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ABSTRACT

Assuming a noisy linear mixing model of source random végsb
or signals, maximizing the output signal-to-interfereace-noise-
ratio (SINR) among linear transformations of observed tids to
solving the generalized eigenvalue problem. The explwititton

of the problem assumes the knowledge of the mixing coeffisien
and noise variance and, for this reason, is not a blind me#sod
such. However, we show in this paper that the solution carsbe e

matedblindly anddirectly using basic independent component anal-

ysis (ICA) designed for noise-free linear models. In additithe
theoretical and numerical results of the paper show thatobrtiee
most widely applied ICA algorithms, the equivariant adepgource
identification (EASI) algorithm, is, in practice, identiegith SINR-
maximizing generalized eigenfiltering, even though it dnesuse
explicit knowledge of the mixing coefficients nor source anuise
statistics.

Index Terms— Independent Component Analysis, Noisy Lin-
ear Models, Generalized Eigenvalue Problem, Adaptive&dden-
tification

1. INTRODUCTION

Independent component analysis (ICA) [1] is a statistiaia pro-
cessing technique which has attracted a lot of attentioentc Es-
pecially, it has been applied successfully to solving btndrce sep-
aration (BSS) problem. Typically, moise-fredinear mixing model
is assumed in derivation of ICA algorithms in the literatlire Need-
less to say, the noise-free model is unrealistic in most effacti-
cal applications. Consequently, applications of ICA ofemsume
a noisy linear model, but exploit one of the ICA algorithms de
veloped for noise-free models. Thus, the presence of raaton
level of additive noise is thought to cause “only” some fbksdis-
tortion due to the model mismatch. However, numerical exper
ments reported in [2] indicate that, although noise canmieeesup-
pressed completely by any linear technique, the performgam in
terms of input-output signal-to-interference-and-noesio (SINR)
obtained using ICA is practically identical to that of thetiopum
(i.e., SINR-maximizing) linear transformation utilizikgown chan-
nel and noise statistics. That paper is, neverthelessjctest to a
certain telecommunications related interference suppesappli-
cation in which it is enough to assume (and is assumed) ratirer
ple2 x N (N > 2) noisy mixing model. Also some other earlier
ICA works (see, e.g., [3]) have found out (by numerical ekpents)
similar results.
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In this paper, our main objective is to generalize the expen-
tal findings of [2] toM x N (M > N) modelsin the mathematically
rigorous way In particular, the forthcoming analytical study shows
that conceptually ICA can indeed identify a linear inputpu SINR
maximizing transformatiodirectly. Recall, that identifying the mix-
ing matrix and inverting it do not lead to the linear SINR nraiding
transformation as such due to noise enhancement. We aksogiv
ditions under which one of the most widely applied ICA al¢fums,
the equivariant adaptive source identification (EASI) &ty [4],
is, in theory, identical with SINR-maximizing generalizeenfil-
tering [5]. More specifically, we give the necessary and ciaffit
conditions under which the matrix of the generalized eidgen§ is
a stationary point of the EASI algorithm. We also show some nu
merical results verifying convergence of the EASI algaritto the
SINR-maximizing linear solution and showing that the perfance
of the EASI algorithm is remarkably close to the optimal.(ithe
maximal output SINR among all linear transforms of obsemat)
also in cases in which the above mentioned theoretical aityn
condition is not met. In addition, we prove that, in the specase
of interference-free (that is, noise only) system, the EAl§brithm
can attain exactly the maximum diversity gain blindly, igerform
as ablind maximal ratio combiner (MRC).

2. NOISY ICA MODEL AND OPTIMAL LINEAR
FILTERING

A complex valued, linearM x N (M > N) ICA model [1] with
additive white Gaussian noise (AWGN) is assumed througtiost
paper. Thus, thé/-dimensional random observation vectet, is
given as

x=As+m, @)

in whichs = [s; s2...sn]7 is a random source vector with com-
plex valuedmutually independent componeatsdn is a zero mean
complex valued Gaussian noise vector (independent &owith a
strictly positive variancer> and the covarianc& {nn”} = oL
Further,A = [h; hy...hy] € C**¥ is a full rank mixing (or
channel) matrix. Without loss of generality (see, [1]) sitissumed
that the source components,, so, . .. andsy, have zero mean and
unit variance. Together with the independence assumptigim-
plies thatE {ss”’} = I. In ICA literature, the complex valued
sources are usually assumed also to be circularly symnagthgast
up to second-order. A complex valued random variablezs&ysaid
to be second-order circularly symmetric]Ef{z2} = 0 [6]. Circu-
lar symmetry of the source components is assumed also haie. T
assumption yields (again together with independency aramean



assumptions) thaf {ss” } = 0. In the analysis, the second-order
circular symmetry property is assumed also for the noiséovert

Definition 1 Letw € C*\{0} be an arbitrary linear filter and
yw = wlx the corresponding linear output. Signal-to-interference
and-noise ratio (SINR) wrt. the-th source component,,, at the
outputyy, is then defined as

wiR,w
Pn(W) = my (2
in which
R, :=E {hnsns;hf} = h,h? 3)
and
H
R =ES [ Y hise+n| | Y hisi+n
=Y hih{ +0°L
k#n

Remark 1 Since all eigenvalues of the Hermitian mati®,, are
greater than or equal ta2, the Hermitian form in the denominator
of (2) is positive definite, i.e., strictly positive for al € C*\ {0},
provided thatz? > 0. Consequently, (2) is well-defined for &l €
cM\{o}.

Now, as seen in (2), maximizing SINR among all linear transfo

tions of observed data, i.e., maximizipg (w), equals to solving
the generalized eigenvalue problem [5] associated withirnpair

(R.,R’.). Hence,

X P (w) 5)
and
arg max pn(w) = en, (6)

weCM\ {0}

in which \,, stands for the greatest eigenvalue of the Hermitian ma-

trix (R',,) "'R., (the matrix inverse exists, see Remark 1) apdor
the corresponding eigenvector. To be specific, since SINRv) is

Definition 2 (i) The vectore,, is called SINR-maximizing general-
ized eigenfilter (M-GEF) wrt. the source component (i7) The
matrixE := [e; e2...en] € CV*M s called M-GEF transforma-
tion. Recall, that it also has the LMMSE characterization as

E=C.'A. (8)

(iii) The filtered outpuy := E”x is called M-GEF output.

Lemma 1 If the columns of mixing matriA are mutually orthog-
onal, i.e., A A = D4 for some diagonal matriDa € CV*V,
then the M-GEF transformatioR has mutually orthogonal columns
and, moreoveE = AD g for some diagonal matribDg € CN*N,

Proof. Let the columns oA = [h; h» ... hy] be orthogonal. Now,
it is enough to prove that the mixing coefficient veckor is the M-
GEF vector wrt. the source componentforalln € {1,2,...,N}.
First, due to orthogonality of the columns Af, Ryh,, = 0 for all
k # n, which implies thaR’,h,, = ¢*h,,. Consequently,

_ b Ph, — Bl
Ruh, = [ho|*h, = 220 R by, 9)
g
i.e., h,, is an eigenvector of(R/n)‘iRn =: M,, and the corre-
sponding eigenvalue igh,.|*/o® =: An.
Second, it is still needed to show that is the greateseigen-
value of M,,, or equally, that\,, really is the maximum value of
the linear output SINR,, (w) in C*\{0}. But, using Schwarz’s

inequality, it is seen that, for a € C*\ {0},
||hn||2.

o2

Pn(w) < (10)

Hence, this concludes the proof. |

Lemma 2 The following assertions are equivalent:

1. The matrixA = [h; hs ... hy] has orthogonal columns.

2. Ef A = D := diag(di, do, . .., dn) for some complex num-
bersdl, dg, . ,dN.

3. The M-GEF outpuy = [y1 2 - . - y~] has uncorrelated com-

ponents, i.eE {yiy;} = 0foralli # j.

Proof. First of all, notice that the complex numhgy in the second

scale invariante,, can be any vector in one-dimensional eigensub-assertion can be written ds = e'h,, foranyn € {1,2,..., N}.

space corresponding to the eigenvalue

Also the linear minimum mean square error (LMMSE) estima-

For this reasond,, is necessarily non-zero for any since otherwise
A would be zero. Now(7) The first assertion implies the second

tor of a source can be shown to yield the maximum SINR amongne according to Lemma 1(ii) Also the inverse is correct, since

linear transformations. This is basically stated in [7] amdefer-
ences therein. The LMMSE transformation feth source in model
(1) is essentially given as
wl, = Cx 'hy, 7

in which Cx = E[xx"] = AA" + 521 is the observation covari-
ance. This linear transformation, thus, gives an expliitition to
the generalized eigenvalue problem above, eg.,= w,,. Nev-
ertheless, the solution assumes the knowledge of the meaeti-
cients and noise variance and, for this reason, is not a biietthod
as such. However, it will be shown that the solution can beneséed
blindly using ICA.

Next some further notations used throughout this paper exre d
fined and the most important properties of filters maximizihg
linear SINR are given.
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assuming that the second assertion is true and using thétidefiof
M-GEF filter e,, we have for alln, that

dih, = Rpen = MR nen = Ano’en. (12)

Hence A = ED with appropriate diagonal matri® and, further,
ATA =DPE" A = DPD. Finally, (iii) the second and the third
assertions are equivalent, since the covariance of the\aiim is

M
E{XXH} = AAT 4 oI = Z R.+c’I=R, +R/, (12)
k=1

for anyn. Hence, the correlation between thth andj-th (7 # j)
output component$ {yiy;f}, reduces now as follows:

* 1
E{yy;} =l (R;+R;)e; = (1+ )\—j)eijej- (13)



Here,)\; is strictly positive by definition, thus, the correlation is zero the identification ofA given that the observation covariand®y,

if and only if

0=e;Rje; =e; h;hj'e; (14)
Therefore and because the mixing matAx= [h; hy ... hy]is
assumed to be full rank, all the output components are mytuat
correlated if and only iE# A = D. [ |

A conventional diversity combining, or maximal ratio combi
ing (MRC) as often referred to, is closely related to M-GEREVN
ertheless, in MRC, the main objective is to maximize the aligo-
(AWG)-noise ratio (SNR) and, consequently, MRC ignoressjine
interfering source components which results in a suboptirBiNR
performance, in general. However, M-GEF wrt., say,rtkt source

is also estimated. However, experimental results in [2hssgthat
some ICA algorithms developed for noise-free models are &bl
providedirectlyinput-output SINR gains very close to the best linear
gain possible, in particular, the gains clearly better twith inverse
transform ofA.

Good performance under noise can be basically explained by

whitening which is accomplished in typical ICA algorithntlsat is,
the observed signak, is first transformed linearly to vectar= Vx
such thaff {zz"” } = I[1]. In some algorithms (in EASI algorithm,
for instance), linear whitening is performed implicitlyrihg the ac-
tual ICA separation procedure [4]. The whitening transfation,V,

is not unique, however, one popular way is to ¥e= Cx 2. The

component is consistent with MRC (wrt. the same component) i Whitening changes the ICA model (1) into

the sense that, without interfering source componentsk # n,
these two methods coincide. This is easy to see by settingfént

z(t) = Vx = VAs(t) + Vn(t).

ing sources to zero and constrainingto have, say, a unit norm in Hence, the new mixing matrix i& := VA. Now, since covari-

which case (2) reduces to

H
- w ' R,w

Pn(w) = 3 (15)

g
Thus now, maximizing (15) is an ordinary eigenvalue prohhemch,
for one, is well known to yield the MRC solution [8], i.e.,

arg max pn(w) = ch, foranyc € C.
weCtM

(16)

ance ofz equals to the identity matrix@, = I), A is exactly the
LMMSE matrix,C, ' A, for z. Consequently, after whitening, ICA
algorithms using an optimization criterion that is invatito additive
Gaussian noise [1] actually estimate the M-GEF transfaongor
inverse of it) directly. This is not well-understood in tligtature.
Majority of the well known ICA algorithms assume, that the

mixing matrix after whitening is orthogonal (or unitary imet com-
plex valued case), which is valid, in general, only if theskin model

is noise-free. In the noisy model (1), this assumption istnag, or

Animportant difference between MRC and M-GEF is, neverthe-in other words, the matriA is not orthogonal (unitary) in general.

less, the order of observation statistics needed to sob/pritblems
blindly. Estimation of the covariance of the observatiortoe x,

For this reason, the algorithms using the orthogonalitystramt can
not attain the M-GEF solution exactly in theory, but one daink

Cx = E{xx"} = R,, + o"I (in noise-only system), is sufficient that they tend to produce an orthogonalized estimate of tHeBW

to solve the MRC problem, since

arg max j, (w) = arg max w' Cyw. @an

wecM wecM

Hence, the MRC solution is obtainable blindly using onlyset:

order statistics ok. Also SINR is a second-order measure of out-

put’s “goodness” under general model (1), or more precidely
GEF depends only on second-order statistics of the cotiibof

the desired sourcé®.,., and second-order statistics of the contribu-

tion of interference and nois®’ ., in the observatiox. However,

(or LMMSE) transformation. We demonstrate this in the fafllog,
by considering the widely applied EASI algorithm as an exiamp
of the algorithms that are originally intended to perforniseefree
ICA and have the orthogonality constraint. Notice that ¢hexists
also ICA algorithms that do not use the orthogonality caistr(see,

e.g., [11]).
4. EASI ALGORITHM AND NOISY MODEL

EASI algorithm is a recursive online algorithm which opesabn

R,, andR’,, can not be separated blindly from second-order statisindividual samples of observed data. One recursion steedEASI

tics of the observationGx = R, + R/, for all n), but both are,
anyway, needed separately when solving M-GEF problem. stlgs
gests that blind linear output SINR maximization is ratheeaer-
alization of higher-order (noise-free) blind source safian than of
MRC.

3. INDEPENDENT COMPONENT ANALYSIS

In basic ICA, the goal is essentially to invert the model (lndiy,

that is, to find a demixing matriB € CV*M such thatBA is
as close to identity as possible by using only the obsematio
Because of the blindness, a solution of the ICA probl@n,can
be unique only up to left multiplication by an arbitrary pertation
and diagonal matrices. Blind identifiability of suchBais proved
for the noise-free ICA model in [9] and for the noisy model 19].

Nevertheless, in general, transforming the observatiomisrse of

algorithm, i.e., of searching the demixing mati € CV*™  is
given as

Biy1 = By — pUi(y:)By, (18)
in which p is a scalar step size and the update mafeix(y:) €
CN*N is defined as

Ui(y:) = yeyi —I+gly)yi —yigly)™.  (19)

Herey; = B:x:, I stands for identity matrix ang : CN¥ — C" is
an arbitrary nonlinear function. On right-hand side of (1@jpo first
terms tends to whiten the outpyt, thus, the algorithm uses implic-
itly the orthogonality constraint discussed in the pregi@ection.
Since only the current sample is used in each step of theitigor
the update matrix (19) does not vanish asymptotically. eladt a
stationary point of the algorithm is defined stochastica#iyfollows:

(4]

A does not lead, as such, to the best linear SINR gain (i.e.,-to yvPefinition 3 An N x M matrixB' is a stationary point of the EASI

GEF solution) in a noisy system due to arbitrary noise angglifon.
(Thisis also seen in Lemma 2.) Naturally, a linear SINR méaziing

transformation can be constructed as the LMMSE matrix (&raf
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algorithm if the expected value of the update tefi(y), is zero,
ie.,

E {yyH ~I+gly)y” - yg(y)H} =0, (20)



fory = B'x.

The convergence of the EASI algorithm is given as stabilfty o
the stationary point in noise-free model [4]. In other woralsleast
local convergence is guaranteed in theory. In the follovihmepret-
ical analysis, we do not pay attention to the issue of correrg
but solely show that the EASI stationary point is very clggelated
to the M-GEF solution. The convergence is verified with nuozr
experiments in the section 5.

4.1. Blind Maximal Ratio Combining

It was seen in the section 2 that, in the case ofrderference-free
linear model (i.e., the model with one source and noise oblind
maximization of the linear output SNR (or equally SINR) can b
carried out using second-order observation statisticsthik sec-

tion, we show that also the EASI algorithm can maximize SNR in

interference-free system. Of course, using a higher-astigistical
method to solve the second-order statistical problem isdaisable
in practise, if one knows beforehand that the system isfartence-
free. Sometimes the possible absence of interfering samego-
nents is not known in which case using the higher-order 1C o
can be reasonable. The following result is also a naturafirsga
point to the more general analysis in the next section.

Strictly speaking, we prove here that, in the particularcals
the interference-free model,

%X =hs+n, (21)

the MRC filter, which thus maximizes linear output SNR, istet
to stationary point of EASI algorithm provided that a noskmity
g= [glgg...gN]T cN -V,

g"(z): |2n|22n7n: 17"'5N7 (22)

is used. This is formulated rigorously in the following posgtion.

Proposition 1 LetN € {1,2,..., M} be arbitrary and assume the
model (21). In addition, lefé:, &2,...,&5} be a set of orthonor-
mal vectors inC*\{0} such thaté, equals to normalized MRC

filter, i.e.,& = h/||h|. Further, letg : C¥ — C" be defined as

in (22) andE := [&; &> ...&5]. Now,3a = [1 a2 ... ag]”
(C\{0})" such that
Ba = diag(aui, az, ..., oz];,)]:]H (23)
is a stationary point of the EASI algorithm, i.e.,
E{7a3 ~ 1+ g(Fa)7d - aglva)"} =0, (24

inwhich§a := BaX.

Proof. To begin with, let us prove that the higher-order term of

(24),

H. :

= E{g(§a)7d —Fag(Fa)"} e CVV,  (25)

vanishes for allx € ((C\{O})N. First, diagonal elements dfl,,
are zeros due to skew-symmetry. Second,(th¢)-th (i # 5) off-

diagonal element df,, is given as

) :{E{giy;(wwm}
i E {77 (ly;1* — 13:]°) }

(Ha ifi<j

26
itis; (20
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in which g, is then-th component off.. Hence, it is enough to
show that the off-diagonal elements are zeros foi all j. Now,
a straightforward calculation shows th&t{7:7;|7:|*} = 0 and
E{3:9;]5;]*} = 0foral a € (C\{0})". Therefore, the off-
diagonal terms and, consequently, the entire higher-dm‘mf{a
vanishes for alx € (C\{0})".

To finish the proof, we need that also the second-order term of
(24),E {Fa5& — 1}, vanishes for appropriate selection of the vec-

tora € (C\{0})"™. Now, denotingD, = diag(a1, asz,...,ay),
the covariance term is
E {yay;’} — Bohh”BY 4 o’B.BY
= DoE?hh”ED? + +*D.EYED/
= diag (|aa[*(|0]|* + 07), 0®|azl*,...,0%an|?).
(27

From which we see that the componentsyaf are uncorrelated for

alla € (C\{O})fV and, surely, it is possible to choosg, as, . ..
anda g € C such that the covariance matrix equals unity. W

Remark 2 (i) In Prop. 1, the selection that the vec®@r is the MRC
filter, is fully technical. Selecting any vec®g, n € {1,2,..., N},

to be the MRC filter leads to the same conclusion. This is, wfsep
consistent with permutation unambiguity of the EASI alidponi.

(4¢) The output dimensiorﬂf, of transformatioriE can be cho-
sen freely (as far adv < M). Consequently, the use of the higher-
order EASI algorithm to solve the second-order MRC problem i
sensible also in practise, if it is not known beforehand wethe
system is interference-free.

4.2. Blind SINR Maximization

The numerical experiments in the next section and also istajv
that the EASI algorithm provides almost identical SINR perfance
with M-GEF in practice also under the general model (1). Wofo
nately, in theory, the performances are not exactly equgéireral,
which is seen as follows. Since the higher-order term,

)H

gy)y" —yg»)", (28)

in the EASI algorithm (19) is skew-Hermitian, the outpgt, cor-
responding to any stationary point of the algorithm is nsagky
white, i.e..E {yyH} = I, due to the structure of the second-order
term,yy® — I. On the other hand, according to Lemma 2, the M-
GEF outputy, has correlated components unless the mixing matrix
A has orthogonal columns. Therefore, the M-GEF transfoonati
E, can not be, in general, exactly a stationary point of the EAS
algorithm.

It is, however, interesting to notice that the M-GEF transfa-
tion is, indeed, a stationary point of the EASI algorithnthié mix-
ing matrix has orthogonal columns. This is stated in theofaihg
proposition.

Proposition 2 Assume the model (1) with a mixing matex for
which A A = D4 for some diagonal matriDa € CV*¥ and
let the nonlinearityg be defined again as in (22). Now, «
[a1 az...an]” € (C\{0})" such that

Ba = diag(al,ag,...,aN)EH (29)
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Fig. 1. Output SINR gains as a function of SIR wrt. the strongestFig. 2. Output SINR gains as a function of observed SNR. All

component.N = 4 source components as well &5 = 4 observa-
tions are used. Observed SNR is fixed to 5 dB.

is a stationary point of the EASI algorithm, i.e.,

E{yayffIJrg(ya)yffyag(ya)H} 0, (30)

inwhichy, := Bax.

Proof.
Namely, Lemma 1 implies that, forall € {1,2,...,N},efl As =
cn$n for some complex constamt,, from which it follows easily
that the higher-order term in (30) vanishes for all selextiof coef-
ficient vectora. € (C\{0})". In addition, it is also straightforward
to see that it is possible to choose such a veatar (C\{0})" that

the covariance of . equals to unity. (The covariance is diagonal for

all the selections according to Lemma 2.) [ |

Remark 3 The Hermitian transpose of the M-GEF transformation
with appropriate scale of columnsésactlya stationary point of the
EASI algorithmif and only if the mixing matrixA has orthogonal
columns (i.e., orthogonality is theecessary and sufficieebndi-
tion). This is a direct consequence of Prop. 2 and Lemma 2.

5. NUMERICAL EXPERIMENTS

Numerical results in this section set against the perforaaf EASI
algorithm and SINR-maximizing M-GEF approach under noisy e
vironment. Also SINR performances of ordinary maximaloaom-
bining (MRC) and inversion of the mixing matrix, the mati in
model (1), are simulated in the experiments. Both of thelatteth-
ods are, thus, suboptimum since both interfering sourcegpooents
and additive noise are present. Here, signal-to-noise (8NR) wrt.
n-th source signal is defined as the average ratio of the pdwetto
source signal’s contribution and additive noise power @otbserved
signals. The signal-to-interference ratio (SIR) wrtth source sig-
nal, in turn, is the average ratio of the powerneth source signal’s
contribution and the powers of other components’ contidoin ob-
servedsignals. Given the power normalization of the formal sosirce
stated below (1), the SIR values other than 0 dB are implesadoy
appropriate scaling of the mixing coefficients.

In the experiments, four QPSK sourcé$ & 4) and four mix-

In essence, the proof is similar to the proof of Prop. 1.

N = 4 sources have equal observed power (i.e., SIR-4.8 dB).
Number of observations &/ = 4.

A, are drawn randomly from zero mean Gaussian distributions (
distribution for each source component) for each procgssiack

of N = 50000 symbols of data. Variances of these distributions are
selected such that observed SNR and SIR values correspgiveto
values on average. M-GEF bound is evaluated directly frandtta
model for each block. Hence, the bounds are not affected kg fin
sample statistics and, more importantly, they are the abesolpper
bounds among all linear transformations of received datage of
each realization. Also output SINR’s of the MRC and invensad

A are evaluated from the model.

The third-order nonlinearity (22) is used in the EASI altjom
in all the following experiments. A permutation ambiguitiyEpASI
outputs is circumvented by, first, evaluating the outputfSiit. all
the source components for all EASI outputs and, then, setetite
maximum ones. Practical ways to identify the output compte
are not considered in this paper. All the gains plotted asrage
gains wrt. the received SINR over one thousand mixturezatidin.

In Fig. 1, itis assumed that one of the sources is the desired o
and the other three are interfering ones. The figure showR §Hihs
for the desired source as a function of SIR with fixed obseSHR.
The figure illustrates that the gain of EASI algorithm is hgatenti-
cal with M-GEF bound. A difference is roughly 0.25 dB-unit fow
SIR values and tends to zero as SIR increases. This is wedistent
with the theoretic results, and especially with Prop. l¢siasymp-
totically (i.e., as SIR— oo) the system tends to noise-only system.
Notice also that asymptotic SINR gain for the EASI algoritisn
roughly 6 dB & 10log,,(4) dB) which equals to theoretic MRC
gain with four observations.

Figs. 2 and 3 give two examples of SINR gain vs. observed SNR
with fixed received SIR. In the former figure, all the sourcenpo-
nents have equal observed power on average, which resufs-in
proximately SIR of -4.8 dB. Performance is plotted only vane
source component, since SINR gains wrt. the other compsraeat
naturally, similar in this case. The latter figure gives aareple of
system with unequal observed average powers between theesou
Observed average powers of the three weakest sources ard015
and -5 dB wrt. the strongest source. Both figures indicatettiea

tures (M = 4) of them are used. The selection of source constellaperformance behavior of EASI is almost identical with theQ®&F

tions is more or less arbitrary, and it should not affect theegal va-
lidity of the results. Mixing coefficients, i.e., elementstioe matrix
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bound in practice, although, in theory, EASI is not able taiatex-
actly the bound in general.
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Fig. 3. Output SINR gains as a function of SNR. The= 4 sources have unequal observed power. Observation SIR'€ach source are

given above the plots. Number of observationgfs= 4.

6. CONCLUSIONS

In this paper, we illustrated that basic independent corapbanal-
ysis (ICA) designed for noise-free linear models is able dlves
blindly and directly, the generalized eigenvalue problee, to pro-
vide essentially the best possible output SINR among alinrans-
formations of observed data, in the challenging case ofrigaboth
additive noise and interference disturbing the desiredadigbser-
vation. However, ICA algorithms constraining the estindatke-
mixing matrix to be orthogonal (or unitary) can not exacttiasn
the optimal solution in general, but in a sense they producera
thogonalized version of the solution. In addition, the tie¢ical and
numerical results of the paper showed that one of the mostiyig-
plied ICA algorithms, the equivariant adaptive source ftifieation
(EASI) algorithm, is, in practice, identical with SINR-meizing
generalized eigenfiltering. Strictly speaking, we gavertbeessary
and sufficient condition under which the stationary poirthef EASI
algorithm maximizes the linear output SINR. We also proveat,t
in the special case of interference-free (that is, noisg)mystem,
the EASI algorithm attains exactly the greatest diverséindplindly,
i.e., performs as a blind maximal ratio combiner (MRC). Idiéidn,
the numerical results were given to show that the performanthe
EASI algorithm is remarkably close to the optimal (i.e., thaximal
output SINR among all linear transforms of observed dats) ai
cases in which the above mentioned theoretical optimatifydition
is not met.
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