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ABSTRACT

Computer audition is an evolving and relatively new
research field with many new applications. It would be of
great convenience to live in an environment that can change
automatically based on its “auditory sense”. In this work we
propose a novel framework for automatic recognition of
urban soundscenes. Our system facilitates a hierarchical
classification schema while the performance of two well
known feature sets is compared. A new post- processing
algorithm to enhance the discrimination quality of MPEG-7
features is proposed and shown to provide improved results.
Our approach is examined utilizing a compact testing
procedure while MPEG-7 LLDs reach higher recognition
rates than MFCCs.

Index Terms— Computer Audition, Environmental
sound recognition, MFCC, MPEG-7, Hidden Markov
Models (HMM)

1. INTRODUCTION
Nowadays we experience a lot of different types of urban
sounds in our everyday life (car, motorcycle, crowd etc).
Humans can effectively differentiate them quite effortless
utilizing only the auditory sense . Think as a paradigm the
situation were one is waiting at a traffic light. Using
incoming sounds alone one is able to understand that a car is
passing and a dog is barking in the presence of a horn sound.
The general scope of our work is to build up a system that
has the ability to automatically “understand” its surrounding
environment by taking under consideration the sounds it
“hears” alone. The area of computer audition faces an
increasing demand in numerous applications (robotic
awareness, environmental monitoring, media annotation etc)
thus becoming a research field of great importance.
Over the past decades a great deal of work has been
published in the area of content-based audio classification.
Eronen et al [1] explore an audio based recognition system
used for classification of 24 urban contexts. They utilize
several simplistic low-dimensional features as well as
standard spectral descriptors along with an HMM-based
classification scheme achieving 58% recognition rate. A
framework for frame-level classification of noises belonging
to five categories is presented in [2]. Line Spectral
Frequencies (LSFs) in combination with a decision tree

classifier were employed resulting in 88.1% classification
accuracy. A method based on three MPEG-7 audio low-level
descriptors (spectrum centroid, spectrum spread and
spectrum flatness) is presented in [3]. For classification
scheme a fusion of support vector machines and k nearest
neighbour rule is adopted in order to assign a specific sound
into predefined classes of common kinds of home
environmental sounds.
In this work we employed MFCCs and MPEG-7 descriptors.
Our aim is to identify which feature set contains more
discriminative information to serve the task of recognition of
urban soundscenes. The rest of the paper is organized as
follows. The next three sections describe the overall
architecture of our implementation, the feature extraction
methodology and the recognition procedure. Detailed
analysis of the evaluation method as well as the results is
given in the last part of the paper.

2. SYSTEM OVERVIEW
In this section the architecture of our system which makes
possible automatic recognition of urban soundscenes is
described. We approach the issue based on the way that
humans categorize subconsciously their surrounding
environment using only the perceived acoustic information.
Our goal is to distinguish scenes belonging to eight different
classes: aircraft, motorcycle, car, crowd, thunder, wind,
train, horn.

We utilize a hierarchical classification scheme consisting of
two stages and derived from a perceptual point of view of
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the classes (Fig. 1). The first stage classifies sounds into two
categories (mechanic and non-mechanic) while the second
one completes the rest of the classification process
producing the leaf-class. Furthermore our implementation
includes preprocessing of the audio signals, feature
extraction, elimination of silence frames, principal
component analysis (PCA) and training different kinds of
classifiers whose parameters represent the a-priori
knowledge we have available for the different audio classes.

3. FEATURE EXTRACTION AND SILENCE
ELIMINATION

In order to evaluate the performance of the selected feature
sets in the task of environmental sound recognition the same
preprocessing method must be applied. Thus all the
parameters were kept the same for both feature extraction
processes. Signals are cut into frames of 30ms with 10ms
time shift between two successive frames while they are
hamming windowed following MPEG-7 standard
recommendations.
Silence is considered to be “noise” in this particular task
making harder the process of modeling, hence reducing the
probability of correct classification. Subsequently a simple
amplitude-based silence detection algorithm is used applied
onto each sample. If all sample’s amplitudes of a specific
frame are bellow 4% of the average signal’s amplitude, the
frame is considered to be silent thus not involved in training
nor testing procedure. On top of that a standard version of
PCA is applied onto the MPEG-7 feature vector for the
purpose of dimensionality reduction.

3.1. MFCCs
This feature set is composed of the first twelve Mel
frequency cepstral coefficients plus frame’s total energy. For
MFCC’s derivation we compute the power of the Short time
Fourier transform (STFT) for every frame and pass them
through a triangular Mel scale filterbank so that signal
components which play an important role to human
perception are emphasized. Subsequently, the log operator is
applied and we exploit the energy compaction properties
that Discrete Cosine transform (DCT) benefits in order to
decorrelate and represent the majority of the frame-energy
with just a few of its coefficients. Lastly the most important
twelve coefficients are kept and in combination with frame’s
energy a thirteen-dimension vector is formed.

3.2. MPEG-7 feature set
The main idea behind MPEG-7 standard is the creation of a
method for automatic audio content description capable of
providing solutions in numerous problems such as indexing,
retrieval and classification. In this work we take advantage
of the following descriptors (Low Level Descriptors –
LLDs):

 Audio Waveform (AWF)

This constitutes compact description of the shape of an
audio signal by computing the minimum and maximum
samples within successive non-overlapping frames.

 Audio Power (AP)
It is a temporal descriptor representing the evolution of the
signal’s sampled data during time and is computed by the
following formula:
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where L is the total number of frames and Nhop the number
of time samples between two successive frames

 Audio Spectrum Envelope (ASE)
This series of features belong to the basic spectral
descriptors and is derived for the generation of a reduced
spectrogram of the original audio signal. It is a log-
frequency power spectrum and calculated by summing the
energy of the original power spectrum within a series of
logarithmically distributed frequency bands utilizing a
predefined resolution.

 Audio Spectrum Centroid (ASC)
The center of the log-frequency spectrum’s gravity is given
by this descriptor. Omitting power coefficients bellow
62.5Hz (which are represented by a single coefficient)
makes able the avoidance of the effect of a non-zero DC
component. For a given frame the ASC is defined from the
modified power coefficients and their frequencies as:

2 i i iASC= log (f /1000)p ) p/
i i
  (2)

where pi is the power spectrum while fi represent the
corresponding frequencies.

 Audio Spectrum Spread (ASS)
ASS or instantaneous bandwidth is a measure of signal’s
spectral shape and corresponds to the second central
moment of the log-frequency spectrum. It is computed by
taking the root mean square (RMS) deviation of the
spectrum from its Centroid:

(3)

 Audio Spectrum Flatness (ASF)
This descriptor is a measure of how flat a particular portion
of the signal is and represents the deviation of the signal’s
power spectrum from a flat shape. The power coefficients
are taken from non-overlapping frames while the spectrum is
divided into ¼-octave resolution logarithmically spaced
overlapping frequency bands. The ASF is derived as the
ratio of the geometric mean and the arithmetic mean of the
spectral power coefficients within a band.
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where N is the number of coefficients within a subband and
cn is the n-th spectral power coefficient of the subband. This
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feature can efficiently differentiate between noise (or
impulse) and harmonic sounds and we should take into
account that a large deviation from a flat shape generally
depicts tonal sounds.
The next two descriptors reflect upon the harmonic structure
of periodic sounds and can efficiently differentiate between
harmonic (music, voiced speech) and non-harmonic (noise,
unvoiced speech) sounds:

 Harmonic Ratio (HR)
This corresponds to the proportion of harmonic components
in the power spectrum. Its extraction for every frame is
standardized in the following way  ̇ the maximum value of 
the normalized autocorrelation function is computed overall
the specific frame. If the signal is purely periodic its peak
values will be at lags m (which denotes the index of
autocorrelation) corresponding to multiples of fundamental
period T0 . HR will be close to one for harmonic signals and
zero for white noise.

 Upper Limit of Harmonicity (ULH)
This feature provides a measure of the frequency value
beyond which the spectrum no longer has any harmonic
structure. A time domain comb filter (Moorer, 1974) which
is tuned to the fundamental period of the signal (taken from
the previous descriptor) is utilized and the proportion of its
output/input power forms the basis of the computation of
ULH.

 Audio Fundamental Frequency (AFF)
For a given and assumed to be periodic portion of the signal
AFF consists of an estimation of the fundamental frequency
f0. It can be used as an approximation of the pitch of musical
sounds and voiced speech.

At this point we propose a post-processing methodology that
serves the enhancement of the discriminative ability of the
MPEG-7 feature set. The extraction of the MPEG-7
descriptors is followed by log operation as well as the
Discrete Cosine transform (DCT) in order to obtain efficient
representation of the signal’s energy. A common technique
for finding patterns in data of high dimensions, principal
component analysis (PCA) is utilized on the LLDs. We
reduce the dimensions down to thirteen by calculating the
projection of the data onto a lower dimensions space created
by its most significant eigenvectors. With this procedure the
data are transformed to a new coordination system based on
the relationships between them. Finally it should be noted
that normalization techniques are applied on both feature
sets including mean removal and variance scaling.

4. CLASSIFICATION SCHEMAS
The first step in the recognition process is based on
Gaussian mixture models (GMM) created using a standard
version of Expectation Maximization (EM) algorithm with
k-means initialization. They approximate a probability
density function under the assumption that every distribution
can be modeled when enough Gaussian distributions are

combined. The result is of the form of a weighted sum of M
simpler Gaussian densities (components):
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where xt is the feature vector at time t, Νis a Gaussian pdf
with meanμm, covariance matrix Σm andπm is the component
prior probability. We used eight Gaussian components with
50 iterations of the EM algorithm with k-means
initialization. In Fig. 2 we can see the next step of the
proposed methodology which consists of HMMs created for
each class. Each HMM consists of two states combined in a

left-right topology and modeled using sixteen Gaussian
modes. HMMs are based on the assumption that the process
we are trying to model can be divided into a finite number of
states and that their succession over time can be predicted.
The training is done with 50 iterations of the Baum-Welch
algorithm. The HMM’s log-likelihood output tells us how
possible is that the order of these specific states generated
the input sequence. GMMs and HMMs are created based on
P. Baggenstoss’ implementation provided at
http://www.npt.nuwc.navy.mil/Csf/.
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5. EXPERIMENTAL SET-UP AND CONCLUSIONS
To test the performance of the proposed structure we
collected data from various sources including the BBC
Sound Effects Library and recordings found on the internet.
Eight categories were organized containing files of 16 kHz
and 16 bit analysis while their average length was 25.6
seconds. The classes are aircraft (110), motorcycle (79), car
(81), crowd (60), thunder (60), wind (66), train (82) and
horns (194), each one includes audio samples with a great
variation between them representing real life soundscenes.
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Motorcycle 0 67.5 8.3 24.2

Car 0 0 57.7 42.3

Train 14.3 0 0 85.7
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Wind 63.5 0 36.5 0

Thunder 16.5 83.5 0 0

Crowd 0 0 100 0

Horn 0 0 33 66

Table 1: Confusion matrices (%) - MFCC
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Aircraft 71.6 0 20.1 8.3

Motorcycle 0 71.3 21 7.7

Car 33 0 60.4 6.6

Train 52 0 0 48
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Wind 89 11 0 0

Thunder 10 90 0 0

Crowd 24 0 76 0

Horn 19 0 10.3 70.7

Table 2: Confusion matrices (%) – MPEG-7

During the testing phase incoming sound frames are
processed and classified the way we depict in Fig.2. In order
to obtain reliable results ten-fold cross validation is
employed for all tasks. MPEG-7 descriptors reach 75.3%
recognition rate while MFCCs achieved 64.1% for the
classification’s first stage. The next two Tables show the
recognition accuracies for both features sets referring to the
second discrimination task. Overall accuracy for the
mechanic classes is 67.1% and 62.9% and for the non-
mechanic is 78.25% and 81.4% regarding to MFCC and
MPEG-7 respectively. It is obvious that both sets tend to
confuse mechanic classes and especially car category. In
general we observe that both feature sets experience the
same classification problems. The best rate for MFCCs and
MPEG-7 LLDs is achieved in the crowd and thunder
category accordingly. We conclude that post-processing of
the MPEG- 7 features improves their discrimination quality
and makes them outperform MFCCs in the task of urban
soundscene recognition.
Our future work includes separation of overlapping signals,
further incorporation of sound classes and exploration of a
possible combination of the two feature sets to exploit the
most discriminative information they provide.
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