Distributed Mission Execution
for Aerial Cinematography with Multiple Drones

Arturo Torres-Gonzalez*, Alfonso Alcantara™, Vasco SampaioT,
Jesds Capitan®, Bruno Guerreiro'¥, Rita Cunhal and Anibal Ollero*
*University of Seville, Seville, Spain
Email: [arturotorres,aamarin,jcapitan,aollero] @us.es
Instituto Superior Técnico, Lisbon, Portugal
Email: [vsampaio,bguerreiro,rita] @isr.ist.utl.pt
1 NOVA School of Science and Technology (FCT/UNL), Caparica, Portugal

Abstract—This paper presents a system for autonomous cine-
matography with multiple drones. Drones are becoming a trend
for aerial cinematography. The price for buying a commercial
platform is decreasing every year, while their quality increases.
Drones allow for new shots and perspectives, and they can be
automated. Despite their extended use, there are still challenges
for teams of multiple drones which cooperate for autonomous cin-
ematography. The proposed system tries to face these challenges,
focusing on the actual execution of aerial shots. A set of canonical
shots with specific parameters for autonomous implementation
is compiled. This system includes a distributed scheduler to
synchronize shots using an event-based mechanism, and an
autonomous controller to provide smooth movements in both the
drone and the camera, so the drones can take aesthetic shots.
Moreover, the system considers safety in two levels: collision
avoidance in the controller and emergency management to handle
high level alarms (e.g. low battery).

Index Terms—Multi-drone system, aerial cinematography, dis-
tributed mission execution.

I. INTRODUCTION

Aerial cinematography with drones is awakening relevant
attention lately, with many new commercial platforms for
both amateurs and professionals. Drones are becoming so
popular for filming due to their cost and maneuverability
compared with static cameras or dollies. Moreover, drones
allow us to take aesthetic shots from unique perspectives.
The idea of using multiple drones to cover the same event
cooperatively is novel and has special interest for outdoor,
large-scale scenarios, where there may be several action points
taking place at different locations simultaneously. Also, multi-
camera shots with several drones open a wide spectrum of
artistic possibilities for media production.

Autonomous drone cinematography entails problems such
as target tracking or the generation of smooth trajectories
for the cameras. However, multi-drone systems impose even
additional challenges: the number of operators involved to
control all cameras and drones increases; different shots have

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 731667
(MULTIDRONE). This publication reflects the authors’ views only. The
European Commission is not responsible for any use that may be made of
the information it contains.

to be allocated to the drones efficiently; drones must avoid
collisions with others when executing multi-camera shots; etc.

There are multiple works addressing camera motion plan-
ning for aerial filming [1]-[3]. The common idea is to formu-
late some kind of optimization problem to generate smooth
camera trajectories that fulfill aesthetic and cinematographic
constraints. There are also end-to-end solutions for aerial
cinematographers [4], [S] where high-level commands can be
specified. However, the focus of these previous works is on
static scenes and single-drone settings. Moreover, there are
works filming dynamic targets in outdoor scenarios and coping
with obstacle avoidance [6]—[8]. There is no much work con-
sidering multi-drone shots for cinematography. Recently, some
authors have proposed MPC-based optimization techniques to
film with several drones in indoor settings [9], [10].

The EU-funded project MULTIDRONE ! focuses on au-
tonomous media production with multiple drones. The project
objective is to develop a team of several drones that can film
outdoor sport events in a coordinated manner. The project
studies the whole process to define shooting missions for
media production, translate them into feasible plans for a
drone team and execute them. This implies assigning all
requested shots to single drones or to subsets of drones,
for the case of multi-view shots. This paper focuses on the
autonomous execution of these shooting missions with the
multi-drone team, once all shots have been allocated by a
central planner, we propose a distributed system to execute
aerial shots autonomously ensuring coordination and safety.

In particular, our main contributions are the following:

o We define a list of canonical shots for aerial cinematog-
raphy. The type of shots come from previous works on
drone cinematography, but we compile a set of parameters
describing each shot to implement them autonomously.

o We propose a distributed scheduler for autonomous shot
execution, and we devise an event-based mechanism for
inter-drone shot synchronization. Safety is also consid-
ered by means of an emergency management component.

e An autonomous controller taking care of drone and
gimbal motion to execute shots autonomously and safely.

Thttps://multidrone.eu

II. SYSTEM OVERVIEW

Figure 1 shows the architecture of our system. There is
a central entity, so-called Mission Controller, which is in
charge of interfacing the end-user to receive shot requests and
then compute a feasible plan for the shooting mission. This
module is out of the scope of this paper and produces a list
of actions for each drone. These actions are to be executed by
our distributed Scheduler, which runs on board each drone.
Each drone Scheduler receives its lists of actions and needs
to synchronize their start and end by calling another Executer
module, which is the one actually controlling the drone and
the camera. The Schedulers across multiple drones need to
synchronize their actions for muli-drone shots. This is done
by means of Events also sent by the Mission Controller. Thus,
these Events are used to trigger actions.

Actions Drone 1 Drone n

& :
Events Scheduler L

! 1

Mission

Controller Scheduler

Executer Executer
Drone Drone

Fig. 1. System architecture with multiple drones.

III. CANONICAL SHOTS

In this section, we describe a set of canonical shots that
have been implemented for our system. There is a lot of
information about cinematographic rules and canonical types
of shots in the literature [11]. In MULTIDRONE project,
these canonical shots have been studied to come up with
a taxonomy that include the most representative ones [12],
which we implemented in our system.

A common relevant concept for all shots is the type of
target. Each shot can have a Reference Target (RT) and a
Shooting Target (ST). The former is used to drive drone
movements, as they would go in formation following this RT.
The latter is used to point the camera when filming. They may
both coincide but not necessarily. The ST can be virtual
if it is a predefined point or path or real if it is an actual
physical target (e.g., a cyclist, a runner, etc.) whose position
can be estimated, for instance through visual detection or with
a mounted GPS. None ST can also be possible when the
camera follows a pre-define motion. Additionally, we define
three different motion modes for the drones during a shot:

o VIRTUAL_TRAJ: A predefined path and speed is spec-
ified for the RT, so-called RT trajectory. Drones will
follow this RT trajectory at the specified speed.

e VIRTUAL_PATH: A predefined path is specified (RT
trajectory) but no speed is provided. Drones will follow

the rail specified by the RT trajectory at the speed of an
actual ST.

e ACTUAL_TARGET: Drones follow an actual ST with
no predefined trajectory. An RT trajectory could still be
provided as an estimation of the target movement.

In the following we describe the parameters of the shot types
that our system is able to execute. Table I summarizes them.
a) STATIC: The drone remains stationary above a fixed
RT location (this height is indicated by parameter zp), so an
actual target as RT makes no sense. The ST could be real
or virtual if the camera follows an actual or virtual target.
With the ST as none, we can implement shots scene-centered
moving the gimbal independently. In this case, parameters
pang, pane, tilts and tilt. indicate the pan and tilt initial
and end angles.

b) FLY-THROUGH: The drone flies through the scene
following a pre-defined path with no specific target to track.
As in the previous shot, the RT is not an actual target, so a
RT trajectory is required plus the flight altitude zo. The ST
is none and extra parameters are needed to indicate gimbal
movement: pan/tilt initial and end angles (pans, pan., tilts
and tilt,.).

¢) ELEVATOR: The drone moves vertically straight up or
down tracking a target or a static position. The drone starts the
shot above a given position (defined as the initial RT location)
at altitude z,, and it ends at z.. Thus, a virtual RT with an RT
trajectory is required. The ST could be real or virtual.

d) CHASE/LEAD: The drone chases a target from be-
hind with constant or decreasing distance; or leads it in the
front with decreasing or constant distance. The RT could be
virtual or real, so all RT modes are possible. For the ST,
only the real mode makes sense. Regarding parameters, z
determines the drone height over the RT and x5 and z., the
initial and final distances in the X axis (pointing forwards)
w.r.t. the RT.

e) FLYBY: The drone flies past a target normally over-
taking the target as the camera tracks it. The RT could be
virtual or real, so all RT modes are possible. For the ST, only
the real mode makes sense. It needs as parameters distances
w.r.t. the RT: z for the altitude, x4, and x. for the initial and
final distances in the X axis and the constant lateral distance
Yo-

f) LATERAL: The drone flies beside a target with con-
stant distance as the camera tracks it. The RT could be virtual
or real, so all RT modes are possible. For the ST, only the
real mode makes sense. It needs as parameters the 2, altitude
w.r.t. the RT, and the constant lateral distance .

g) ESTABLISH: The drone moves closer to a target
from the front, typically with decreasing altitude. The RT
could be virtual or real, so all RT modes are possible. For
the ST, only the real mode makes sense. Both altitude and
displacement in the X axis w.r.t. the RT change during this
shot, so it needs as parameters zs, 2., Ts and .

h) ORBIT: The drone moves around a target in a full
or partial circle. The RT could be virtual or real, so all RT
modes are possible. The ST could be real or virtual.

The parameters in this case include the altitude over the RT
(z0), the radius of the circle (rg), the initial azimuth angle
(azimuthg) and the angular speed (angular_speed).

TABLE I
PARAMETERS FOR EACH SHOT TYPE.

Shot name Shooting parameters
STATIC pans, tilts, pane, tilte, zo
FLY_THROUGH pans, tilts, pane, tilte, 2o
ELEVATOR Zs, Ze
CHASE/LEAD Ts, Te, 20
FLYBY Ts, Te, Y0, 20
LATERAL Yo, 20
ESTABLISH Ts, LTe, s, Re
ORBIT ro, azimuths, angular_speed, zo

IV. DISTRIBUTED SCHEDULING

Multi-drone shot execution is carried out by means of a
distributed Scheduler. Each drone runs on-board a Scheduler
module that coordinates the execution of the shots assigned
to it. Figure 2 shows a detailed scheme of this Scheduler,
which consists of three components: the Core, a module for
Emergency Management and a Path Planner.

Mission

Controller
T scheduler]
{ A !
Scheduler Emergency .| Path planner E
core management; :

Y
Executer Autopilot

Fig. 2. Detailed scheme for the Scheduler on each drone.

Each Scheduler on board a drone receives plans to execute
from the central Mission Controller. These plans consist of a
list of actions for that particular drone that should be executed
sequentially. The Scheduler, through its Core module, is in
charge of synchronizing the start and end of each action and
sending them to the drone’s Executer. There are two types of
actions that a drone can receive within a plan: navigation and
shooting actions. Both types can have a start Event associated,
which is the one triggering the action.

Navigation actions are those that do not include filming.
These are basic commands such as landing, take-off or go-to-
waypoint. In this case, a single waypoint or a list of waypoints
to navigate the drone are provided.

Shooting actions are those that include filming. Therefore,
they require a special controller to be executed, since drone
and gimbal movement are needed. The data structure for
these actions includes the shot type, its cinematographic (or
shooting) parameters, its duration, associated targets, etc. The
complete data structure is depicted in Table II. The fields

related to the targets include some for the reference target
(RT trajectory, RT speed, RT mode and RT ID) and others for
the shooting target (ST type, ST ID). Section III described the
shot types, how each type use the fields and which shooting
parameters need.

TABLE I
STRUCTURE FOR THE DATA TYPE SHOOTING ACTION.

SHOOTING ACTION
Field name | Data type | Comment
Start Event String Event that triggers this action
Shot type Discrete value Lateral, chase, orbit... (see section III)
Duration Time Duration of the shot
RT List of global | Estimated path of the RT
trajectory positions
RT speed Float value Speed of the RT if known
RT mode Discrete value VIRTUAL_TRAJ, VIRTUAL_PATH,
ACTUAL_TARGET
RT ID Natural number | Identifies the RT to follow if any
ST type Discrete value virtual, real, none
ST ID Natural number | Identifies the ST to follow if any
Shooting Set of E.g., distance to the RT, angular veloc-
parameters parameters ity in an orbit... (see section III)

The Scheduler sends the actions to the Executer sequen-
tially, but the start of some shooting actions or sequences
of shooting actions are triggered by Events. These Events
come from the Mission Controller, which sends them upon
user request or when a specific condition is met. The Events
are received by all drones, so the communication of Events
will serve as a synchronization method between the individual
shooting actions of several drones when needed. In order to
have a proper synchronization between the ground station and
all the drones, all the computers use NTP (Network Time
Protocol) to keep their clocks synchronized.

In summary, the Scheduler ends up with a sequential list of
navigation and shooting actions. Some of these are triggered
by a specific Event, e.g., the start of a race or reaching a
significant point of the race. The other actions are triggered
as soon as their previous actions end. Section VI will depict
an example shooting mission being executed by three drones.

A. Emergency management

Each Scheduler has integrated a sub-module for emergency
management, which is crucial for safety. This module is in
charge of monitoring the drone status, looking for any possible
failure. If it detects failures such as low battery and lose of
GPS, it activates an emergency status that is reported back to
the Mission Controller on the ground. The Mission Controller
may decide then to compute a new plan dismissing the affected
drone and reassigning its tasks.

Simultaneously, the Scheduler will carry out a contingency
plan. It will cancel the action being executed, it will command
the drone to navigate to the closest base station and land. For
that, the Path Planner component is used. This component is
able to compute a safe paths (i.e., without collisions) to a given
position. It has information about the positions of the base
stations (KML-based) and a detailed map of the environment
(point cloud). We use an off-the-shelf A* heuristic planner.

V. AUTONOMOUS SHOT EXECUTION

This section describes the controller for drone and gimbal
motion. Figure 3 shows a detailed scheme of the Executer. It is
divided in three modules, two for performing the autonomous
shooting (drone and camera controls) and one for handling
collision avoidance maneuvers.

Scheduler

Executer;

v v

Collision Drone Camera
avoidance control control

E——

; =

Gimbal

Autopilot Camera

Fig. 3. Detailed scheme for the Executer on each drone.

All the modules inside the Executer need information about
the drone and target positions. The target information could
be provided, for instance, by a GPS mounted on the target or
by visual tracking.

A. Drone control

Upon receiving a Shooting Action request from the Sched-
uler, the Drone Control module generates on-the-fly a desired
drone trajectory in agreement with shot type and respective pa-
rameters. Based on this desired trajectory and the current state
estimate, an error between current and desired position and
yaw angle is then used to generate the velocity commands to
the autopilot, using a simple saturated proportional controller
together with a feedforward velocity term.

To generate the desired drone trajectory we consider the
RT mode of the shooting action to determine whether to
follow a virtual or real target and then impose the behavior
of a trailer attached to target [13]. This approach effectively
produces smooth reference trajectories for the drone to track.
In addition, by generating a trailer trajectory, a reference frame
tangent to path is also obtained, which can be directly used to
define the relative displacements encoded in the parameters of
each shot type. For example, given a FLYBY shot, where the
drone is expected to overtake the target, the constant lateral
and vertical displacements, yoy and zp, the initial and final
displacements along the X-axis, =5 and z., as well as the
speed to go from one to the other v, = (x, — x5)/At, are all
defined with respect to the trailer reference frame. The same
applies to the CHASE/LEAD, LATERAL, ESTABLISH, and
ORBIT shot types.

B. Camera control

The Camera Control module commands both gimbal and
camera by means of dedicated interfaces. Depending on the
requested shooting action, the gimbal may be controlled to
describe predefined pan and tilt movements (STATIC and

FLY_THROUGH shot types) or point at a virtual or real target.
In all cases, the desired angular motion of the gimbal is com-
puted independently from that of the drone and with respect to
a world reference frame. This is made possible by the fact that
the gimbal is equipped with an IMU and low-level controller
that compensates for the motion of the platform and tracks
angular rate commands. The option was made to match the
heading of the vehicle with the direction of motion, allowing
for the implementation of reactive collision avoidance based
on the forward-looking LIDAR. Thus, conflicting objectives
may arise leading to relative angles between drone and gimbal
that exceed the mechanical limits. Such situations are avoided
by setting to zero the angular rate commands whenever the
relative angles approach their limits, using a bump function
to smooth out the transition. Besides controlling the gimbal,
this module is also responsible for sending commands to the
camera that include start and stop recording, autofocus, and
changing camera parameters, such as zoom, aperture, ISO, or
white balance.

C. Collision avoidance

This sub-module performs reactive obstacle avoidance.
These obstacles include static obstacles (e.g., trees, buildings,
etc.) or moving obstacles (e.g., other drones in the team). The
plan sent by the Mission Controller is supposed to be collision-
free and, hence, drone trajectories should not cross. However,
the actual execution may make drones to come closer than
expected. Moreover, in case of following an actual target, its
final trajectory will not be the same as estimated, so drones’
trajectories may provoke collisions.

The Collision Avoidance component supervises drone tra-
jectories and overwrites the Drone Control commands if col-
lisions are detected. We use a reactive algorithm for collision
avoidance [14]. The algorithm receives obstacles information
from two sources: a LIDAR on board the drone pointing
forwards; and a communication channel where neighboring
drones share their positions in real time. Then, the algorithm
defines safety cylinders around the drone to detect possible
conflicts when they are invaded by obstacles. These conflicts
are resolved by a set of maneuvers assuming that all drones
follow the same predefined rules.

VI. SIMULATED EXAMPLE

This section presents a use case example in simulation.
We use the GAZEBO [15] simulator and the PX4 [16] SITL
(Software In The Loop) functionality to simulate the autopilot.
The simulator also uses UAL (UAV Abstraction Layer) [17],
an open-source library to interact with autonomous drones,
abstracting the user from the specifics of the platform used.
With this simulator and the developed tools, it is easy to run
and test different examples without flying with the real drones
but using the very same software that would run in the real
drones.

The use case example involves two drones performing
shooting actions that are launched by Events. Figure 4 shows
the temporal evolution of the actions carried out by the drones

during the mission of this example. First, the drones remain
on the ground waiting for the GET READY Event. When this
Event is triggered, the drones take off and go to the starting
point of the first shooting action. The drones wait for the
START RACE Event to execute the CHASE shot (Drone 1) and
the LATERAL shot (Drone 2) simultaneously. This moment of
the simulation is shown in Fig. 5. Drone 1 starts to perform the
FLYBY shot when the duration of the previous shooting action
is reached while Drone 2 keeps executing the LATERAL shot.
When the target reaches the final line, the FINISH LINE
Event is triggered and both drones carry out the ORBITAL
shooting action. When the time is up, the drones return home
and land at the base station.

Events Drone 1 Drone 2
to
LANDED LANDED
GET |
READY
TAKE OFF TAKE OFF
GO TO WP1 GO TO WP1
START | |\
RACE
CHASE
I LATERAL
FLYBY
FINISH
(] V] =S I A
ORBITAL ORBITAL
GO HOME GO HOME
t

Fig. 4. Timeline of the simulated example mission.

Fig. 5. Simulation with two drones. The target follows a straight line along
the road. At that moment, Drone 1 and drone 2 are performing a CHASE and
LATERAL shooting actions.

VII. CONCLUSIONS

This paper presented an architecture for autonomous shoot-
ing with multiple drones. The proposed system is composed
of a distributed scheduler and an autonomous controller to

execute the actions. Safety is considered in both parts. A
list of canonical shots for aerial cinematography with specific
parameters for autonomous implementation is also presented.

The system was tested in simulation with simple and more
complex missions with up to three drones. Next steps include
testing the execution of autonomous shooting missions with
multiple drones in real experiments.

REFERENCES

[1] N. Joubert, M. Roberts, A. Truong, F. Berthouzoz, and P. Hanrahan,
“An interactive tool for designing quadrotor camera shots,” ACM Trans-
actions on Graphics, vol. 34, no. 6, pp. 1-11, oct 2015.

[2] C. Lino and M. Christie, “Intuitive and efficient camera control with
the toric space,” ACM Transactions on Graphics, vol. 34, no. 4, pp.
82:1-82:12, jul 2015.

[3] Q. Galvane, J. Fleureau, F.-L. Tariolle, and P. Guillotel, “Automated Cin-
ematography with Unmanned Aerial Vehicles,” Eurographics Workshop
on Intelligent Cinematography and Editing, 2016.

[4] N. Joubert, J. L. E, D. B. Goldman, F. Berthouzoz, M. Roberts, J. A.
Landay, and P. Hanrahan, “Towards a Drone Cinematographer: Guiding
Quadrotor Cameras using Visual Composition Principles,” ArXiv e-
prints, 2016.

[5] C. Gebhardt, B. Hepp, T. Négeli, S. Stevsi¢, and O. Hilliges, “Airways:

Optimization-Based Planning of Quadrotor Trajectories according to

High-Level User Goals,” in Proceedings of the Conference on Human

Factors in Computing Systems (CHI), ACM. New York, New York,

USA: ACM Press, 2016, pp. 2508-2519.

E. Price, G. Lawless, R. Ludwig, I. Martinovic, H. H. Buelthoff, M. J.

Black, and A. Ahmad, “Deep neural network-based cooperative visual

tracking through multiple micro aerial vehicles,” IEEE Robotics and

Automation Letters, vol. 3, no. 4, pp. 3193-3200, Oct. 2018.

[7]1 C. Huang, F. Gao, J. Pan, Z. Yang, W. Qiu, P. Chen, X. Yang, S. Shen,

and K. T. Cheng, “Act: An autonomous drone cinematography system

for action scenes,” in IEEE International Conference on Robotics and

Automation (ICRA), May 2018, pp. 7039-7046.

R. Bonatti, C. Ho, W. Wang, S. Choudhury, and S. Scherer, “Towards

a Robust Aerial Cinematography Platform: Localizing and Tracking

Moving Targets in Unstructured Environments,” arXiv e-prints, p.

arXiv:1904.02319, Apr 2019.

T. Négeli, L. Meier, A. Domahidi, J. Alonso-Mora, and O. Hilliges,

“Real-time planning for automated multi-view drone cinematography,”

ACM Transactions on Graphics, vol. 36, no. 4, pp. 1-10, jul 2017.

M. Saska, V. Kratky, V. Spurny, and T. B4ca, “Documentation of dark

areas of large historical buildings by a formation of unmanned aerial

vehicles using model predictive control,” in 22nd IEEE Intl. Conf. on

Emerging Technologies and Factory Automation (ETFA), Sep 2017, pp.

1-8.

C. Smith, The Photographer’s Guide to Drones.

2016.

I. Mademlis, V. Mygdalis, N. Nikolaidis, M. Montagnuolo, F. Negro,

A. Messina, and I. Pitas, “High-level multiple-uav cinematography tools

for covering outdoor events,” IEEE Transactions on Broadcasting, pp.

1-9, 2019.

P. O. Pereira, R. Cunha, D. Cabecinhas, C. Silvestre, and P. Oliveira,

“Leader following trajectory planning: A trailer-like approach,”

Automatica, vol. 75, pp. 77 — 87, 2017. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0005109816303363

E. Ferrera, A. Alcéntara, J. Capitdn, A. R. Castafo, P. J. Marrén, and

A. Ollero, “Decentralized 3d collision avoidance for multiple uavs in

outdoor environments,” Sensors, vol. 18, no. 12, 2018.

N. Koenig and A. Howard, “Design and use paradigms for Gazebo,

an open-source multi-robot simulator,” in In IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2004, pp. 2149-2154.

L. Meier, T. Gubler, J. Oes, D. Sidrane, D. Agar, B. KAijng,

A. Babushkin, px4dev, M. Charlebois, R. Bapst, and et al.,

“Px4d/firmware: v1.7.3 stable release,” Jan 2018.

F. Real, A. Torres-Gonzdlez, P. R. Soria, J. Capitdn, and A. Ollero,

“Ual: an abstraction layer for unmanned vehicles,” in 2nd International

Symposium on Aerial Robotics (ISAR), 2018.

[6

—

[8

[t}

[9

—

[10]

[11]

[12]

Rocky Nook, Inc.,

[13]

[14]

[15]

[16]

[17]

