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ABSTRACT

A novel multimodal approach for frequency domain blind source
separation of moving sources is presented in this paper. A very sim-
ple and robust algorithm is proposed which incorporates geometrical
information and exploits the permutation free unmixing matrix of the
previous block together with the whitening matrix of the mixtures
of the current block, to initialize FastICA for separation of mov-
ing sources; the method is multimodal since two signal modalities,
speech and video, are exploited. The advantages of this work are that
no extra processing is required to solve the permutation problem sep-
arately in the frequency domain BSS nor is postprocessing required.
Experimental results show the significant improvement in the per-
formance of the resulting intelligently initialized FastICA approach
over conventional FastICA, and also confirm that the proposed algo-
rithm is robust and potentially suitable for real time implementation
for sources moving in the teleconference-like scenario.

Index Terms— Frequency domain BSS, multimodal separation,
geometrical constraints, cognitive approach and cocktail party prob-
lem.

1. INTRODUCTION

Blind source separation (BSS) remains as a topic of considerable
research interest due to its potential wide applications [1]. BSS
consists of estimating original sources from observed mixtures with
only limited information and many methods have been proposed
[2],[3],[4],[5] and [6]. BSS of moving sources is a more challeng-
ing aspect of solving the cocktail party problem [7] and only a few
papers have been presented in this area [8],[9] and [10]. The ma-
jor problem for the moving sources case is the time variant mix-
ing model which becomes more complicated when the environment
is reverberant. The established unimodal approaches are not suit-
able to solve the problem, therefore a more cognitive approach is
required [11] and therefore we exploit a multimodal approach in
which we initialize FastICA in an intelligent way. The permutation
problem inherent to frequency domain blind source separation (FD-
CBSS) presents itself when reconstructing the original sources from
the separated outputs of the instantaneous mixtures across all fre-
quency bins. It is more severe and destructive than for time-domain
schemes as the number of possible permutations grows geometri-
cally with the number of instantaneous mixtures. In unimodal BSS
no priori assumptions are typically made on the source statistics or
the mixing system. On the other hand, in a multimodal approach
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a video system can capture the approximate positions of the speak-
ers and the directions they face[12]. Such video information can
thereby help to estimate the unmixing matrices more accurately and
ultimately increase the separation performance. In our approach we
therefore make BSS semiblind by initially exploiting the above men-
tioned prior geometrical information in initialization of FastICA to
make the process robust and permutation free, and later on with
the help of the unmixing matrix of the previous time block and the
whitening matrix of the current time block we again initialize the
FastICA in an intelligent way to enhance the convergence properties
of BSS so that it is potentially suitable for real-time implementa-
tion. As such the separation matrix is updated for each time block
BN = {t : (N − 1)Tb ≤ t < NTb), where Tb is the time block
size, and N represent the block index (N ≥ 1). This intelligent
initialization based FastICA algorithm is more suitable when Tb is
small, i.e. reduced change in the unmixing matrix will provide a less
biased estimate for initialization, however reduction in Tb is limited
by the data length required for FastICA to converge. Therefore this
approach is more robust in the case of slowly moving sources and in
this paper the performance is presented when sources are moving in
a teleconference-like scenario.

The convolutive mixing system can be described as follows: as-
sume m statistically independent real sources as s(t) = [s1(t), . . . ,
sm(t)]T where [.]T denotes the transpose operation and t the dis-
crete time index. A multichannel FIR filter, H with memory length
p produces n sensor signals x(t) = [x1(t), . . . , xn(t)]T as

x(t) =

PX
τ=0

H(τ)s(t− τ) + v(t) (1)

y(t) =

QX
τ=0

W(τ)x(t− τ) (2)

where y(t) = [y1(t), . . . , ym(t)]T contains the estimated sources,
and Q is the memory of the unmixing filters, we assume n≥m. Af-
ter frequency transformation using the short-term Fourier transform
(STFT), equations (1) and (2) change respectively to:

x(ω, t) ≈ H(ω)s(ω, t) + v(ω, t) (3)

y(ω, t) ≈ W(ω)x(ω, t) (4)

where ω denotes discrete normalized frequency. An inverse STFT
is then used to find the estimated sources ŝ(t) = y(t). In the fol-
lowing section we examine the use of spatial information indicating
the positions and directions of the sources using “data” acquired by
a number of video cameras for intelligent initialization. Information
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defining the starting point of the sources and the movement of the
sources is also exploited. In Sec.3, the proposed intelligent initial-
ization based FastICA (IIFastICA) algorithm is discussed. In Sec.4,
the performance measurement are shown. In Sec.5, the simulation
results confirm the usefulness of the algorithm. Finally, conclusions
are drawn.

2. INTELLIGENT INITIALIZATION

2.1. The Geometrical Model

Given the position of the speakers and the microphones, the dis-
tances between the ith microphone and the jth speaker dij , and
hence the associated propagation times τij , can be calculated (see
Figure1 for a simple two-speaker two-microphone case). Accord-
ingly, in a homogenous medium such as air, the attenuation of the
received speech signals is related to the distances via

αij =
κ

d2
ij

(5)

where κ is a constant representing the attenuation per unit length in a
homogenous medium. Similarly, τij in terms of the number of sam-
ples, is proportional to the sampling frequency fs, sound velocity C
in air, and the distance dij as:

τij =
fs

C
dij (6)

which is independent of the directionality. However, in practical
situations the speaker’s direction introduces another variable into
the attenuation measurement. In the case of electronic loudspeak-
ers (not humans) the directionality pattern depends on the type of
loudspeaker. Here, we approximate this pattern as cos(θij/r) where
r > 2, which has a smaller value for highly directional speakers and
vice versa (an accurate profile can be easily measured using a sound
pressure level (SPL) meter). Therefore, the attenuation parameters
become

αij =
κ

d2
ij

cos(θij/r) (7)

If, for simplicity, only the direct path is considered the mixing filter
has the form:

Ĥ(t) =

�
α11δ(t− τ11) α12δ(t− τ12)
α21δ(t− τ21) α22δ(t− τ22)

�
(8)

where (̂.) denotes the approximation in this assumption. In the fre-

Fig. 1. A two-speaker two-microphone setup for recording within
a reverberating (room) environment; only distances and angles be-
tween sources and microphones are shown.

quency domain the above filter has the form

Ĥ(ω) =

�
α11e

−jωτ11 α12e
−jωτ12

α21e
−jωτ21 α22e

−jωτ22

�
(9)

Although the actual mixing matrix includes the reverberation terms
related to the reflection of sounds by the obstacles and walls, in such
a room environment it will generally always contain the direct path
components as in the above equations. Therefore, we can consider
Ĥ(ω) as a crude, albeit biased, estimate of the frequency domain
mixing filter matrix, but one which provides the learning algorithm
with a good initialization whilst importantly avoiding the bias intro-
duced when used as a constraint throughout learning as in [13].

2.2. Initialization for Starting Point

With the help of the estimate Ĥ(ω) from the above model, as an
initialization of the algorithm in [14] when sources are at the starting
point, we improve the convergence of the algorithm and also increase
the separation performance together with mitigate the permutation
problem.

As such we use Ĥ(ω) to provide the initialization for each fre-
quency bin

W1(ω) = Q1(ω)Ĥ(ω) (10)

where Q(ω) is the whitening matrix [15] of the mixtures at the start-
ing point. Before starting the process Ĥ(ω) is normalized once us-
ing Ĥ(ω) ← Ĥ(ω)/‖Ĥ(ω)‖F where ‖.‖F denotes the Frobenius
norm.

The algorithm convergence depends on the estimate of Ĥ(ω), to
improve accuracy. In the case of a reverberant environment, Ĥ(ω)
should ideally be the sum of all echo paths, but this is not available in
practice. As will be shown by later simulations, an estimate of Ĥ(ω)
obtained from (9) can result in a good performance for the proposed
algorithm in a moderate reverberant environment.

2.3. Initialization when Sources are Moving

Since the unmixing matrix calculated by geometrically based ini-
tialized ICA (initialization described in the above section) is permu-
tation free, therefore W = PDH−1 will approximately become
W ≈ H−1, scaling is not a major issue, and normalization during
learning [13] can mitigate its effect.

The unmixing matrix of the previous bins with the whitening
matrix of the current stage mixtures will provide the intelligent ini-
tialization for the current bins as

WN+1(ω) = QN+1(ω)W−1
N (ω) (11)

where N is block index and (N ≥ 1).
The equivalence between frequency domain blind source sepa-

ration and frequency domain adaptive beamforming is already con-
firmed in [16]. We highlight that the whitening matrix Q(ω) has
strong impact in such smart initializations.

3. PROPOSED INTELLIGENT INITIALIZATION BASED
FASTICA ALGORITHM

With the help of the above initializations we increase the separa-
tion performance together with mitigate the permutation problem.
Crucially, in the proposed IIFastICA approach, since the algorithm
essentially fixes the permutation at each frequency bin, there will be
no problem while aligning the estimated sources for reconstruction
in the time domain.

As an initial step, it is usual in ICA approaches to sphere or
whiten the data

z(ω) = Q(ω)x(ω) (12)
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Next when sources are at the starting point we use the column
vectors of W1(ω) obtained from (10), one-by-one, to initialize the
fixed point algorithm [14] for each frequency bin. Once the sources
start moving we initialize similarly with the column vectors of
WN+1(ω), obtained from (11). Its important to mention that if there
was a severe change in the video scene, the initialization for a start-
ing point would be re-applied.

Since z(ω) is zero mean, unit variance, with uncorrelated real
and imaginary parts of equal variances, the optima of E{G(|wH(ω)
z(ω)|2)} under the constraint E{|wH(ω)z(ω)|2} = ‖w(ω)‖2 = 1,
where E{.} denotes the statistical expectation, (.)H Hermitian trans-
pose, ‖.‖ Euclidian norm, |.| absolute function; and G(.) is a non-
linear contrast function, according to the Khun-Tucker conditions
satisfy

∇E{G(|wH(ω)z(ω)|2)} − β∇E{|wH(ω)z(ω)|2} = 0 (13)

where the gradient denoted by ∇, is computed with respect to the
real and imaginary parts of ω separately. The Newton method is used
to solve this equation for which the total approximative Jacobian [14]
is

J = 2(E{g(|wH(ω)z(ω)|2) + |wH(ω)z(ω)|2
ǵ(|wH(ω)z(ω)|2)} − β)I (14)

which is diagonal and therefore easily invertible, where I denotes the
identity matrix and g(.) and ǵ(.) denote the first and second deriva-
tive of the contrast function. We have the following approximative
Newton iteration for each vector of each frequency bin

w+
i (ω) = E{z(ω)(wi(ω)Hz(ω))∗g(|wi(ω)Hz(ω)|2)}

−E{g(|wi(ω)Hz(ω)|2) + |wi(ω)Hz(ω)|2
ǵ(|wi(ω)Hz(ω)|2)}wi(ω)

wi(ω) =
w+

i (ω)

‖w+
i (ω)‖ (15)

which importantly eliminates the need to calculate β. where (.)∗

denotes the complex conjugate. In the experiments the statistical
expectation is realized as a sample average.

Since we have m independent components, the other separat-
ing vectors, i.e. wi(ω), i = 2, · · · , m, are calculated in a simi-
lar manner and than decorrelated in a deflationary orthogonalization
scheme. The deflationary orthogonalization for the m-th separating
vector [15] takes the form

wm(ω) ← wm(ω)−
m−1X
j=1

{wH
m(ω)wj(ω)}wj(ω) (16)

Finally, after separating all vectors of each frequency bin, we
formulate Wj(ω) = [w1(ω), · · · ,wm(ω)] and j = 1, · · · , N .

4. PERFORMANCE MEASUREMENT

In BSS, objective evaluation is generally only possible if true system
parameters are known, this is feasible only in artificially mixed data
but it is not possible in real BSS experiments since the exact impulse
response of the room is not known. In this paper, the performance of
the algorithms is first evaluated on the basis of two criteria:

4.1. Signal-to-Interference Ratio (SIR)

The SIR is calculated as in [13]

SIR =
ΣiΣω|Hii(ω)|2〈|si(ω)|2〉

ΣiΣi6=jΣω|Hij(ω)|2〈|sj(ω)|2〉 (17)

where Hii and Hij represents respectively, the diagonal and off-
diagonal elements of the frequency domain mixing filter, and si is
the frequency domain representation of the source of interest.

4.2. Performance Index (PI) and Evaluation of Permutation

The PI as a function of the overall system matrix G = WH is given
as

PI(G) =
h 1

n

nX
i=1

� mX
k=1

abs(Gik)

maxkabs(Gik)
− 1
�i

+
h 1

m

mX
k=1

� nX
i=1

abs(Gik)

maxiabs(Gik)
− 1
�i

(18)

where Gik is the ikth element of G.
As we know the above PI based on [3] is insensitive to permu-

tation. We therefore introduce a criterion for the two sources case
which is sensitive to permutation and shown for the real case for
convenience, i.e. in the case of no permutation, H = W = I or
H = W = [0, 1; 1, 0] then G = I and in the case of permutation
if H = [0, 1; 1, 0] then W = I and vice versa; therefore, G =
[0, 1; 1, 0]. Hence for a permutation free FDCBSS [abs(G11G22)−
abs(G12G21)] > 0.

5. EXPERIMENTAL RESULTS

The simulations were performed on real recorded speech signals
generated for a room geometry as illustrated in Figure 2. As in [13],
the estimate of Ĥ(ω) was calculated on the basis of geometrical in-
formation obtained from video cameras, when speaker1 was at posi-
tion A and speaker2 was at position C.
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Fig. 2. A two-speaker two-microphone layout for recording within
a reverberant (room) environment. Speakers move with the speed of
10 deg/sec. Room impulse response length is 130 ms.

The other important parameters are: block length Tb = 1 sec, FFT
length T = 1024, filter length Q = 512 half of T and 50% over-
lapping was used. The room impulse response duration was 130 ms.
Speaker1 moved from A to B i.e. 60 degrees counterclockwise and
Speaker2 moved from C to E via D in a back and forth motion i.e.
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30 degrees in total at a speed of 10 deg/sec. This could correspond
to moving around a circular table in a tele-conferencing context. We
also highlight that to reduce the complexity of the tracker we have
assumed radial motion in this work. In our proposed algorithm we
select G(y) = log(b + y), with b = 0.1. The resulting performance
indices are shown in Figure 3. Figure 3(a) shows good performance
i.e. close to zero across the majority of the frequency range, since
this is due to the geometrical based initialization mentioned in Sec-
tion 2.2. In Figures 3(b) and 3(c) the performance is again good but
slightly degraded because the estimates for initialization are slightly
more biased as explained in Section 2.3.
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Fig. 3. Performance Index at each frequency bin at time = 2, 7 and 13
seconds when (a) Both sources are static (b) One source is moving,
and (c) Both sources are moving respectively. A lower PI refers to a
better separation.

Since PI mentioned in Section 4.2 based on [3] is insensitive
to permutation, this effect was evaluated on the basis of the criterion
mentioned in section 4.2. The results at each frequency bin in Figure
4 confirmed that the proposed algorithm automatically mitigates the
permutations due to the intelligent initializations mentioned in Sec-
tions 2.2 & 2.3, and therefore no additional processing is required.
Figures 4(a) and 4(b) show improved results over 4(c) because when
both sources are moving there is more variation in the mixing en-
vironment, in spite of the strong impact of Q(ω) as mentioned in
section 2.3 the initialization is slightly more biased, therefore as we
will explain in the next paragraph, the algorithm generally requires
more iterations to converge when sources are moving.

Since the convergence rate of any algorithm has a vital rule for a
real time system. The number of iterations required for the conver-
gence of the underlying cost, in the proposed IIFastICA algorithm at
different conditions of the sources is shown in Table 1. The maxi-
mum of seven iterations when both sources are moving confirms that
the proposed algorithm is more suitable for a real-time system.
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Fig. 4. Evaluation of permutation in each frequency bin at time
= 2, 7 and 13 seconds when (a) Both sources are static (b) One
source is moving, and (c) Both sources are moving respectively.
[abs(G11G22)− abs(G12G21)] > 0 means no permutation.

The performance indices and evaluation of permutation by the
original FastICA algorithm [14] with random initialization, on the
recorded mixtures when both sources were static, are shown in Fig-
ure 5. As shown in Table 1, twenty five iterations are required for
the performance level achieved in Figure 5(a) with no solution for
permutation as shown in Figure 5(b). The permutation problem in
frequency domain BSS degraded the SIR to approximately zero on
the recorded mixtures.

Table 1. Number of iterations required for convergence in the pro-
posed IIFastICA algorithm and the Bingham and Hyvrinen FastICA
algorithm [14], averaged over all frequency bins under different con-
ditions of the sources.

Sources Condition Iterations Iterations
(IIFastICA) ([14])

Both sources are static 4 25
One source is moving 5 N/A

Both sources are moving 7 N/A

The SIR as mentioned in Section 4.1 was next calculated. The
separation was performed at Tb = 1 sec, and Figure 6 confirms that
average SIR-Improvement when both speakers were stationary is 20
dB, when one speaker was moving 17 dB and when both speak-
ers were moving 14.5 dB. The minimum 14.5 dB SIR-Improvement
again confirmed that no additional postprocessing is required which
has been confirmed subjectively by listening tests.
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Fig. 5. (a) Performance Index at each frequency bin and (b) Eval-
uation of permutation in each frequency bin, when both sources
are static for Bingham and Hyvrinen FastICA algorithm [14].
A lower PI refers to a better separation and [abs(G11G22) −
abs(G12G21)] > 0 means no permutation.
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6. CONCLUSION

A new multimodal approach for FDCBSS, with intelligent initial-
ization for FastICA, for moving sources has been presented in this
research work. The advantage of our proposed algorithm was con-
firmed in simulations from a real room environment. The location
and direction information were obtained using a number of cameras
equipped with a speaker tracking algorithm and this information was
used in the initialization of the proposed algorithm. The proposed
algorithm is block-based and the initialization is performed based
on either the geometrical information obtained from tracking or the
BSS results from the previous block. The separation was evaluated
objectively by the performance indices with solution for permutation
at frequency bin level and overall SIR-Improvement at different con-
ditions of sources, and also confirmed subjectively by listening tests.
The outcome of this approach is a step towards solving the cocktail
party problem for moving sources by using a cognitive approach.
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