding).

In this paper therefore, an algorithm of decoding
convolutional code using a multi-class pairwise support
vector machine is developed and presented. Based on the
theory of SVM, a simulator was designed to test the
algorithm by comparing its bit error rate (BER) performance
to the BER of the conventional VA decoder.

2. SVM DECODER ANALYSIS

Conventionally SVM are formulated to classify only two
types of objects, or so-called classes. Classification is
achieved in two stages: the initial learning or training stage,
and the actual decoding stage. At the first stage, some
training examples are given to the machine to create certain
decision functions in order to differentiate the two classes.

182

During the second stage, the unforeseen object is then
classified by those decision rules.

To deal with more sophisticated problems, Kreßel
introduced a pairwise support vector machine, also known as
the one-against-one support vector machine to handle a
multi-class problem [14]. In this algorithm, the decision is
made from comparing all the combinations of class pairs.
Therefore, for a N-class problem, N(N-1)/2 classifiers are
constructed. Studies by Hsu [15] and Abe [16] have shown
that this algorithm in general is well-suited for a large multi-
class problem in terms of performance-complexity tradeoff.
Therefore this algorithm is chosen to be applied in the
decoder.

Consider a set of N message words, m={m1, m2,…, mN,},
where each message word contains k number of binary bits,
mi={b1,b2,…,bk}. Each message is associated with a class

label, (mi, yi). The message is encoded into an unique
codeword xi={x1, x2,…,xt}, which is corrupted by noise after
passing through a noisy channel. In another word, the
encoder’s task is to map a binary word of k bits long to an
encoded word of t bits. Therefore each individual codeword
can be regarded as a class with t number of parameters (or
features) in each class, where each parameter represents a
modulated bit in the codeword.

2.1. Training phase

This is an initial stage which only needs to be performed
once only, unless the channel condition has varied
significantly. The input of the SVM decoder is a set of l
number of corrupted sequence that is transmitted from the
encoder, which can be represented as (x1, y1), (x2, y2), …,
(xl, yl), where xi ∈ ℜt, i = 1,…, l and yi ∈ {1,…, N}.

The output is a reduced set of those training data from
each codeword pair. These are used as decision variables,
also called the support vector (SV). Every SV, denoted by
xv, is associated a weighting value αv and a hard decision
output ov ∈{+1,-1} to indicate the desired decision result. As
this algorithm is comparing two codewords at one time,
therefore all combinations of codeword pairs are used during
training. Hence this method is also known as one-versus-one
SVM. The basic schematic of the training stage is shown in
figure 1.

During the initial training stage, a decision function for a
non-linear SVM is constructed for each combination of
codeword pair via,

α
∈

= +∑() (,)ij ij ij

ij ij

ij ij

v v v
v S

d o K bx x x

for i , j = 1, … , n; j≠i (1)

where Sij denotes the set of SVs for the codeword pair ij,
K(x,xv)=φT(xv)φ(x) is a kernel function, where φ(x) maps the

training data vector xv into the high-dimensional feature
space, and bij is a bias term.

Define a coefficient vector, wij, such that

1

()
ijl

ij
q q q

q

o α φ
=

=∑w x (2)

where lij is the number of training data for the ith and jth
codeword.

To determine the appropriate parameters for wij and bij,
the following optimization problem is solved for the training
data from comparing the codword i and j [15]

 ξ
=

+ ∑
1

1
minimize ()

2

l
ij T ij ij

t
t

Cw w (3)

Subject to the following constraints,

φ ξ
φ ξ

ξ

+ ≥ + − =
+ ≤ − + =

≥ >

() () 1 , if

() () 1 , if

0, 0

ij T ij ij
t t t

ij T ij ij
t t t

ij
t

b y i

b y j

C

w x

w x
 (4)

where C is the tradeoff parameter between the training error

and the margin of the decision function, and ij
tξ is the slack

variable to compensate for any non-linearly separable
training points.

Fig. 1. Overview of the SVM decoder in the training phase.

2.2. Decoding phase

At the actual decoding stage, the receiver will observe a
noisy sequence, z = {z1,z2,…,zt}. This becomes a new test
object for the SVM decoder. The problem of decoding thus
becomes a multi-class pattern classification problem. The
likelihood of the noisy sequence z is transmitted from the ith
codeword can be calculated via,

α

= ≠

= ≠ =

=

= +

∑

∑ ∑
1,

1, 1

() sign(())

sign((,))
ij

ij ij ij

ij

N
ij

i
j j i
N S

ij

v v v
j j i v

D d

o K b

z z

x z

 (5)

This procedure is commonly referred as ‘voting’, and it

carries on for i = 1,…,N. Finally the received noisy sequence
z is classified to the class label yi which has the highest
number of votes. This class label represents the estimate of
the transmitted codeword. Once it has been identified, the

m1

·

·

·

mN

Encoder

x1

·

·

·

xN

SVM
Decoder

⊕

AWGN

 αv, xv, ov

183

task of retrieving the associated message mi is not difficult,
which is the same as in VA.

2.3. Advantages of SVM decoder

The main reason for employing SVM to apply to the
decoding problem, over other conventional methods of
artificial intelligence, such as a multi-layer neural network,
is because there are no local minima problems. Unlike
neural networks, SVM is formulated as a quadratic
programming (QP) problem. Therefore the global optimum
solution, instead of local ones, can be obtained. Moreover, it
is more robust to any outliers. In this particular SVM
algorithm the training time is reduced because there are less
support vectors produced [16].

Like other artificial intelligence systems, the distinct
advantage of such algorithm is the adaptability. Through the
learning stage, the receiver can have a physical awareness
and the ability to adapt to its communication environment,
where noise and other types of undesired interferences are
impairing the data.

Another benefit of an adaptable decoder is that the
tradeoff between complexity and error control capability can
be controlled according to the application. For traditional
error control algorithms, the decoding procedures are
usually fixed, regardless to the quality of the channel.
Therefore the bit error rate may exceed to the user’s
requirement, especially when the signal-to-noise ratio (SNR)
is increased. This may imply that some extra time and
energy is wasted for the performance that the user does not
need. In support vector machines, both the accuracy and the
complexity of the decoder are governed by the number of
the support vectors produced during the training stage,
which are relatively under the designer’s control. Therefore
this algorithm has great potentials for the emerging software-
defined radios where adaptability becomes the essential
consideration.

2.4. Complexity of SVM decoder

Currently the main assumption in employing such a
technique is that the number of possible messages N must be
finite so the receiver can create the decision rules for all the
possible outcomes. If N gets greater, more decision functions
need to be constructed hence the decoding complexity is
increased. This could be considered as one of possible
constraints in application of this method.

The analysis of complexity of SVM is completely
different for the two phases. The complexity of SVM during
the training phase is related to the optimization algorithm
that it is used to solve the QP problem [10]. At the testing
phase, where all the support vectors have been identified, the
complexity will be the same, regardless of the training
algorithm. For the application of error control coding, it
mainly concerns with the computational complexity at the

testing stage because the training stage only constitutes a
very insignificant amount of time comparing to the total
decoding time.

Table 1 compares the computational complexity of SVM
at the decoding stage with other conventional methods for
decoding convolutional code, such as the soft-output Viterbi
Algorithm (SOVA) and the maximum a posteriori (MAP)
algorithm. The complexity of SVM is derived from
examining the number of operators required for a complete
classification, which is based on equation (5). The
conventional methods are taken from the study in [3]. The
comparison is made on these two algorithms because they
are currently the two most popular decoding algorithms for
convolutional codes [3]. Also, the current SVM decoder
uses a radial basis function (RBF) kernel, which requires
exponential operations, similar to the conventional MAP
algorithm.

It is interesting to observe from table 1 that the
complexity of SVM decoder has a vastly different
characteristic comparing to conventional methods. It is
completely controlled by the number of support vectors and
the length of codeword to be processed, whereas the
conventional algorithms depend heavily on the structure of
the encoder. Therefore, as the number of memory elements
increases in the encoder, the decoding complexity for SOVA
and MAP must increase exponentially as shown from table
1. This is a major drawback of those techniques for
applications such as deep space communication where the
order of memory can reach to 10 [17]. However, this would
not have any effect for the SVM decoder as long as the
length of each codeword remains the same. The
independency of encoder structure becomes another
advantage for the SVM decoder. Although the SVM
decoder can only process t bits at a time, multiple decoders
can be employed in parallel to increase the decoding speed.

3. DESIGN OF SVM DECODER

A simulator of a communication system that consists of a
rate 1/2 convolutional encoder, AWGN channel and a
pairwise-SVM decoder are designed in order to evaluate the
BER performance of SVM decoder. The convolutional
encoder can be defined with the octal form of G=4/5. Figure
2 shows the structure of the rate 1/2 convolutional encoder
used.

Fig. 2. The rate 1/2 convolutional encoder used in the simulator.

184

TABLE I
COMPUTATIONAL COMPLEXITY OF SVM AND OTHER DECODING ALGORITHMS.

 SVM* SOVA** MAP**

Multiplications
− +(1)

((2))
2

N N
s t ()2 2 2k vT ⎡ ⎤⋅⎣ ⎦ ()5 2 2 6k vT ⋅ ⋅ +

Subtractions
−(1)

()
2

N N
st - -

Additions
− +(1)

()
2

N N
st s ()2 2 2 2 9k vT ⎡ ⎤⋅ ⋅ +⎣ ⎦ ()2 2 2 6k vT ⋅ ⋅ +

Exponentials
−(1)

()
2

N N
s - ()2 2 2k vT ⋅ ⋅

* A RBF kernel function is assumed; t is the length of the whole codeword to classify; N is the total number of possible
codewords; s is the number of support vector in each class.
** k and v is the number of input and the memory elements of the encoder respectively; T is the number of time stages
required to decode the same amount of information as the SVM decoder.

A readily available software called LIBSVM [18], is
implemented for constructing the pairwise SVM and for
training and testing the data points. The radial basis function
(RBF) is chosen as the kernel function to map the input
space to the higher dimensional feature space. The RBF
function with a width of γ is defined as,

γ= − −
2

(,) exp()K x y x y (6)

where the value of γ is set at the recommended value of 1/N.
According to [19], the performance of RBF kernel is

much comparable to other types of kernel, such as a
polynomial or linear function. Hence at this stage there is no
need to consider those other kernels.

To produce the training data, all the possible codewords
from a message of certain length, were corrupted by additive
Gaussian noise at SNR of 0 dB and sent repeatedly to the
pairwise SVM decoder to generate the decision functions. It
was deliberately set at a high noise level to represent the
‘worst-case’ scenario. Then at the testing stage, monte carlo
simulations were conducted of random codeword and tested
in various levels of noises. The received signal was
classified by the pairwise SVM decoder and hence the
original message word can be estimated directly because of
the one to one correspondence between the message and
code word is assumed. This cycle is repeated while
recording the number of errors that the decoder makes.

 Message

Source
Conv.

Encoder

Data
Sink

SVM
Decoder

BPSK
Modulator

AWGN
Channel

BPSK
Demodulator

Fig. 3. Schematic blocks of the simulating system.

In all simulations, simple binary phase shift keying
(BPSK) was used for modulation. In addition, a well-known
soft-decision Viterbi decoder, which is a conventional
convolutional decoder, was implemented in the simulator as
a benchmark to compare the bit error rate (BER). Figure 3
shows the schematic of the simulated system.

4. SIMULATION RESULTS AND DISCUSSION

4.1. Effect of training size

The initial simulation investigates the impact of using
different number of training data on the decoding accuracy.
There are a total of 16 possible codewords to classify at the
decoder’s side. For simulation purposes, the length of
codeword to be processed at one time is 8 bits. The channel
consists of additive Gaussian noise with a zero mean and
variance (i.e. noise power) of N0/2. Table 2 summarizes the
results of the SVM decoder.

TABLE II
SVM PERFORMANCE UNDER DIFFERENT TRAINING SIZES

Training
Size

Training
time (s)*

#SVs
BER

 (SNR 0 dB)

160 0.0625 153 0.012
480 0.0938 372 0.008

1,600 0.2344 879 0.006
* Simulations were conducted on an Intel Pentium 4 computer with
a CPU of 2.4 GHz running Matlab®.

Figure 4 shows the BER curve obtained by the SVM
decoder in comparison with the traditional Viterbi decoder,
which is based on maximum likelihood (ML). The results
are comparable with the Viterbi decoder if adequate training
data is given, suggesting that SVM does tend to converge to
a global optimum solution (similar to ML decoding). The

185

small training time, shown from table 2, is an advantage of
using a pairwise algorithm. Moreover, with a higher training
size hence a larger number of support vectors (decision
variables), the BER results are generally better as expected.

However, there is a limit that the training data can
improve the decoder’s performance. Beyond that, not only
the decoding accuracy is saturated, also the decoding time
will be extended if more support vectors are generated from
the trained model. Figure 5 displays the result of such
investigation, showing that the performance gain is generally
saturated when the number of training data reaches over
1000.

0 1 2 3 4

10
−4

10
−3

10
−2

10
−1

B
E

R

E
s
/N

o
 (dB)

No Coding
SVM − training size = 160
SVM − training size = 480
SVM − training size = 1600
Viterbi

Fig. 4. BER of the SVM decoder for each different training sizes.

500 1000 1500 2000 2500 3000

10
−3

10
−2

B
E

R

Training Size

No coding
Viterbi
SVM

Fig. 5. BER of the SVM decoder under different training sizes;
Es/No fixed at 2 dB.

4.2. Effect of codeword size

The number of classifiers will increase exponentially as the
number of codewords increases, which is due to a longer
message size. This also implies a much longer processing
time. This problem, also known as the curse of
dimensionality, is one of the drawbacks of pairwise SVM.

Figure 6 shows that a longer code sequence in general
performs slightly better than a shorter code. This is possibly
due to more input features for the SVM decoder to classify
or a higher hamming distance to separate each codeword.
Nevertheless the trade-off is the long decoding time. This
would possibly limit the size of the codeword to be
processed at one time. More investigations are undertaken to
overcome this difficulty.

0 1 2 3 4 5 6

10
−4

10
−3

10
−2

B
E

R

E
s
/N

o
 (dB)

No coding
Viterbi
SVM, msg size = 4
SVM, msg size = 8

Fig. 6. BER of the SVM decoder for different number of
codewords to classify; training size is 1600.

4.3. Effect of Rayleigh’s fading

To further explore the BER characteristic and the system
performance of the SVM decoder, the AWGN channel in the
simulator is replaced with a Rayleigh fading channel. It is a
popular model for estimating the fading characteristics in a
land mobile radio channel [1]. In the simulation, no
interleaver was used as a compensation for the bursting
errors in the fading channel. Figure 7 demonstrated a coding
gain of 2 dB from the SVM decoder over the conventional
Viterbi decoder. Such improvement is due to the adaptive
nature of this decoding scheme, which makes it suitable for
more erratic channel conditions. In this example, the Viterbi
algorithm is optimized for Gaussian, memory-less channel,
therefore it is less effective for a fading channel, in which
the noise and the fading signal have a memory-like behavior.

186

−2 0 2 4 6 8

10
−3

10
−2

10
−1

B
E

R

E
s
/N

o
 (dB)

No Coding

Viterbi

SVM

Fig. 7. BER of the SVM decoder under Rayleigh’s fading; training
size is 1600.

5. CONCLUSIONS

This paper presents a completely new approach to decode
convolutional code using support vector machines. By
treating each codeword as a unique class, classification can
be realized by a pairwise SVM. Simulation results suggest
that the BER of the SVM decoder is comparable and even
better than the conventional Viterbi Algorithm for the
simulated cases; and a coding gain of 2dB is achieved under
a Rayleigh’s fading channel. However, the number of
codewords to identify is currently a limiting factor for the
decoder, which can be compensated by parallel processing.
Nevertheless, the independency of encoder structure and
adaptability to channel conditions makes this decoder
scheme stand out from other conventional decoders.

ACKNOWLEDGEMENT

The authors would like to thank Assoc. Professor Vojislav
Kecman from the University of Auckland for his helpful
advice on this research project.

REFERENCES

[1] S. Haykin, Communication Systems, 4th ed: John Wiley &

Sons Inc., 2000.
[2] W. C. Huffman and V. Pless, Fundamentals of Error-

Correcting Codes. Cambridge: Cambridge University
Press, 2003.

[3] V. Branka and J. Yuan, Turbo Codes- Principles and
Applications, 3rd ed: Kluwer Academic, 2002.

[4] B. Bougard, A. Giulietti, and L. Van der Perre, Turbo
Codes-Desirable and Designable. New York: Kluwer
Academic Publisher, 2004.

[5] S. M. Berber, P. J. Secker, and Z. A. Salcic, "Theory and
application of neural networks for 1/n rate convolutional
decoders," Engineering Applications of Artificial
Intelligence, vol. 18, pp. 931-949, 2005.

[6] X.-A. Wang and S. B. Wicker, "An artificial neural net
Viterbi decoder," Communications, IEEE Transactions on,
vol. 44, pp. 165-171, 1996.

[7] E. Brorvikov, "An Evaluation of Support Vector Machines
as a Pattern Recognition Tool," University of Maryland,
College Park 1999.

[8] K. K. Chin, "Support Vector Machines applied to Speech
Classification," in Department of Computer Speech and
Language Processing, Master of Philosophy Thesis.
Cambridge: University of Cambridge, 1999.

[9] L. Wang, Support Vector Machines: Theory and
Applications. Berlin: Springer, 2005.

[10] T.-M. Huang, V. Kecman, and I. Kopriva, Kernal Based
Algorithms for Mining Huge Data Sets. Berlin: Springer,
2006.

[11] L. Wang, Soft Computing in Communications. Berlin:
Springer, 2004.

[12] T. G. Dietterich and G. Bakiri, "Solving Multiclass
Learning Problem via Error-Correcting Output Codes,"
Journal of Artificial Intelligence Research, vol. 2, pp. 263-
286, 1995.

[13] A. Passerini, M. Pontil, and P. Frasconi, "New Results on
Error Correcting Output Codes of Kernel Machines," IEEE
Transactions on Neural Networks, vol. 15, pp. 45-54,
2004.

[14] U. Kreßel, Pairwise classification and support vector
machines. Cambridge, MA: MIT Press, 1999.

[15] C.-W. Hsu and C.-J. Lin, "A comparison of methods for
multiclass support vector machines," Neural Networks,
IEEE Transactions on, vol. 13, pp. 415-425, 2002.

[16] S. Abe, Support Vector Machines for Pattern
Classification. London: Springer, 2005.

[17] R. Wells, Applied Coding and Information Theory for
Engineers. New Jersey: Prentice-Hall Inc., 1999.

[18] C.-C. Chang and C.-J. Lin, "LIBSVM - A Library for
Support Vector Machines," 2.82 ed, 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[19] S. Keerrthi and C.-J. Lin, "Asymptotic behaviors of support
vector machines with Gaussian kernel," Neural
Computation, vol. 15, pp. 1667-1689, 2003.

187

