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Abstract—In this paper, we proposed a method to detect
leakages automatically in underground pipes of district heating
networks based on images, which are captured by an Unmanned
Aerial Vehicle (UAV). The original datasets are captured in a
16 bits format and later converted into an 8 bit format using
Dynamic Range Reduction (DRR). Leakages in district heating
networks can occur due to unprofessional installation, lack of
maintenance or end of service life, etc. We have addressed
issues of leakage detection using a deep learning based approach,
Convolutional Neural Network (CNN), and 8 machine learning
classifiers.

The experiments are carried out on seven different datasets,
which are acquired at seven different cities in Denmark. We
performed our experiments on both 16 bits and 8 bits data.
For performance analysis, 6 datasets are used for training and
the remaining dataset for testing. Our proposed deep learning
CNN achieves an average accuracy of 0.886 and 0.884 for 16
bits and 8 bits, respectively. Machine learning classifiers such
as Adaboost (AB), Random Forest (RF) etc provide relatively
lower average accuracy. Adaboost required less computational
resources, achieves average accuracies of 0.800 and 0.793 for 16
bits and 8 bits, respectively.

Index Terms—Convolution Neural Networks, SVM, RF, Ad-
aboost, Leakage detection, district heating system

I. INTRODUCTION

District heating systems supply heat through underground
pipes, which carry hot water from a central power plant.
This is the most common and environmental friendly [1] way
to provide heat in northern countries. Heat leakages are a
common problem, because pipes degenerate with time [2] for
many reasons, e.g. due to unprofessional installation, lack of
maintenance or end of service life. The performance decreases
due to the leakages and this creates a negative impact on
the environment [3]. Therefore, it is required to monitor the
networks regularly to detect energy leakages.

Currently all infrared images are reviewed and leakages
localized manually. This is an extremely time-consuming task
and in most cases the bottle neck in the surveying process.
Full automation of leakage detection or at least a reduction
in images to review would dramatically decrease the time
required increasing productivity and scalability. Furthermore,

it is possible that Machine Learning (ML) models are able to
spot earlier signs of leakages compared to a human operator
resulting in prevention rather than intervention. Therefore, in
this paper, we focus on leakage detection of district heating
system using ML.

Over the years, researchers have worked on monitoring the
energy leakages using various methods. The manual way is to
measure the flow of water at the inlet and outlet. A leakage
is considered based on differences between inlet and outlet
flow. However the inlet-outlet measurement is less precise
in the location of the leakage. There is another method in
which fiber sensors are installed within the pipes to detect
leakages automatically. However, the fiber sensors require
further installation and is rather intrusive to the system. As
an advanced technique, thermal imaging has been introduced
in the last few decades to detect the leakage efficiently [4]–
[7]. B. Bøhm et al. [4], present a method for energy leakage
detection using hand-held cameras. This technique has many
drawbacks since it has less scalability and it is difficult to
monitor many areas compared with aerial thermography.

Aerial thermography is applied for energy leakage detection.
In [5]–[7], regions of interest were extracted by orthorecti-
fication and using information about the pipe location. Fur-
thermore, a list of features such as mean, standard deviation,
circularity etc. were defined manually. Thereafter, five conven-
tional ML classifiers were used to evaluate the performance.
Moreover, their hardware setup is more costly, since they
utilized a plane and a cooled thermal camera compared to
a UAV with an uncooled thermal camera as in our case.
For our target application, we provide a relatively cheap and
simple UAV based solution to detect leakages in pipes of
district heating networks. Since we are using UAV, this is
non-intrusive and tells the precise location of the leakages.
We have applied CNN for leakage detection and the motivation
behind the CNN model is that it can take two dimensional data
directly as input without requiring prior feature engineering.
However, the remaining conventional ML classifiers utilize the
dense SIFT and SURF features [8] for training the model.

In our setup, the IR sensor is embedded in the UAV and the



Fig. 1: IR image of district heating energy inspection captured
by UAV

IR images are captured on-board. The images are captured in
16 bit format, then converted into 8 bit format using a his-
togram based DRR operator. Thereafter, potential leakages are
extracted from IR images using a region extraction algorithm.
The ground truth values are identified by a human observer.
These potential leakages and their corresponding labels are
used for training CNN and conventional ML classifiers to
classify into true and false leakages. Examples of the true and
false leakages are shown in Figure 1.

The key contribution of this work is that we provide a
framework to detect the leakages of district heating networks
using conventional ML classifiers and a CNN model based
on UAV images. The challenge is that there are many more
signatures than actual leakages. In our work, the ML classifiers
and CNN are applied on raw 16 bit images directly to detect
leakages, optionally ML is also applied on 8 bit images.
It should be noted that 16 bit images contain 65536 gray
levels, which give detailed information. Secondly, our CNN
model provides higher accuracy with lower false positive
rate. In contrast, conventional ML classifiers gave reasonable
results but required less computational resources. Finally, we
provide a relatively simple and cheap UAV based solution for
monitoring district heating networks.

The remainder of this paper is organized as follows: The
proposed method is detailed in Section II. In Section III, ex-
perimental results are presented: description of district heating
data sets, and performance of the proposed method along with
the discussion.

II. METHODOLOGY

We consider detecting the leakages of district heating net-
works using conventional Machine Learning (ML) and Con-
volutional Neural Network (CNN) classifiers. In this section
the image pre-processing is briefly described. For conventional
ML classifiers, the features are extracted from input images
and then trained on. On the other hand, CNN is directly fed

TABLE I: Parameters of Conventional ML Classifiers

Methods Parameters
RF Number of estimators = 200

Adaboost

Number of estimators = 200
Weak classifier: Decision stump

Learning rate = 1

SVM
Penalty parameter C = 1

Kernel = ’Linear’

with the input images and corresponding labels for training.
In this Section, we describe the conventional ML and CNN
classifiers.

A. Image Pre-processing

We performed pre-processing before feeding the data into
the machine learning algorithms. It should be noted here that
leakages appear as hot in IR images, but not all hot / warmer
regions are real leakages. In our scenario, an UAV captures
IR images of the area with pipelines being surveyed. After
capture an expert reviews the images for potential leakages
and classifies according to severity. Severity is estimated
by looking at the temperature differences as well as the
surroundings and requires some training as the minor leakages
can be very subtle. The potential leakages are then located
and rectified if necessary. In addition, we developed a region
extraction algorithm to extract the image patches (both in 8
and 16 bits), containing both the true and false leakages. The
patches not classified as real leakages by the human observer
are labelled as false leakages for training purpose.

The input image patches are then rescaled into 70 x 70
for working with ML classifiers and CNN. It should be
noted here, original data should not be directly input to the
conventional ML classifiers and CNN. It is recommended to
do normalization, because it makes samples less sensitive to
small intensity changes and ensure faster convergence of the
CNN. The simple normalization is:

y = (x−mean)/stddev, (1)

where x and y are the pixel values, stddev is the standard
deviation and mean is the mean value of image pixels.

For CNN, the storage structure is established based on the
format of the MNIST database of handwritten digits [9], which
includes headers, labels and pictures.

B. Conventional ML Algorithms

For evaluation, we investigated eight ML classifiers. In
order to train with the ML classifiers, feature descriptors are
computed.

1) Features: Features are computed based on dense sam-
pling, where the image is subdivided into n x n grid points.
The grid size used in our implementation is 20 x 20. Then
we extract SIFT and SURF descriptors from each grid point
as in [8]. In contrast to the conventional SIFT and SURF
descriptors, the number of features does not vary with im-
age content. We have adapted the implementation of dense
sampling as described in [8]. A total of four key points per



TABLE II: 7 district heating image datasets

Dataset S1 S2 S3 S4 S5 S6 S7 Total
Number of True 557 1182 2346 5392 957 1327 1665 13426
Number of False 540 1200 2400 5420 992 1372 1700 13624
Total # of sample 1097 2382 4746 10812 1949 2699 3365 27050

TABLE III: Accuracy of 9 machine learning classifier algorithms for performance analysis

Datasets Bits KNN DT AB RF LR L-SVM LDA GNB CNN

S1 16 0.74 0.73 0.83 0.82 0.80 0.80 0.78 0.69 0.94
8 0.75 0.75 0.85 0.83 0.82 0.82 0.81 0.72 0.93

S2 16 0.74 0.73 0.80 0.79 0.79 0.78 0.79 0.74 0.86
8 0.76 0.70 0.78 0.79 0.77 0.77 0.77 0.70 0.86

S3 16 0.76 0.73 0.81 0.81 0.78 0.78 0.77 0.71 0.90
8 0.75 0.71 0.80 0.79 0.78 0.78 0.77 0.72 0.90

S4 16 0.76 0.74 0.83 0.85 0.81 0.80 0.79 0.76 0.90
8 0.75 0.72 0.83 0.83 0.81 0.80 0.79 0.75 0.90

S5 16 0.73 0.70 0.80 0.79 0.76 0.77 0.76 0.71 0.89
8 0.72 0.69 0.77 0.78 0.77 0.77 0.75 0.69 0.85

S6 16 0.69 0.64 0.68 0.68 0.69 0.69 0.70 0.63 0.76
8 0.69 0.63 0.70 0.68 0.69 0.69 0.70 0.62 0.84

S7 16 0.76 0.75 0.85 0.84 0.82 0.81 0.81 0.72 0.93
8 0.74 0.75 0.82 0.83 0.81 0.82 0.80 0.76 0.91

patch are found using SIFT and SURF. From these four key
points, we extract a total of 512 and 256 features for SIFT
and SURF, respectively.

After feature extraction from each grid point using SIFT
and SURF, we have combined these two descriptors indexed
into a HDF5 [10] file format.

2) ML Classifiers: In our work a set of eight ML classifiers
are tested for evaluation. Four of them are linear and the other
four are non linear classifiers. The linear models used in this
work are Logistic Regression (LR) [11], Linear Discriminant
Analysis (LDA) [12], Linear Support Vector Machine (L-
SVM) [13] and Gaussian Naive Bayes (GNB) [14].

The four non-linear classifiers are k-nearest neighbors
(KNN) [15], Decision Tree(DT) [16], Random Forest
(RF) [17] and Adaboost(AB) [18]. The parameters we used
for RF, Adaboost and SVM can be seen in Table I. It should
be noted that our AB classifier uses decision stumps [19]
as it is a weak learner equivalent to a decision tree with a
maximum depth of 1.

C. Architecture of Convolutional Neural Network (CNN)

The CNN takes the 70x70 input and feeds it through 3
convolution layers followed by 2 fully connected layers. The
first 2 convolutional layers have a kernel of 3x3 with 64 filters
each. The third convolutional layer has the same kernel size
but 128 filters. It should be noted that each convolutional layer
is utilizing the leaky ReLu activation function with a rate of
0.1. Each convolution layer is also followed by a maxpooling
layer with a kernel of 2x2 and a dropout layer with a rate
of 0.25 and 0.5 for the first 2 layers and the last 2 layers,
respectively. The first fully connected layer has a total of 128
neurons while the second has 2 responsible for classification.

The optimizer used in this structure is Adam [20] and the
loss function is cross entropy. The epoch is defined as 20
with batch sizes of 64. The CNN is implemented in Python

using Keras [21] library. The reason we have chosen this CNN
architecture is that this is for proof of concept and this structure
gave reasonable results. In the future, we can consider more
advanced deep learning architecture such as ResNet.

III. EVALUATION

For performance analysis, the Deep learning approach using
CNN was used to detect leakages of district heating system
images with high accuracy. A set of features are also extracted
using SIFT and SURF descriptors. Thereafter, the machine
learning classifiers LR [11], LDA [12], KNN [15], DT [16],
RF [17], GNB [14], SVM [13] and AB [18] were applied.
Performances was evaluated by various performance parame-
ters, i.e. True Positive Rate (TPR), False Positive Rate (FPR)
and accuracy, which is calculated as the number of correct
matches between ground truth and predictions, divided by the
number of samples, etc.

In this Section, we assess the performance of our proposed
CNN model and the conventional ML classifiers applied to
leakage detection.

A. Dataset

We have used district heating system data, which is provided
by Drone Systems (Denmark). The dataset contains a total of
7 IR sequences acquired by a UAV and each of the sequences
is captured at one of seven different cities in Denmark. The
UAV sequences (S1-S7), originally available in 16 bits, are
also converted into 8 bit format by histogram based Dynamic
Range Reduction (DRR). The experiments are carried out on
both the 16 and 8 bit sequences.

Later, we have extracted image patches at a resolution of
70 x 70 pixels from the 7 different UAV sequences. In total,
we extracted 27050 image patches, where 13426 contain true
leakages and the other 13624 image patches are false leakages.
The detailed number of image patches extracted from each
dataset can be found in Table II.



(a) Average accuracy (b) True positve vs false positive

Fig. 2: Average accuracy and corresponding true and false positive rate of different ML classifiers

B. Performance Analysis

For experiments, we have used 6 datasets (out of 7) for
training, and the remaining dataset for testing performed on
all splits of datasets for performance analysis. Leave-one-out
was applied for both CNN and the ML classifiers. In Table III,
the experimental results are shown for each of the datasets. We
calculate the average value over all sequences as shown in Fig.
2(a).

As shown in Figure 2 (a), the best results are obtained by
Deep learning based CNN, achieving an accuracy of 0.886
and 0.884 for 16 bits and 8 bits, respectively. Even the
corresponding true and false positive rate is also far better than
the conventional ML classifiers as shown in Figure 2(b). For
CNN, the true reported positive rates are 84.71% and 83.43%,
and the false positive rates are 7.00% and 8.29% for 16 bits
and 8 bits, respectively.

Among the ML classifiers, the non-linear AB and RF pro-
vide the best results. The AB average accuracy values obtained
are 0.800 and 0.793 for 16 bits and 8 bits, respectively. The
corresponding true positive rates are 74.86% and 57.00%,
false positive rates are 15.43% and 16.00% for 16 bits and
8 bits, respectively. The average accuracy obtained for RF
are 0.797 and 0.790 for 16 bits and 8 bits, respectively. The
corresponding true positive rates are 72.43% and 71.29%, false
positive rates are 13.14% and 13.14% for 16 bits and 8 bits,
respectively.

Overall the 16 bits achieved slight better results compared
to 8 bits images in terms of accuracy and true positive rate.

C. Discussion

Figure 2 shows that the Convolutional Neural Network
(CNN) gave the best results and second best results are
obtained by Adaboost (AB) and Random Forest (RF) in terms

of accuracy, thereafter comes Linear Regression (LR), Support
Vector Machine (SVM), and Linear Discriminant Analysis
(LDA) all being very similar in performance. It could be noted
that the Decision Tree (DT) and Naive Bayes (NB) gave the
relatively poorest results among all ML algorithms.

Our CNN model with the second best classifiers, i.e. AB,
accuracy increases by 10.75% and 11.48% for 16 and 8 bits,
respectively. The performance difference between CNN and
conventional methods might be explained by the fact that the
former utilizes the raw input, while the latter relies on features
extracted from a 20x20 grid.

It should be noted, higher true positive rate means lower
false negative rate, and vice versa. Higher false negative rate,
i.e. overlook a leakage is more expensive than higher false
positive rate in our target application. Considering this fact,
CNN satisfy the above criteria. CNN gave higher detection
accuracy, but it requires more computational resources. In
contrast, conventional ML classifiers, which are relatively
simple and fast, require less computational power. Thus from
a real time perspective, conventional ML classifiers could be
more effective.

We have compared our results with the results in [6]. As
described above (See Section I) Berg et al. [6], present the
result for energy leakage detection using a plane. In their
work, they have used up to 50,000 thermal images and stitched
them for energy leakage detection. Later they have extracted
the patches and applied list of machine learning classifiers
(LDA, L-SVM, RBF-SVM, RF, and AB) on it, where the
best result is found using RF. They achieved a true positive
rate of 99%, while the false positive rate is around 42%. For
real application on the drone data, this high FPR will vastly
dominate compared with the true leakages. In contrast, we
achieved a much lower false positive rate of only 7%, which



is much lower than them, while our true positive rate is around
84.71%. It should be noted, they have one chance to detect
leakage since there are using stitching image, but in our case,
we have analyzed each of the images individually. Thus a
leakage is not required to be detected on all the individual
images. Processing across multiple images can increase the
success rate of capturing a given leakage present in several
images. However, this is left for further study.

IV. CONCLUSIONS

In this paper, we have presented a leakage detection method
for district heating systems using CNN and machine learning
classifiers. The original UAV image sequences are 16 bits, then
converted in 8 bit format using a DRR operator. Afterwards,
the image patches are extracted by using a region extraction
algorithm. For ML classifiers, input images are divided in
fixed grid points and then a set of SIFT and SURF descriptors
are extracted for training and testing with machine learning
techniques. For Deep learning CNN, input samples are directly
fed into the network for leakage detection.

Using a leave-one-out approach, 6 datasets are used for
training and the remaining dataset for testing. The proposed
CNN model gave an average accuracy of 0.886 and 0.884
for 16 bits and 8 bits, respectively. The corresponding false
positive rates are down to 7.00% and 8.29% for 16 bits and 8
bits, respectively. We have evaluated 8 different conventional
ML classifiers. The second best results were achieved by AB,
which have a slightly lower detection accuracy than CNN. The
AB gave an average accuracy of 0.80 and 0.793, where the
corresponding false positive rates are 15.43% and 16.00% for
16 bits and 8 bits, respectively.

It can be concluded that for deep learning CNN, the average
accuracy increase is 10.75% and 11.48% with lower false
positive rates compared to Adaboost for 16 bits and 8 bits,
respectively. As per our analysis on both 16-bit and 8-bit,
16-bit outperforms 8-bit by a tiny margin. Overall CNN
performs better compared to conventional ML classifiers, but
ML classifiers required less computational resources.

In the future, it might be conceivable to incorporate the
region extraction into the CNN model as it at its core is an
object detection problem. However, this will require additional
testing and more data to conclude.
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