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ABSTRACT

Assuming a noisy linear mixing model of source random variables
or signals, maximizing the output signal-to-interference-and-noise-
ratio (SINR) among linear transformations of observed dataleads to
solving the generalized eigenvalue problem. The explicit solution
of the problem assumes the knowledge of the mixing coefficients
and noise variance and, for this reason, is not a blind methodas
such. However, we show in this paper that the solution can be esti-
matedblindly anddirectly using basic independent component anal-
ysis (ICA) designed for noise-free linear models. In addition, the
theoretical and numerical results of the paper show that oneof the
most widely applied ICA algorithms, the equivariant adaptive source
identification (EASI) algorithm, is, in practice, identical with SINR-
maximizing generalized eigenfiltering, even though it doesnot use
explicit knowledge of the mixing coefficients nor source andnoise
statistics.

Index Terms— Independent Component Analysis, Noisy Lin-
ear Models, Generalized Eigenvalue Problem, Adaptive Source Iden-
tification

1. INTRODUCTION

Independent component analysis (ICA) [1] is a statistical signal pro-
cessing technique which has attracted a lot of attention recently. Es-
pecially, it has been applied successfully to solving blindsource sep-
aration (BSS) problem. Typically, anoise-freelinear mixing model
is assumed in derivation of ICA algorithms in the literature[1]. Need-
less to say, the noise-free model is unrealistic in most of the practi-
cal applications. Consequently, applications of ICA oftenassume
a noisy linear model, but exploit one of the ICA algorithms de-
veloped for noise-free models. Thus, the presence of reasonable
level of additive noise is thought to cause “only” some feasible dis-
tortion due to the model mismatch. However, numerical experi-
ments reported in [2] indicate that, although noise can never be sup-
pressed completely by any linear technique, the performance gain in
terms of input-output signal-to-interference-and-noise-ratio (SINR)
obtained using ICA is practically identical to that of the optimum
(i.e., SINR-maximizing) linear transformation utilizingknown chan-
nel and noise statistics. That paper is, nevertheless, restricted to a
certain telecommunications related interference suppression appli-
cation in which it is enough to assume (and is assumed) rathersim-
ple 2 × N (N ≥ 2) noisy mixing model. Also some other earlier
ICA works (see, e.g., [3]) have found out (by numerical experiments)
similar results.

In this paper, our main objective is to generalize the experimen-
tal findings of [2] toM×N (M ≥ N) modelsin the mathematically
rigorous way. In particular, the forthcoming analytical study shows
that conceptually ICA can indeed identify a linear input-output SINR
maximizing transformationdirectly. Recall, that identifying the mix-
ing matrix and inverting it do not lead to the linear SINR maximizing
transformation as such due to noise enhancement. We also give con-
ditions under which one of the most widely applied ICA algorithms,
the equivariant adaptive source identification (EASI) algorithm [4],
is, in theory, identical with SINR-maximizing generalizedeigenfil-
tering [5]. More specifically, we give the necessary and sufficient
conditions under which the matrix of the generalized eigenfilters is
a stationary point of the EASI algorithm. We also show some nu-
merical results verifying convergence of the EASI algorithm to the
SINR-maximizing linear solution and showing that the performance
of the EASI algorithm is remarkably close to the optimal (i.e., the
maximal output SINR among all linear transforms of observeddata)
also in cases in which the above mentioned theoretical optimality
condition is not met. In addition, we prove that, in the special case
of interference-free (that is, noise only) system, the EASIalgorithm
can attain exactly the maximum diversity gain blindly, i.e., perform
as ablind maximal ratio combiner (MRC).

2. NOISY ICA MODEL AND OPTIMAL LINEAR
FILTERING

A complex valued, linear,M × N (M ≥ N ) ICA model [1] with
additive white Gaussian noise (AWGN) is assumed throughoutthis
paper. Thus, theM -dimensional random observation vector,x, is
given as

x = As + η, (1)

in which s = [s1 s2 . . . sN ]T is a random source vector with com-
plex valued,mutually independent componentsandη is a zero mean
complex valued Gaussian noise vector (independent froms) with a
strictly positive varianceσ2 and the covarianceE

{
ηη

H
}

= σ2I.
Further,A = [h1 h2 . . .hN ] ∈ C

M×N is a full rank mixing (or
channel) matrix. Without loss of generality (see, [1]), it is assumed
that the source components,s1, s2, . . . andsN , have zero mean and
unit variance. Together with the independence assumption,this im-
plies thatE

{
ssH

}
= I. In ICA literature, the complex valued

sources are usually assumed also to be circularly symmetricat least
up to second-order. A complex valued random variable, sayz, is said
to be second-order circularly symmetric, ifE

{
z2

}
= 0 [6]. Circu-

lar symmetry of the source components is assumed also here. This
assumption yields (again together with independency and zero mean
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assumptions) thatE
{
ssT

}
= 0. In the analysis, the second-order

circular symmetry property is assumed also for the noise vector η.

Definition 1 Let w ∈ C
M\{0} be an arbitrary linear filter and

yw = wHx the corresponding linear output. Signal-to-interference-
and-noise ratio (SINR) wrt. then-th source component,sn, at the
outputyw is then defined as

ρn(w) =
wHRnw

wHR′
nw

, (2)

in which
Rn := E

{
hnsns∗nh

H
n

}
= hnh

H
n (3)

and

R
′
n := E









∑

k 6=n

hksk + η








∑

k 6=n

hksk + η




H





=
∑

k 6=n

hkh
H
k + σ2

I.

(4)

Remark 1 Since all eigenvalues of the Hermitian matrixR′
n are

greater than or equal toσ2, the Hermitian form in the denominator
of (2) is positive definite, i.e., strictly positive for allw ∈ C

M\{0},
provided thatσ2 > 0. Consequently, (2) is well-defined for allw ∈
C

M\{0}.

Now, as seen in (2), maximizing SINR among all linear transforma-
tions of observed data, i.e., maximizingρn(w), equals to solving
the generalized eigenvalue problem [5] associated with matrix pair
(Rn,R′

n). Hence,

max
w∈CM\{0}

ρn(w) = λn (5)

and
arg max

w∈CM\{0}

ρn(w) = en, (6)

in whichλn stands for the greatest eigenvalue of the Hermitian ma-
trix (R′

n)−1Rn (the matrix inverse exists, see Remark 1) anden for
the corresponding eigenvector. To be specific, since SINRρn(w) is
scale invariant,en can be any vector in one-dimensional eigensub-
space corresponding to the eigenvalueλn.

Also the linear minimum mean square error (LMMSE) estima-
tor of a source can be shown to yield the maximum SINR among
linear transformations. This is basically stated in [7] andin refer-
ences therein. The LMMSE transformation forn-th source in model
(1) is essentially given as

w
′
n = Cx

−1
hn, (7)

in whichCx = E[xxH ] = AAH + σ2I is the observation covari-
ance. This linear transformation, thus, gives an explicit solution to
the generalized eigenvalue problem above, i.e.,en = w′

m. Nev-
ertheless, the solution assumes the knowledge of the mixingcoeffi-
cients and noise variance and, for this reason, is not a blindmethod
as such. However, it will be shown that the solution can be estimated
blindly using ICA.

Next some further notations used throughout this paper are de-
fined and the most important properties of filters maximizingthe
linear SINR are given.

Definition 2 (i) The vectoren is called SINR-maximizing general-
ized eigenfilter (M-GEF) wrt. the source componentsn. (ii) The
matrixE := [e1 e2 . . . eN ] ∈ C

N×M is called M-GEF transforma-
tion. Recall, that it also has the LMMSE characterization as

E = Cx
−1

A. (8)

(iii) The filtered outputy := EHx is called M-GEF output.

Lemma 1 If the columns of mixing matrixA are mutually orthog-
onal, i.e.,AHA = DA for some diagonal matrixDA ∈ C

N×N ,
then the M-GEF transformationE has mutually orthogonal columns
and, moreover,E = ADE for some diagonal matrixDE ∈ C

N×N .

Proof. Let the columns ofA = [h1 h2 . . . hN ] be orthogonal. Now,
it is enough to prove that the mixing coefficient vectorhn is the M-
GEF vector wrt. the source componentsn for all n ∈ {1, 2, . . . , N}.
First, due to orthogonality of the columns ofA, Rkhn = 0 for all
k 6= n, which implies thatR′

nhn = σ2hn. Consequently,

Rnhn = ‖hn‖
2
hn =

‖hn‖
2

σ2
R

′
nhn, (9)

i.e., hn is an eigenvector of(R′
n)−1Rn =: Mn and the corre-

sponding eigenvalue is‖hn‖
2/σ2 =: λ̃n.

Second, it is still needed to show thatλ̃n is the greatesteigen-
value ofMn, or equally, that̃λn really is the maximum value of
the linear output SINRρn(w) in C

M\{0}. But, using Schwarz’s
inequality, it is seen that, for allw ∈ C

M\{0},

ρn(w) ≤
‖hn‖

2

σ2
. (10)

Hence, this concludes the proof. �

Lemma 2 The following assertions are equivalent:

1. The matrixA = [h1 h2 . . . hN ] has orthogonal columns.

2. EHA = D := diag(d1, d2, . . . , dN) for some complex num-
bersd1, d2, . . . , dN .

3. The M-GEF outputy = [y1 y2 . . . yN ] has uncorrelated com-
ponents, i.e.,E

{
yiy

∗
j

}
= 0 for all i 6= j.

Proof. First of all, notice that the complex numberdn in the second
assertion can be written asdn = eH

n hn for anyn ∈ {1, 2, . . . , N}.
For this reason,dn is necessarily non-zero for anyn, since otherwise
λn would be zero. Now,(i) The first assertion implies the second
one according to Lemma 1.(ii) Also the inverse is correct, since
assuming that the second assertion is true and using the definition of
M-GEF filteren we have for alln, that

d∗
nhn = Rnen = λnR

′
nen = λnσ2

en. (11)

Hence,A = ED̃ with appropriate diagonal matrix̃D and, further,
AHA = D̃HEHA = D̃HD. Finally,(iii) the second and the third
assertions are equivalent, since the covariance of the observation is

E

{
xx

H
}

= AA
H + σ2

I =

M∑

k=1

Rk + σ2
I = Rn + R

′
n (12)

for anyn. Hence, the correlation between thei-th andj-th (i 6= j)
output components,E

{
yiy

∗
j

}
, reduces now as follows:

E
{
yiy

∗
j

}
= e

H
i

(
Rj + R

′
j

)
ej = (1 +

1

λj

)eH
i Rjej . (13)
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Here,λj is strictly positive by definition, thus, the correlation is zero
if and only if

0 = e
H
i Rjej = e

H
i hjh

H
j ej (14)

Therefore and because the mixing matrixA = [h1 h2 . . .hN ] is
assumed to be full rank, all the output components are mutually un-
correlated if and only ifEHA = D. �

A conventional diversity combining, or maximal ratio combin-
ing (MRC) as often referred to, is closely related to M-GEF. Nev-
ertheless, in MRC, the main objective is to maximize the signal-to-
(AWG)-noise ratio (SNR) and, consequently, MRC ignores possible
interfering source components which results in a suboptimum SINR
performance, in general. However, M-GEF wrt., say, then-th source
component is consistent with MRC (wrt. the same component) in
the sense that, without interfering source components,sk, k 6= n,
these two methods coincide. This is easy to see by setting interfer-
ing sources to zero and constrainingw to have, say, a unit norm in
which case (2) reduces to

ρ̃n(w) =
wHRnw

σ2
. (15)

Thus now, maximizing (15) is an ordinary eigenvalue problem, which,
for one, is well known to yield the MRC solution [8], i.e.,

arg max
w∈CM

ρ̃n(w) = chn for anyc ∈ C. (16)

An important difference between MRC and M-GEF is, neverthe-
less, the order of observation statistics needed to solve the problems
blindly. Estimation of the covariance of the observation vector x,
Cx = E

{
xxH

}
= Rn + σT I (in noise-only system), is sufficient

to solve the MRC problem, since

arg max
w∈CM

ρ̃n(w) = arg max
w∈CM

w
H
Cxw. (17)

Hence, the MRC solution is obtainable blindly using only second-
order statistics ofx. Also SINR is a second-order measure of out-
put’s “goodness” under general model (1), or more precisely, M-
GEF depends only on second-order statistics of the contribution of
the desired source,Rn, and second-order statistics of the contribu-
tion of interference and noise,R′

n, in the observationx. However,
Rn andR′

n can not be separated blindly from second-order statis-
tics of the observation (Cx = Rn + R′

n for all n), but both are,
anyway, needed separately when solving M-GEF problem. Thissug-
gests that blind linear output SINR maximization is rather agener-
alization of higher-order (noise-free) blind source separation than of
MRC.

3. INDEPENDENT COMPONENT ANALYSIS

In basic ICA, the goal is essentially to invert the model (1) blindly,
that is, to find a demixing matrixB ∈ C

N×M such thatBA is
as close to identity as possible by using only the observations x.
Because of the blindness, a solution of the ICA problem,B, can
be unique only up to left multiplication by an arbitrary permutation
and diagonal matrices. Blind identifiability of such aB is proved
for the noise-free ICA model in [9] and for the noisy model in [10].
Nevertheless, in general, transforming the observation byinverse of
A does not lead, as such, to the best linear SINR gain (i.e., to M-
GEF solution) in a noisy system due to arbitrary noise amplification.
(This is also seen in Lemma 2.) Naturally, a linear SINR maximizing
transformation can be constructed as the LMMSE matrix (8) after

the identification ofA given that the observation covariance,Cx,
is also estimated. However, experimental results in [2] suggest that
some ICA algorithms developed for noise-free models are able to
providedirectly input-output SINR gains very close to the best linear
gain possible, in particular, the gains clearly better thanwith inverse
transform ofA.

Good performance under noise can be basically explained by
whitening which is accomplished in typical ICA algorithms,that is,
the observed signal,x, is first transformed linearly to vectorz = Vx

such thatE
{
zzH

}
= I [1]. In some algorithms (in EASI algorithm,

for instance), linear whitening is performed implicitly during the ac-
tual ICA separation procedure [4]. The whitening transformation,V,
is not unique, however, one popular way is to useV = Cx

− 1

2 . The
whitening changes the ICA model (1) into

z(t) = Vx = VAs(t) + Vη(t).

Hence, the new mixing matrix iŝA := VA. Now, since covari-
ance ofz equals to the identity matrix (Cz = I), Â is exactly the
LMMSE matrix,Cz

−1Â, for z. Consequently, after whitening, ICA
algorithms using an optimization criterion that is invariant to additive
Gaussian noise [1] actually estimate the M-GEF transformation (or
inverse of it) directly. This is not well-understood in the literature.

Majority of the well known ICA algorithms assume, that the
mixing matrix after whitening is orthogonal (or unitary in the com-
plex valued case), which is valid, in general, only if the linear model
is noise-free. In the noisy model (1), this assumption is nottrue, or
in other words, the matrix̂A is not orthogonal (unitary) in general.
For this reason, the algorithms using the orthogonality constraint can
not attain the M-GEF solution exactly in theory, but one can think
that they tend to produce an orthogonalized estimate of the M-GEF
(or LMMSE) transformation. We demonstrate this in the following,
by considering the widely applied EASI algorithm as an example
of the algorithms that are originally intended to perform noise-free
ICA and have the orthogonality constraint. Notice that there exists
also ICA algorithms that do not use the orthogonality constraint (see,
e.g., [11]).

4. EASI ALGORITHM AND NOISY MODEL

EASI algorithm is a recursive online algorithm which operates on
individual samples of observed data. One recursion step of the EASI
algorithm, i.e., of searching the demixing matrixB ∈ C

N×M , is
given as

Bt+1 = Bt − µUt(yt)Bt, (18)

in which µ is a scalar step size and the update matrix,Ut(yt) ∈
C

N×N , is defined as

Ut(yt) = yty
H
t − I + g(yt)y

H
t − ytg(yt)

H . (19)

Hereyt = Btxt, I stands for identity matrix andg : C
N → C

N is
an arbitrary nonlinear function. On right-hand side of (19), two first
terms tends to whiten the outputyt, thus, the algorithm uses implic-
itly the orthogonality constraint discussed in the previous section.
Since only the current sample is used in each step of the algorithm,
the update matrix (19) does not vanish asymptotically. Instead, a
stationary point of the algorithm is defined stochasticallyas follows:
[4]

Definition 3 AnN ×M matrixB′ is a stationary point of the EASI
algorithm if the expected value of the update term,U(y), is zero,
i.e.,

E

{
yy

H − I + g(y)yH − yg(y)H
}

= 0, (20)
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for y = B′x.

The convergence of the EASI algorithm is given as stability of
the stationary point in noise-free model [4]. In other words, at least
local convergence is guaranteed in theory. In the followingtheoret-
ical analysis, we do not pay attention to the issue of convergence
but solely show that the EASI stationary point is very closely related
to the M-GEF solution. The convergence is verified with numerical
experiments in the section 5.

4.1. Blind Maximal Ratio Combining

It was seen in the section 2 that, in the case of aninterference-free
linear model (i.e., the model with one source and noise only), blind
maximization of the linear output SNR (or equally SINR) can be
carried out using second-order observation statistics. Inthis sec-
tion, we show that also the EASI algorithm can maximize SNR in
interference-free system. Of course, using a higher-orderstatistical
method to solve the second-order statistical problem is notadvisable
in practise, if one knows beforehand that the system is interference-
free. Sometimes the possible absence of interfering sourcecompo-
nents is not known in which case using the higher-order ICA method
can be reasonable. The following result is also a natural starting
point to the more general analysis in the next section.

Strictly speaking, we prove here that, in the particular case of
the interference-free model,

x̃ = hs + η, (21)

the MRC filter, which thus maximizes linear output SNR, is related
to stationary point of EASI algorithm provided that a nonlinearity
g = [g1 g2 . . . gN ]T : C

N → C
N ;

gn(z) = |zn|
2zn, n = 1, . . . , N, (22)

is used. This is formulated rigorously in the following proposition.

Proposition 1 LetÑ ∈ {1, 2, . . . , M} be arbitrary and assume the
model (21). In addition, let{ẽ1, ẽ2, . . . , ẽÑ

} be a set of orthonor-
mal vectors inC

M\{0} such thatẽ1 equals to normalized MRC

filter, i.e., ẽ1 = h/‖h‖. Further, letg : C
Ñ → C

Ñ be defined as
in (22) andẼ := [ẽ1 ẽ2 . . . ẽ

Ñ
]. Now,∃ α = [α1 α2 . . . α

Ñ
]T ∈

(C\{0})Ñ such that

B̃α := diag(α1, α2, . . . , αÑ
)ẼH (23)

is a stationary point of the EASI algorithm, i.e.,

E

{
ỹαỹ

H
α

− I + g(ỹα)ỹH
α

− ỹαg(yα)H
}

= 0, (24)

in whichỹα := B̃α x̃.

Proof. To begin with, let us prove that the higher-order term of
(24),

H̃α := E

{
g(ỹα)ỹH

α
− ỹαg(ỹα)H

}
∈ C

Ñ×Ñ , (25)

vanishes for allα ∈ (C\{0})Ñ . First, diagonal elements of̃Hα

are zeros due to skew-symmetry. Second, the(i, j)-th (i 6= j) off-
diagonal element of̃Hα is given as

(
H̃α

)

i,j
=

{
E

{
ỹiỹ

∗
j (|ỹi|

2 − |ỹj |
2)

}
if i < j

E
{
ỹ∗

i ỹj(|yj |
2 − |ỹi|

2)
}

if i > j
(26)

in which ỹn is then-th component of̃yα . Hence, it is enough to
show that the off-diagonal elements are zeros for alli < j. Now,
a straightforward calculation shows thatE

{
ỹiỹ

∗
j |ỹi|

2
}

= 0 and
E

{
ỹiỹ

∗
j |ỹj |

2
}

= 0 for all α ∈ (C\{0})N . Therefore, the off-

diagonal terms and, consequently, the entire higher-orderterm H̃α

vanishes for allα ∈ (C\{0})Ñ .
To finish the proof, we need that also the second-order term of

(24),E
{
ỹα ỹH

α
− I

}
, vanishes for appropriate selection of the vec-

tor α ∈ (C\{0})Ñ . Now, denotingDα = diag(α1, α2, . . . , αÑ
),

the covariance term is

E

{
ỹαỹ

H
α

}
= B̃αhh

H
B̃

H
α

+ σ2
B̃αB̃

H
α

= DαẼ
H
hh

H
ẼD

H
α

+ σ2
DαẼ

H
ẼD

H
α

= diag
(
|α1|

2(‖h‖2 + σ2), σ2|α2|
2, . . . , σ2|αN |2

)
.

(27)

From which we see that the components ofỹα are uncorrelated for

all α ∈ (C\{0})Ñ and, surely, it is possible to chooseα1, α2, . . .
andα

Ñ
∈ C such that the covariance matrix equals unity. �

Remark 2 (i) In Prop. 1, the selection that the vectorẽ1 is the MRC
filter, is fully technical. Selecting any vectorẽn, n ∈ {1, 2, . . . , Ñ},
to be the MRC filter leads to the same conclusion. This is, of course,
consistent with permutation unambiguity of the EASI algorithm.

(ii) The output dimension,̃N , of transformatioñE can be cho-
sen freely (as far as̃N ≤ M ). Consequently, the use of the higher-
order EASI algorithm to solve the second-order MRC problem is
sensible also in practise, if it is not known beforehand wether the
system is interference-free.

4.2. Blind SINR Maximization

The numerical experiments in the next section and also in [2]show
that the EASI algorithm provides almost identical SINR performance
with M-GEF in practice also under the general model (1). Unfortu-
nately, in theory, the performances are not exactly equal ingeneral,
which is seen as follows. Since the higher-order term,

g(y)yH − yg(y)H , (28)

in the EASI algorithm (19) is skew-Hermitian, the output,ŷ, cor-
responding to any stationary point of the algorithm is necessarily
white, i.e.,E

{
ŷŷH

}
= I, due to the structure of the second-order

term,yyH − I. On the other hand, according to Lemma 2, the M-
GEF output,y, has correlated components unless the mixing matrix
A has orthogonal columns. Therefore, the M-GEF transformation,
E, can not be, in general, exactly a stationary point of the EASI
algorithm.

It is, however, interesting to notice that the M-GEF transforma-
tion is, indeed, a stationary point of the EASI algorithm, ifthe mix-
ing matrix has orthogonal columns. This is stated in the following
proposition.

Proposition 2 Assume the model (1) with a mixing matrixA for
whichAHA = DA for some diagonal matrixDA ∈ C

N×N and
let the nonlinearityg be defined again as in (22). Now,∃ α =
[α1 α2 . . . αN ]T ∈ (C\{0})N such that

Bα := diag(α1, α2, . . . , αN )EH (29)
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Fig. 1. Output SINR gains as a function of SIR wrt. the strongest
component.N = 4 source components as well asM = 4 observa-
tions are used. Observed SNR is fixed to 5 dB.

is a stationary point of the EASI algorithm, i.e.,

E

{
yαy

H
α

− I + g(yα)yH
α

− yαg(yα)H
}

= 0, (30)

in whichyα := Bαx.

Proof. In essence, the proof is similar to the proof of Prop. 1.
Namely, Lemma 1 implies that, for alln ∈ {1, 2, . . . , N}, eH

n As =
cnsn for some complex constantcn, from which it follows easily
that the higher-order term in (30) vanishes for all selections of coef-
ficient vectorα ∈ (C\{0})N . In addition, it is also straightforward
to see that it is possible to choose such a vectorα ∈ (C\{0})N that
the covariance ofyα equals to unity. (The covariance is diagonal for
all the selections according to Lemma 2.) �

Remark 3 The Hermitian transpose of the M-GEF transformation
with appropriate scale of columns isexactlya stationary point of the
EASI algorithmif and only if the mixing matrixA has orthogonal
columns (i.e., orthogonality is thenecessary and sufficientcondi-
tion). This is a direct consequence of Prop. 2 and Lemma 2.

5. NUMERICAL EXPERIMENTS

Numerical results in this section set against the performance of EASI
algorithm and SINR-maximizing M-GEF approach under noisy en-
vironment. Also SINR performances of ordinary maximal ratio com-
bining (MRC) and inversion of the mixing matrix, the matrixA in
model (1), are simulated in the experiments. Both of the latter meth-
ods are, thus, suboptimum since both interfering source components
and additive noise are present. Here, signal-to-noise ratio (SNR) wrt.
n-th source signal is defined as the average ratio of the power of n-th
source signal’s contribution and additive noise power in theobserved
signals. The signal-to-interference ratio (SIR) wrt.n-th source sig-
nal, in turn, is the average ratio of the power ofn-th source signal’s
contribution and the powers of other components’ contribution inob-
servedsignals. Given the power normalization of the formal sources
stated below (1), the SIR values other than 0 dB are implemented by
appropriate scaling of the mixing coefficients.

In the experiments, four QPSK sources (N = 4) and four mix-
tures (M = 4) of them are used. The selection of source constella-
tions is more or less arbitrary, and it should not affect the general va-
lidity of the results. Mixing coefficients, i.e., elements of the matrix
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Fig. 2. Output SINR gains as a function of observed SNR. All
N = 4 sources have equal observed power (i.e., SIR≈ −4.8 dB).
Number of observations isM = 4.

A, are drawn randomly from zero mean Gaussian distributions (one
distribution for each source component) for each processing block
of N = 50000 symbols of data. Variances of these distributions are
selected such that observed SNR and SIR values correspond togiven
values on average. M-GEF bound is evaluated directly from the data
model for each block. Hence, the bounds are not affected by finite
sample statistics and, more importantly, they are the absolute upper
bounds among all linear transformations of received data incase of
each realization. Also output SINR’s of the MRC and inversion of
A are evaluated from the model.

The third-order nonlinearity (22) is used in the EASI algorithm
in all the following experiments. A permutation ambiguity of EASI
outputs is circumvented by, first, evaluating the output SINR wrt. all
the source components for all EASI outputs and, then, selecting the
maximum ones. Practical ways to identify the output components
are not considered in this paper. All the gains plotted are average
gains wrt. the received SINR over one thousand mixture realization.

In Fig. 1, it is assumed that one of the sources is the desired one
and the other three are interfering ones. The figure shows SINR gains
for the desired source as a function of SIR with fixed observedSNR.
The figure illustrates that the gain of EASI algorithm is nearly identi-
cal with M-GEF bound. A difference is roughly 0.25 dB-unit for low
SIR values and tends to zero as SIR increases. This is well-consistent
with the theoretic results, and especially with Prop. 1, since asymp-
totically (i.e., as SIR→ ∞) the system tends to noise-only system.
Notice also that asymptotic SINR gain for the EASI algorithmis
roughly 6 dB (≈ 10 log10(4) dB) which equals to theoretic MRC
gain with four observations.

Figs. 2 and 3 give two examples of SINR gain vs. observed SNR
with fixed received SIR. In the former figure, all the source compo-
nents have equal observed power on average, which results inap-
proximately SIR of -4.8 dB. Performance is plotted only wrt.one
source component, since SINR gains wrt. the other components are,
naturally, similar in this case. The latter figure gives an example of
system with unequal observed average powers between the sources.
Observed average powers of the three weakest sources are -15, -10,
and -5 dB wrt. the strongest source. Both figures indicate that the
performance behavior of EASI is almost identical with the M-GEF
bound in practice, although, in theory, EASI is not able to attain ex-
actly the bound in general.
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Fig. 3. Output SINR gains as a function of SNR. TheN = 4 sources have unequal observed power. Observation SIR’s wrt. each source are
given above the plots. Number of observations isM = 4.

6. CONCLUSIONS

In this paper, we illustrated that basic independent component anal-
ysis (ICA) designed for noise-free linear models is able to solve,
blindly and directly, the generalized eigenvalue problem,i.e., to pro-
vide essentially the best possible output SINR among all linear trans-
formations of observed data, in the challenging case of having both
additive noise and interference disturbing the desired signal obser-
vation. However, ICA algorithms constraining the estimated de-
mixing matrix to be orthogonal (or unitary) can not exactly attain
the optimal solution in general, but in a sense they produce an or-
thogonalized version of the solution. In addition, the theoretical and
numerical results of the paper showed that one of the most widely ap-
plied ICA algorithms, the equivariant adaptive source identification
(EASI) algorithm, is, in practice, identical with SINR-maximizing
generalized eigenfiltering. Strictly speaking, we gave thenecessary
and sufficient condition under which the stationary point ofthe EASI
algorithm maximizes the linear output SINR. We also proved that,
in the special case of interference-free (that is, noise only) system,
the EASI algorithm attains exactly the greatest diversity gain blindly,
i.e., performs as a blind maximal ratio combiner (MRC). In addition,
the numerical results were given to show that the performance of the
EASI algorithm is remarkably close to the optimal (i.e., themaximal
output SINR among all linear transforms of observed data) also in
cases in which the above mentioned theoretical optimality condition
is not met.
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