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ABSTRACT

An important issue in the measurement of networks is the
ability to infer characteristics of internal network links from
measurements made on end-to-end paths. It may be impracti-
cal in terms of equipment, time or cost to monitor each indi-
vidual link but it is often feasible to monitor a number of ex-
isting paths. Provided there is enough traffic flowing through
enough different paths then it is possible to estimate some
characteristics of each link. In this paper we compare two
methods for estimating the end-to-end delay distributions, one
based on the method-of-moments and the other on a Gaussian
approximation. This information can then be used to compute
packet delay on any link in a network and then detect which
link has the highest latency. This procedure is often termed
bottleneck link discovery.

Index Terms— Network Tomography, Delay Distribu-
tion Estimation, Network Inference, Estimator Comparison

1. INTRODUCTION

The term network tomography is first used by Vardi in [1].
In [2], [3] & [4] the term network tomography is used to
define an approach to infering network characteristics from
a limited subset of measurements made in a wired network.
We consider here a specific type of network tomogrpahy, the
problem of estimating link-level characteristics from path-
level measurements. This approach is used in [5] [6] [7] [8]
because it is often impractical and inefficient to measure all
internal links in a network. It is possible to infer from a set
of measurements taken over a selected set of paths (where a
path is a combination of links) the likely delay on each link.
From these estimates a method of detecting the link with the
highest delay can be used to detect a bottleneck link. Once
detected, the link can be modified to reduce the delay or the
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network routing can be changed to lower the volume of traffic
on that link.

There are two methods of gathering an estimate of the
delay mentioned in the above papers. One method (used in
[2]) attempts to estimate the Cumulant Generating Function
(CGF) of the delay using measurements of the delay of probe
packets. Another (used in [4]) is to assume an a-priori delay
distribution then estimate the parameters of this distribution
from the delay of probe packets. Our contribution is to use
the ns2 simulator [9] to compare the two methods’ ability to
correctly identify the bottleneck link. Performance with a re-
duced number of probe packets and the computational com-
plexity of both methods will also be studied.

The remainder of this paper is organised as follows. In
Section 2 we review the methods used in [2] and [4]. In Sec-
tion 3 we present results from simulations comparing both
methods and an estimate of computational efficiency. Finally,
in Section 4 we give some conclusions and provide pointers
to further work.

2. SYSTEM MODEL & ESTIMATORS

2.1. GENERAL MODEL

A network of routers can be modelled as a set of connected
links with the connections specified in a routing matrix. We
define a path to be a connected set of two or more links from
the total set of links L. An estimate of the distribution of de-
lays is formed from the delays of unicast probe packets on
various paths whose total number is P (See Fig 1, originally
from [3] where P = 5 & L = 4 for illustration). The vector of
delay observations on path i is represented by Yi, i = 1...P
with the routing matrix represented by H which is of size
P × L. The objective is to find an estimate of the distribu-
tion of delays on each link, represented by Xj , j = 1...L.
Equation 1 shows the linear relationship between these three
quantities:

Y = HX (1)
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For the network shown in Fig 1 we define H as:

H =


1 1 0 0
1 0 1 1
1 0 1 0
0 0 1 1
0 1 0 0

 (2)

Provided H is full rank then it is possible to use a least-
squares (LS) algorithm to recover X:

X = H−1Y (3)

We define H−1 as the pseudo-inverse of H as in [3]:

H−1 = (HT H)−1HT (4)

This pseudo-inversion must be performed each time the topol-
ogy changes to ensure the correct weights in the LS algorithm.
For a wired scenario, as considered in this paper, is it likely to
be infrequent operation.

Fig. 1. Network Topology & Probe Paths

Once we have an estimate for the distribution of delay
(or other network parameter) on a link it is desirable to com-
pute the bottleneck link.Where we have delay distributions,
we examine the cumulative distribution function (CDF) of all
links and compare them. We seek to find the link that has the
largest value which, when they are normalised, entails find-
ing the CDF with the heaviest tail. To do this we supply a
value, normally δ, which is the value at which to compare the
CDFs. We choose the link with heaviest tail as our first choice
bottleneck link and could continue, if necessary, to select the
second, third etc. choice links. It should be noted that bottle-
neck link detection is not always performed and not always
useful. Consider the case of a network where each link has
a similar performance but with small perturbations. A bot-
tleneck link detection method would likely identify one link
as poorly performing where its performance is comparable to
others.

In the remainder of this section, we will introduce the
techniques under consideration.

2.2. Method of Moments

In [3] the authors estimate the CGF of the distribution of de-
lays on each path from individual delay measurements with a
method-of-moments (MoM) estimator, yielding Y . These are
passed through the LS algorithm to give a CGF of the delay
distributions for each link in the network.

We first construct an estimate of the CGF of path i using
N measured delays denoted Yik, k = 1...N ,

M̂Yi
(t) =

1
N

N∑
k=1

etYik (5)

Then we use LS to obtain a link-level estimate of the CGF
where hij is the ith row and jth column element of H−1 and
hence we sum the weighted contribution from each path to-
wards that link.

K̂Xj =
P∑

i=1

hij × log(M̂Yi) (6)

To find the link with highest delay a Chernoff upper bound is
imposed on the link CGFs. The link with the highest proba-
bility, Pj of exceeding the delay threshold, δ is taken to be the
bottleneck link in the network.
In [3] this is expressed as:

Pj = P (Xj ≥ δ) ≤ e−tδE[etXj ] (7)

This method necessitates a-priori selection of the value of δ
to be used as the delay threshold.

2.3. Gaussian Approximation

In [4] the authors suggest the CDF of delays on links could be
modelled as a single Gaussian distribution.

We can estimate the mean of the delay distribution on path
i as:

M̂Yi =
1
N

N∑
k=1

Yik (8)

And similarly the variance:

σ̂2
Yi

=
1

N − 1

N∑
k=1

(Yik − M̂Yi)
2 (9)

We express the distribution of delays on a particular link, Xj ,
as a single Gaussian by using LS thus:

Xj = N (
P∑

i=1

M̂Yi × hij ,

P∑
i=1

σ̂2
Yi
× |hij |2) = N (M̂Xj , σ̂

2
Xj

)

(10)
Note that we model the variance as a noise process so multiply
by |hij |2 in order to preserve the positive sign.
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To find the bottleneck link we evaluate the erfc function
(which normally applies toN (0, 1) and is modified in Eqn 11)
at δ for each Xj and select the link which has the highest value
of Pj . Again, this necessitates a-priori selection of δ.

Pj = erfc(
δ − M̂Xj

σ̂2
Xj

) (11)

3. SIMULATION STUDY

3.1. Simulation Setup

To test both methods we use an ns2 simulation to model a
wired network with unicast probe-path traffic. The topology
is as shown in Fig 1 and the simulation parameters are identi-
cal for both methods.

Background traffic on each link is formed by combining
a number of exponentially distributed UDP and a number of
TCP traffic sources in a similar manner to that used in [2].
On each link we add a delay to each packet to force a situ-
ation where one link has higher latency than the others for
both methods to detect. Aside from the added delay, other de-
lays encountered by packets come from self-congestion due
to background traffic in the form of queueing and processing
time at each node. Key simulation parameters are given in
Table 1.

Parameter Value
Added Delay Link 1 100 + [10-60] ms
Added Delay Link 2 100 ms
Added Delay Link 3 80 ms
Added Delay Link 4 10 ms

Bandwidth on each link 1 Mb
Simulation Time 1000 s

Number of Paths, P 5
Number of Link, L 4
CGF Parameter, t 20

Value of δ for comparison 0.15
Number of samples, N 3000

Estimator Rate 2 Kb/s
Estimator packet size 40 Bytes

Background Traffic Link 1 800 kb UDP, 1 TCP
Background Traffic Link 2 600 kb UDP, 1 TCP
Background Traffic Link 3 900 kb UDP, 1 TCP
Background Traffic Link 4 300 kb UDP, 3 TCP

Table 1. Key Simulation Parameters

3.2. Key Results

In this section we present results showing the comparison be-
tween both estimators (the method-of-moments (MoM) and
the Gaussian approxiamtion (MoG)) for different observation
window sizes and estimator rates.

Fig. 2. QQ plot of data on paths 2 & 5

Fig. 3. Added Delay against Correct Detection Rate

To compare both methods we perform the simulation then
compute the bottleneck-link for 3 scenarios:

• 1000 realizations of a 1s observation window
• 100 realizations of a 10s observation window
• 10 realizations of a 100s observation window

In Fig 2 we see a quantile-quantile plot of the delays of esti-
mator packets on paths 2 & 5. The fit between the solid line
(the data) and the dashed line (a Gaussian) indicates how well
a single Gaussian models the data. On path 2, a single Gaus-
sian distribution gives a good model of the data whereas on
path 5 a single Gaussian gives a poor fit. The poor fit in the
lower tail of path 5 is evident on other links and is a result
of packets having a minimum delay which causes deviation
from the single Gaussian model. As the fit for most paths is
good in the central 4 quartiles we use the single Gaussian dis-
tribution as an estimator.
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In Fig 3 we see that with the longest observation window
(100s) MoM is 100% reliable for added delay greater than
40ms whereas MoG achieves 80% reliability. When the added
delay is reduced to 20ms both methods converge to 80% relia-
bility and continue to experience the same reliability value as
the delay is reduced further. For a shorter observation window
(10s) a similar trend can be observed; at 50ms added delay
MoM achieves 78% reliability with MoG achieving 68%. As
added delay is reduced, both methods convergence in perfor-
mance so that MoG achives 42% reliability at 20ms compared
with 36% for MoM. As added delay is reduced to 10ms, both
methods exhibit similar performance. With a short observa-
tion window (1s) we observe the same trend as with longer
windows but with much reduced reliability. With 50ms added
delay MoG has a reliability of 37% while MoM achieves 40%.
With 30ms added delay MoG performs best with 31% relia-
bility compared to 28% with MoM. This trend continues with
MoG being 27% reliable at 10ms and MoM being 23%. In
this case both estimators achieve very similar performance.

From the above we note that with a long observation win-
dow and with an added delay greater than 20ms the MoM
provides the most reliable method of bottleneck-link detec-
tion. If the added delay is reduced to less than 20ms and the
observation window shortened to 10s or less then the MoG
achieves a similar performance. Practically, this implies that
in a network where delays on a link are within 20ms of each
other and only a short observation period is available then us-
ing a either method would be equally likely to provide correct
detection of the bottleneck link.

3.3. Estimator Rates

One consideration for both methods is the number of probe
packets required to perform reliable bottleneck-link detection.
Here, we consider the effect of reducing the probe traffic rate
on both methods studied above; reduction of the probe rate
improves efficiency by congesting the links with fewer probe
packets, however, this is at the cost of accuracy.

To evaluate this trade-off we use the topology and esti-
mation methods shown previously but adjust the simulation
parameters such that Links 1, 2 & 3 have 10ms and Link 4
has 50ms added delay. We use 100 realisations of a 10s ob-
servation window to remain consistent with previous results.

From Fig 4 we see that with an estimator rate of 1Kb/s
(half that used in the previous scenario) the MoM achieves
a reliability of 94% with MoG achieving 92%. As the rate
is reduced to 0.7Kb/s the MoM reliability is reduced to 87%
whilst the MoG achieves only 64%. As the rate is further re-
duce to 0.5Kb/s, a quarter of the original, the reliability of the
MoG falls to 49% whilst the MoM has fallen to 80%. This
suggests that a MoM approach is preferable when the num-
ber of probe packets is low. This would appear consistent
with Fig 3, reducing the estimator packet rate and reducing
the observation window have the effect of reducing the data

Fig. 4. Estimator Rate against Correct Detection Rate for both
methods with a 10s observation window

available to the estimator which results in a lower probability
of correct bottleneck link detection. The corollary also ap-
plies, the probability of correct bottleneck detection can be
improved by either raising the estimator packet rate or in-
creasing the observation window to increase the data available
to the path-level estimator.

3.4. Computational Complexity

We compare the computational intensity of each method by
considering the number of Multiply (MULT) and Add (ADD)
operations required:

MoM MoG
MULT 2NPt + Pt + PL− L PN + 2P + 3PL
ADD NPt− Pt + PL− L 2PN + 2PL− 2L

Table 2. Formulae for number of operations required

In Table 2 we present equations for the complexity of the
data processing part both methods, (ie excluding the sampling
process) in terms of the simulation parameters. We see the
complexity of both methods scales by the number of samples,
N , but that MoM also scales by CGF parameter, t. Here, and
in the scenarios described in Section 3.1, P , L & t are 5, 4
& 20 respectively. In Table 3 and Fig 5 we see the number
of operations required in the scenarios previously mentioned
where we observe that MoG requires an order of magnitude
fewer operations than MoM. However, this comes at the ex-
pense of the reliability of bottleneck-link detection.

Fig 5 shows graphically how the number of operations
quickly scales as the size of the network increases. Here we
have assumed the ratio L/P has remained constant at 0.8 as
in the previously defined scenarios.
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MoM MoG
MULT 600116 15070
ADD 299916 30032

Table 3. Numerical results for number of operations required

Fig. 5. Number of Operations against Number of Links in
network for a fixed value of L/P

Finally, we consider the complexity of inverting H as men-
tioned in Section 2.1. In [10] it is estimated that inverting
a matrix of size N ∗ N takes a number of operations of or-
der N3. In our scenario, P and L are similar in size so we
estimate the operation will be of similar complexity, around
O(L3). As this is a wired scenario, we assume the inversion
takes place once as the topology remains fixed throughout;
however, we note that were it a wireless scenario with mobile
nodes then this would be a more significant contribution to
overall complexity.

4. CONCLUSION & FUTURE WORK

In this paper we have presented a comparison of two meth-
ods of delay estimation and bottleneck-link discovery for use
in wired network tomography. We have shown that the para-
metric estimation (MoG) method provides performance com-
parable with the CDF estimation (MoM) method for a short
observation window with a reasonable probe-packet rate. We
have seen that MoG is less reliable than MoM for low probe-
packet rates. In both cases, MoG has the advantage of a re-
duced computational complexity. We have also shown that
performance in both methods can be improved by increasing
the length of the observation window.

In future we will consider more methods, of both param-
eter estimation and CDF estimation types. We imagine that
with an accurate model, a parametric method would be the

most reliable even with a low probe-packet rate. For a higher
probe-packet rate, greater accuracy can be obtained with a
CDF estimation method, however, this is at the cost of in-
creased computational complexity.
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