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Abstract—In this paper an optimal path planning algorithm
is presented for a vehicle performing angle-of-arrival (AoA) self-
localization. Noisy AoA measurements received from stationary
beacons in the environment are used to estimate the position
and heading of the vehicle. A gradient descent algorithm is
presented to determine an optimal heading for a constant speed
vehicle and a control input is calculated and implemented to
achieve a desired trajectory. The platform path is optimized
by minimizing a cost function derived from the mean-square
error of predicted vehicle position produced by an extended
Kalman filter. The vehicle trajectory must also satisfy position
constraints, limiting the minimum distance between the platform
and the transmitters. Simulations illustrate the effectiveness of
the algorithm in environments with different beacon geometries
and different initial estimate certainty.

Index Terms—AoA localization, extended Kalman filter, opti-
mal maneuvering.

I. INTRODUCTION

Localization is an important capability for any autonomous
system operating in an uncertain or unknown environment.
For an autonomous system navigating such an environment,
an important prerequisite for effective action decision making
is information about the current state of the system. System
states that are not known with a reasonable degree of certainty
can be detrimental to successful mission completion. Self-
localization typically involves using information received from
the environment to determine position and orientation in
a global frame [1], [2]. A possible approach to this self-
localization process is to control or steer the vehicle in order
to maximize the localization performance.

Localization algorithms are dependent on available sensors
and measurable signals present in the environment. Common
signal type/attributes used include: Time-Of-Arrival, Received
Signal Strength, Angle-of-Arrival (AoA) [1]. These measure-
ments are used to convey relative ranges and bearings between
transmitter and receiver that the vehicle can use to determine
location. AoA measurements can be determined by passive
sensing, for example, using a camera and known landmark
locations [3]. At least three AoA measurements are required
to triangulate the position and orientation of an autonomous
vehicle in a known environment where all systems are coplanar
[4], [5] except when the vehicle is collinear with a vector
connecting two transmitters and the vehicle and beacons lie
on the circumference of a circle [6], [4]. For complete 2D
localization, AoA measurements are more valuable than range

measurements as they provide information on both position
and orientation [7]. In real-world scenarios, the transmission
of information is imperfect, and the measurements are often
noisy. Noisy measurements can negatively impact the ability
of the system to estimate position. In scenarios where the
amount of noise effecting a measurement is spatially related
to the transmitter and receiver, a vehicle should determine
how to maneuverer to receive the best and most informative
measurements. Related literature includes UAV path planning
for localization of targets. A common performance index used
in bearings-only target tracking literature is the determinant
of the Fisher information matrix (FIM) [8], [9], [10], [11],
[12]. In the case of self-localization, process noise affects the
trajectory which is not taken into consideration when using
the measurement FIM. Scalar measures based on the error
covariance matrix such as trace and determinant are also used
in target state estimation that inherently takes into account
the stochastic nature of the process [13], [14], [15], [16].
These describe the mean square error, and volume of the
error ellipsoid respectively, dependent on sensor measurement
qualities and also sensor-target orientations [16]. The problem
presented in this paper can be seen as the complementary
problem to sensor path planning. Instead of several sensors
moving to maximize target position localization, a single
vehicle maneuvers around fixed transmitters to maximize its
own estimation accuracy for both position and heading. The
contribution of this paper is the development of a gradient
descent based navigation algorithm for AoA self-localization.
Also presented is a short discussion on the applicability of
this method used in sensor path planning to a self-localization
problem and suggestions for future work which could improve
performance. This paper is organized as follows. In Section
II, the localization problem is introduced. In Section III the
optimal maneuvering methodology is presented, with detail on
the steering algorithm used, constraints on the optimization
problem and the cost function determined. Simulation results
are displayed in Section IV, followed by a discussion of results
in Section V and a conclusion is Section VI.

II. PROBLEM SETUP

A two-dimensional optimal maneuvering problem is consid-
ered, for a vehicle operating in an environment with N ≥ 1
informative beacons. The N AoA measurements received
from these beacons are used to estimate the vehicles position
(xv,k,yv,k) and orientation (φk) at time k. The vehicle has



control over its rotational velocity and operates at a fixed
linear speed. The following dynamic equation describes the
state update of the system.xv,k+1

yv,k+1

φk+1

 =

xv,k + TV cos(φ)

yv,k + TV sin(φ)

φk + Tωk

+wk, (1)

The state vector for the vehicle dynamics is given by

xk =
[
xv,k yv,k φk

]T
, (2)

where [xv,k, yv,k]
T ,[φk] are the vehicles position and heading

respectively at time k. In (1), T is the constant time interval
between the discrete time instances k; V is the vehicle velocity
and ω is the rotational velocity at time k; wk is the process
noise and is modeled as a zero-mean Gaussian white noise
with covariance Qk:

wk ∼ N (0,Qk). (3)

The process noise accounts for unmodeled acceleration of the
system state and has covariance matrix:

Qk =

qx T
2

2 0 0

0 qy
T 2

2 0

0 0 qφ
T 2

2

 . (4)

For AoA localization, the non-linear measurement equation is

zk = h(xk) + vk, (5)

where zk is a vector of N AoA measurements at time k, vk is
the measurement noise and is modeled as zero mean Gaussian
white noise with covariance Rk(xk):

vk ∼ N (0,Rk(xk)). (6)

In terms of the vehicle states and beacon positions, the non-
linear measurement function h becomes:

h(xk) =


∠([xb1, yb1]T − [xv,k, yv,k]

T )− φk
∠([xb2, yb2]T − [xv,k, yv,k]

T )− φk
...

∠([xbN , ybN ]T − [xv,k, yv,k]
T )− φk

, (7)

where (xb,i, yb,i) are the x and y position of the ith beacon
and ∠z is the angle of a vector z. The covariance matrix of
the noise associated with the AoA measurements is assumed
to take the following diagonal form.

Rk(xk) =

Rk,1 0
. . .

0 Rk,N

 , (8)

where Rk,i = σ2
i d

2
k,i + σ2

i,min, σ2
i is the AoA signal noise

variance for measurement i at unit range from the beacon and
σ2
i,min is the floor noise variance for the sensor reading. dk,i

is the distance between the vehicle and the ith beacon. Due to
the stochastic nature of the state transition and measurement
equations, an estimator is employed to use the noisy mea-

surements to produce a best estimate of the system states. The
estimator needs to be compatible with nonlinear state transition
and measurement functions and for this reason an extended
Kalman filter (EKF) has been selected. The EKF utilizes a
first order approximation of the Taylor series expansion for the
non-linear state transition and measurement equations to arrive
at a linear approximation that can be used in the covariance
update equation. The traditional Kalman filter update equations
can then be used with the approximate linear equations:

State Prediction:
x̂k|k−1 = f(x̂k−1|k−1,uk), (9a)

Pk|k−1 = AkPk−1|k−1A
T
k +Qk, (9b)

State Update:
x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1)), (9c)
Pk|k = (I−KkHk)Pk|k−1, (9d)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1, (9e)

where x̂k|k−1 is the a priori state estimate, an estimate of the
states of the system at time k using all of the measurements
up to time k-1. f is the nonlinear state transition function,
uk is the input vector [V ωk]

T , Pk|k−1 is the a priori error
covariance matrix for the a priori state estimate at time k.
x̂k|k and Pk|k are the a posteriori state estimate and error
covariance matrix respectively after filtering at time k. To
utilize the Kalman filter equations, the measurement matrix
Hk and state transition matrix Ak must be determined from
the non-linear measurement and state transition equations (1)
and (5). Ak is the 3×3 Jacobian matrix with respect to the
system states evaluated at xk−1|k−1 and Hk is a N×3 Jacobian
matrix of the measurement function h(x) evaluated at xk|k−1.

Ak =

1 0 −TV sin(φk−1|k−1)

0 1 TV cos(φk−1|k−1)

0 0 1

 , (10)

Hk =



dy
1,k|k−1

‖d1,k|k−1‖2
−dx1,k|k−1

‖d1,k|k−1‖2
−1

dy
2,k|k−1

‖d2,k|k−1‖2
−dx2,k|k−1

‖d2,k|k−1‖2
−1

...
dy
N,k|k−1

‖dN,k|k−1‖2
−dxN,k|k−1

‖dN,k|k−1‖2
−1


, (11)

where

di,k|k−1 =

[
dxi,k|k−1
dyi,k|k−1

]
=

[
(xbi − xv,k|k−1)
(ybi − yv,k|k−1)

]
, i = 1, . . . , N.

The recursive Kalman filter equations are initialized with

x0 = E{x0} and P0 = Cov{x0}. (12)

III. OPTIMAL MANEUVERING

The objective of this optimal maneuvering algorithm is to
provide a trajectory that will minimize the systems estimation
error. Equivalently, the vehicle must maximize the information



it has about its position and heading. The control scheme
consists of 2 parts, a navigation component which determines
an optimal heading to minimize the cost function selected and
a controller to determine a control input to achieve the desired
trajectory. The vehicle must adhere to several constraints on
its speed and position detailed in Section III-B. The rotational
control of the vehicle is governed by the following linear state
transition equation:

φk+1 = φk + Tωk. (13)

The control input is the rotational velocity ωk. The cost
function selected for the optimal control problem is introduced
in Section III-C. The selected cost is minimized iteratively
through a numerical gradient descent algorithm. At each time
instant the gradient-descent algorithm determines a desired
waypoint for the subsequent time instant. Following the path
set by these iteratively selected points should result in the
cost function reaching a minimum. The desired waypoint
determined by the algorithm is then converted to a desired
heading command φd. Finally a control input can be calculated
to track the desired trajectory. The linear state update equation
becomes:

φk+1 = φk − TK(φd − φk), (14)

where K is a gain used for the control.

A. Steering algorithm

The gradient descent algorithm uses the partial derivatives
of the cost function with respect to changes in the x and y
directions, to determine the optimal (x, y) waypoint at the
next time step to minimize the cost function. Using this, a
heading is calculated to maneuver the vehicle to this waypoint
optimally. Eq. (15) details the desired state transition using the
gradient descent algorithm:

xd,k+1 =

[
xd,k+1

yd,k+1

]
=

[
x̂v,k
ŷv,k

]
−Nk

∂J(x̂k)

∂(x̂v,k, ŷv,k)
, (15)

where xd,k+1 is the desired waypoint at time k+1, x̂v,k and
ŷv,k are the estimated x and y position of the vehicle at time
k, J(xk) is the cost function, Nk is a matrix for normalizing
the gradient descent.

Nk =
V T∥∥∥ ∂J

∂(x̂v,k,ŷv,k)

∥∥∥I2, (16)

where I2 is the 2×2 identity matrix. The desired next point
calculated with the gradient descent algorithm is used to
determine the desired heading.

φd = atan2 ((xd,k+1 − ŷv,k), (yd,k+1 − x̂v,k)) . (17)

Opting for a numerical approximation of the gradient of J(xk),
let

∂J(x̂k)

∂(x̂v,k, ŷv,k)
=
[
αk(1) αk(2)

]
. (18)

Using a first order approximation

αk(i) ≈
J(x̂k + δi)− J(x̂k)

δ
, (19)

where δi is a 3 × 1 vector with zero entries except for the
ith element which is small, real positive number δ, i.e.,

δ1 =
[
δ 0 0

]T
, δ2 =

[
0 δ 0

]T
. (20)

B. Constraints

The vehicle is subject to several operational constraints on
both its position and velocity. The velocity constraints are in
the form of norm and turn rate constraints.∥∥∥∥[xv,k+1 − xv,k

yv,k+1 − yv,k

]∥∥∥∥ = V T, (21a)

|φ(k+1) − φk| ≤ Tωmax, (21b)

where ωmax is the maximum turn rate of the vehicle. The hard
constraints (21a) (21b) come from the physical limitations of
the system, whereas the position constraints come from the
nature of the problem. For an environment with N beacons,
there are N soft position constraints of the form:∥∥∥∥[xv,(k+1) − xb,i

yv,(k+1) − yb,i

]∥∥∥∥ ≥ dmin. (22)

dmin is the minimum distance the vehicle can be positioned
with respect to a beacon. These constraints correspond to a
circle of radius dmin centered on each of the N beacons, in
which the vehicle cannot travel within. In a planar environment
the vehicle needs to maintain a distance from the transmitter,
because if they are concurrent an angle between them cannot
be measured. dmin should be larger than necessary to account
for occasions when the vehicle can not avoid violating the
constraint due to a limit on maximum turn rate. If the desired
control input violates the maximum turn rate constraint, the
control input is adjusted such that

|φ(k+1) − φk| = Tωmax. (23)

The control input subject to constraints becomes:

ωk =


−θmax

T , for −θmax < θd − φk
θmax

T , for θd − φk > θmax
θd−φk

T , for −θmax ≤ θd − φk ≤ θmax
(24)

where θmax = Tωmax.

C. Cost function

To minimize estimation error variance for localization, it is
important to maximize the amount of information the system
has about itself. A cost function must be determined that when
minimized will achieve this goal. We have decided to select
the following cost function:

Jk = det(Pk+1|k{1:2,1:2}). (25)

Equation (25) is the determinant of the upper left portion of the
a priori error covariance matrix, which corresponds to the area
of the error ellipsoid of the position estimate. Minimizing this
cost will lead the vehicle to a position where the error ellipsoid
area is minimized which corresponds to a better state estimate.



(a) Beacon Positions (b) Vehicle Trajectories for 50
runs

Fig. 1: Beacon positions and vehicle trajectories for randomly
placed beacons

(a) MSE for Vehicle x Position (b) MSE for Vehicle y Position

Fig. 2: MSE for vehicle position in 5 beacon environment

IV. SIMULATIONS

Simulations were run to evaluate the estimation performance
and the effectiveness of the maneuvering strategy. Two dif-
ferent beacon geometries were investigated, five randomly
distributed beacons and three equidistantly placed beacons.
The parameters constant over all simulations are as follows:
Let σr,i be the standard deviation of AoA measurement noise
from beacon i.

0.5001◦ < σr,i < 1.5◦ for 0.1km < dk,i < 10km, (26)

This corresponds to variances of 6.0923 × 10−5dk,i +
7.6154 × 10−5 radians. The initial covariance matrix P0 =
diag(2.25, 2.25, 0.1745). V = 30m/s, ωmax = 0.1rad/s, T =
2s, simulation time = 400s, δ = 10−3km, dmin = 0.2km. The
process noise is qx = qy = qphi = 10−4.

A. Randomly placed beacons

For the results displayed in this section, five beacons were
randomly placed in a 5km×5km square centered at the origin.
The x and y position of the beacons are:[
xb,1 . . . xb,5
yb,1 . . . yb,5

]
=

[
2.200 1.374 0.461 −3.042 −4.749
−3.084 3.005 3.649 −3.685 4.552

]
The position of the beacons are displayed in Fig. 1a.

In the first simulation, the initial state estimate positioned
the vehicle on the circumference of a circle with a 3km
radius, centered at the origin. 50 simulations were executed
at 50 equally spaced initial positions around the circle. The
true inital state values were randomly distributed according to

(a) MSE for x Position (b) MSE for y Position

Fig. 3: Comparison of position MSE for an optimally ma-
neuvering vehicle, a loitering vehicle and a randomly walking
vehicle, in a 5 beacon environment

(a) MSE for x Position (P0) (b) MSE for y Position (P0)

(c) MSE for x Position (P10) (d) MSE for y Position (P10)

Fig. 4: Comparison of position MSE for an optimally ma-
neuvering vehicle and a loitering vehicle in a 3 beacon
environment with different initial estimate error covariance
matricies

the initial covariance matrix P0. Figure 1b show the actual
trajectories, and Figures 2a and 2b display the MSE for these
50 runs.

A second simulation was run in the same environment,
comparing a vehicle using the optimal maneuvering algorithm
with a vehicle loitering around its initial position and a vehicle
with randomized control input ωk. In this simulation the mean
of the initial state estimate was situated at the origin. Figures
3a and 3b show the MSE of the x and y position for a vehicle
employing these steering algorithms.

B. Equidistant beacon geometries

From Section I, the minimum number of beacons to perform
triangulation is three. In the following simulations, three
beacons were placed equidistantly on the circumference of a



circle centered at the origin with a radius of 3km.[
0 3 cos(π6 ) −3 cos(π6 )
3 −3 sin(π6 ) −3 sin(π6 )

]
(27)

Figures 4a and 4b show the MSE for 50 runs of both the ve-
hicles performing optimal maneuvering, and vehicles loitering.
Initial position state estimate has a mean at the origin, with
initial covariance matrix P0. Figures 4c and 4d show the MSE
for 50 runs in the three beacon environment, except the initial
estimate is more uncertain. In the simulation that produced
these MSE plots, the initial position used was x0 = [0, 0, 0]T

+ w0 where w0 ∼ N (0, P10), P10 = diag(5, 5, 0.1745)

V. DISCUSSION

The optimal maneuvering scheme iteratively draws the
vehicle towards a position which minimizes the area of the
error ellipsoid for its position. As can be seen from observing
Fig. 1b, this behavior drew the vehicle towards one of the
beacons in the environment. The vehicles maneuvered towards
a beacon, circling nearby while avoiding a violation of the
proximity constraints surrounding the beacons. This result is
interesting, as intuitively the center of the beacon field seems
the most advantageous position to be. Circling the beacons
expose the vehicle to geometrically undesirable estimation
locations, which were not avoided because the inaccuracies are
not captured in the error covariance matrix. The source seeking
behavior as implemented achieves the minimum estimation
variance as perceived by the EKF, but in reality is subject to
undesirable errors. This is clear in Fig. 2a and 2b, where the
loitering vehicles performed better in the dense beacon field,
however the algorithm does perform better than randomly ma-
neuvering. In the scenarios where three beacons were present,
less information was available for self-localization and hence
an information oriented navigation algorithm is desirable.
In these scenarios the optimal maneuvering algorithm is in
general, superior. Using the initial estimate covariance matrix
P0, in Figures 4a and 4b the MSE converged faster at the
expense of a higher MSE towards the end of the simulation
time. The increased performance of the optimal maneuvering
algorithm is more prominent when comparing Figures 4c
and 4d when less initial information is present. The optimal
maneuvering MSE for x and y converged much faster than for
a loitering vehicle, in the time the simulations ran the MSE
for the loitering vehicle did not converge.

VI. CONCLUSION

In this paper an optimal maneuvering methodology based
on gradient descent is introduced that steers an autonomous
vehicle to locations that provide better estimation accuracy.
Initial results show that it performs well in environments
with less available information, however in dense beacon
fields its performance suffers due to unmodeled uncertain-
ties. The algorithm successfully minimizes the selected cost
function. The estimator gives a statistical best estimate of
the vehicle states, however, it does not take into account
sources of error that the Kalman filter can not model due to

linearization, and unobservable beacon/vehicle geometries. In
less informative environments the proposed algorithm leads to
a faster convergence of MSE when compared to a loitering
vehicle. Future work involves adding capability to distinguish
uninformative maneuvers based on information that is not
statistically derived but semantic in nature. Information that
is derived from the states of the vehicle/environment system.
This additional information could help minimize estimation
errors that arise from large errors in initialization, allowing
for faster convergence in these scenarios. Other more complex
scenarios should be investigated including when beacons can
move dynamically, when positions are not known and when
the vehicle is balancing optimization criteria for gathering
information and achieving a primary objective.
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