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Abstract—This work is concerned with the problem of detect-
ing right whales from autonomous surface vehicles (ASVs) and
investigates the effectiveness of a range of deep learning methods.
Given the success of convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) across many different
applications, these form the basis for comparison. From the input
audio, power spectral features are extracted and consideration
is given to how their time resolution and frequency resolution
affects the detection accuracy and the number of points that need
to be processed which is an important consideration within the
limited processing power on an ASV. The effect of downsampling
the input audio before feature extraction is also investigated. Tests
establish that CNNs consistently give best performance on the
detection task with accuracy of over 92% compared to around
90% with RNNs. Furthermore, tests measuring the processing
time for detection found the CNN to be three times faster than
the RNN.

Index Terms—Cetacean detection, CNNs, RNNs, machine
learning, autonomous surface vehicles

I. INTRODUCTION

This work investigates the performance of deep learning
techniques on the detection of right whale up-sweep vocalisa-
tions. This investigation is aimed at providing an insight into
the best detection methods for use on an autonomous surface
vehicle (ASV) where processing power and communications
are limited. Accurate detection of marine mammals is important
for population monitoring and for mitigation as many species
are endangered and protected by environmental laws. We
specifically explore the detection of North Atlantic right
whales (Eubalaena glacialis) as they are currently under
threat of extinction. Detecting their presence before they enter
a mitigation zone both protects the animal and avoids the
shutdown of costly offshore operations.

As the human population grows so does the demand for
commercial shipping. With this comes increased ocean sound,
much of which has recently been under scrutiny for impacting
the wellbeing of marine mammals. Ship sounds such as
propellers and engine noise are often the source of loud low
frequency tones within the ocean. These have the potential
to not only interfere with marine mammal communication
but also effect their physiological stress levels resulting in
possible fatalities [1]. Military sonar testing has also been
hypothesised as the cause of mass cetacean fatalities in Greece
1996, with the post mortem report concluding that injuries
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were consistent with acoustic or impulsive signals causing
cardiovascular collapse, which is often associated with extreme
stress [1]. With a number of studies providing strong evidence
to suggest physiological harm to marine mammals through
anthropogenic noise, it is necessary to create techniques to
help mitigate the future risk to mammals.

Detection of cetaceans has traditionally been made by human
observers on-board ships, but more recently ASVs have been
used [2]. Using an ASV limits the detection to using just an
acoustic signal, as opposed to visual with a human observer,
but it provides a cheaper and more accessible alternative. ASVs
typically employ passive acoustic monitoring (PAM) which
processes acoustic signals from a hydrophone to determine
if marine mammals are present. This presents a number of
challenges that include performing audio analysis and detection
with limited processing power whilst maximising detection
accuracy.

A broad range of machine learning techniques have previ-
ously been applied to cetacean detection. For example, methods
such as vector quantisation and dynamic time warping have
been effective in detecting blue and fin whales from their
frequency contours extracted from spectrograms [3]. Hidden
Markov models (HMM:s) have also been effective at recognising
low frequency whale sounds using spectrogram features [4],
[5]. Further research utilised artificial neural networks (ANNSs)
for right whale detection, comparing its effectiveness to that
of spectrogram correlation, with the ANN giving a better
performance in samples with low signal-to-noise ratio (SNR)
[6]. Neural networks were further used for classifying clicks of
Blainville’s beaked whales, with a good performance recorded
for correctly detecting beaked whale clicks [7]. Convolutional
neural networks (CNNs) have been also applied to whale
detection. For example, [8] explored using CNNs to detect
whale sounds by creating spectral images represented as a
series of mel-frequency cepstral vectors extracted from the
input audio.

Given the widespread success of deep learning across a
range of applications that include image classification, speech
recognition and text classification [9]-[11], the aim of this
work is to investigate their effectiveness for right whale
detection. Specifically, CNN and recurrent neural network
(RNN) architectures are developed and optimised for the task



of right whale detection. Furthermore, we also investigate
the effect on detection accuracy of the time and frequency
resolution of the features extracted from the input audio. Finally,
given that an application of this work is deployment on ASVs,
processing times for the two architectures are also considered
which is an important consideration in low power applications.

The remainder of the paper is organised as follows. Section
IT introduces the right whale and describes the characteristics
of the sounds produced. Detection within the constraints of
an ASV are discussed in Section III. Sections IV, V and VI
explain the process of feature extraction and the CNN and
RNN architectures developed. Finally, detection performance
across a range of architectures and configurations are presented
in Section VIL

II. RIGHT WHALE CHARACTERISTICS

Cetaceans are a large and diverse group of marine mammals.
They are split into two suborders, odontocetes (toothed whales)
and mysticetes (baleen whales). Odontocetes have teeth and
feed on fish whilst mysticetes have a comb like structure
(baleen) which helps them to feed on large amounts of
crustaceans and zooplankton at once. Right whales are part
of the mysticeti suborder and are known to move seasonally
to feed and give birth [12]. Communication between whales
is achieved primarily through sound. Large amounts of water
make sight extremely difficult however sound propagation over
hundreds of kilometres is very common. Most cetaceans can
vocalise in several ways with whistles, clicks and burst pulses
being the most common [13]. These methods of vocalisation
have been predominantly recorded for use in the tasks of
communication, feeding and navigation.

With as few as 350 individuals remaining [14], our focus
is on right whales. They currently have a high possibly of
extinction due to human activity within areas where they
migrate. Right whale calls have been well documented [15]
and we focus on their most commonly documented sound, a
tonal up-sweep from approximately 60Hz to 250Hz, typically
lasting 1 second [16]. Tonal up-sweeps are believed to be used
as contact calls and are produced by all ages of animal [17].
Examples of these tonal sounds are shown in Figure 1 which
illustrates calls at different signal-to-noise ratios (SNRs) caused
by marine noise. Calls, however, are not always consistent with
one another and can often vary in duration, frequency range,
by time of day, season and age of the animal [18]. Right whale
vocalisation patterns are also extremely variable with periods of
silence regularly spanning many hours [19]. Right whale calls
can be difficult to hear or visualise in spectrograms as their
calls can be hidden within background noise. Low frequency
bands are often congested with anthropogenic sounds such as
ship noise, drilling, piling, military sonar or explosives. Figure
1 shows a range of spectrograms with varying amounts of
background noise.

III. DETECTION FROM AUTONOMOUS SURFACE VEHICLES

Current methods of collecting cetacean data involve towing
a hydrophone array from a ship and using trained observers
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Fig. 1. Example spectrograms showing up-sweep calls from right whales.
Top Left: High SNR; Top Right: Medium SNR with clear harmonic structure;
Bottom: Low SNR with low energy up-sweeps and high noise

to listen and watch the water for mammal activity. Visual
surveys are often hindered by poor weather conditions (e.g.
high seas, fog, presence of ice and darkness), uncertainty of
species, and short surfacing intervals [20], causing this method
to be extremely unpredictable for mammals that rarely surface.
A combination of visual and acoustic monitoring from a ship
will hypothetically yield the best result for detection however,
ship time is expensive and often sporadically timed. Contrary
to this, PAM-only systems can record continuously for several
months at a time, without human interaction, giving a cheaper
solution with a much higher likelihood of recording the animal
of interest [2]. Furthermore, using an ASV with a PAM system
will minimise local noise as no ship is needed for movement
of the hydrophone.

For the task of mitigation monitoring a positive detection
result needs to be communicated immediately so that mitigation
measures can be put in place to protect the animal. This
differs from, for example, population monitoring where data
is stored on an ASV and then transferred and processed
at a later time. Two potential ASV architectures can be
considered for mitigation monitoring and can be termed ‘thick’
and ‘thin’. The ‘thick® ASV samples the acoustic data from
the hydrophone and inputs this into an on-board detection
algorithm with positive detections transmitted for mitigation
alert. The ‘thin” ASV performs only the sampling on-board
and transmits the data remotely for detection processing and
mitigation alerts. Providing communication beyond a few
miles, where a wireless modem could be employed, requires a
satellite link. For the ‘thin’ ASV, the communication costs are
generally prohibitive as a permanent satellite link is necessary.
Furthermore, transmission would likely exceed the 2.4kbps
limit for the Iridium network and thereby require a connection
to the Inmarsat network which is substantially more expensive
and has much higher power consumption (100 W, as opposed



to 2.5 W). Based on these limitations of the ‘thin’ ASV
architecture, we consider only the ‘thick” ASV and explore
how processing requirements can be minimised. To reduce
false alarms (and the potentially large resulting costs) with the
‘thick” ASV architecture, the segment of audio associated with
a detection can be transmitted for a human to check, with the
frequency of occurrence of this unlikely to be prohibitive in
terms of transmission costs.

IV. FEATURE EXTRACTION

The purpose of feature extraction is to transform the input
audio signal into a representation that is more effective for
detecting whale sounds. Although many different methods of
audio feature extraction have been developed (for example
MFCCs, PLP, filterbank [21]) we chose to use a standard
power spectral representation. Our reasoning is that we wish
to allow the subsequent networks (CNN or RNN) to learn
discriminative representations and not remove what could
be useful information, such as may happen when using, for
example, a mel-scaled filterbank.

Therefore, feature extraction uses a sliding window to convert
short-duration frames of the input audio signal into a sequence
of log power spectral vectors, x;. Specifically, an N-point
frame of time-domain samples is extracted from the audio,
Hamming windowed and a Fourier transform computed. The
upper N/2 frequency points are discarded and the remaining
points logged. Analysis windows are advanced by S samples
to compute each new spectral vector. At a sampling frequency
of fs Hz, a total of % spectral vectors are computed
each second. This gives the total number of time-frequency
points, L, that are produced each second as

fs—N+1 N

L= 5 X?

D
Normalisation is applied to the elements of the power spectral
vectors such that they are in the range O to 1.

V. CNN ARCHITECTURES FOR DETECTION

Convolutional neural networks have been applied success-
fully to a number of tasks which include image classification,
object detection, lip-reading and voice activity detection [9],
[22]-[24]. By considering sequences of power spectral vectors
as input images, the CNN can make a decision as to whether
a whale sound is present or not.

The structure of the CNN takes the form of a number
convolutional layers each followed by a max pooling layer,
outputting into a final dense layer. In each convolutional layer
a number of M x M filter kernels are convolved with the
input and a ReLU non-linear activation function applied to
their outputs. At the edges of the input, zero-padding is applied
to maintain the size of the output. The final dense layer uses
a sigmoid activation function and outputs a probability of
whale detection. Section VII investigates the effect of different
numbers of layers, numbers of filters and their sizes.

VI. RNN ARCHITECTURES FOR DETECTION

The second deep learning architecture applied to whale
detection is the recurrent neural network. RNNs are an effective
architecture for temporal modelling and have been successful
in a range of applications that include speech recognition and
parsing [25], [26]. In the application of the RNN to whale
detection, each feature vector is applied sequentially to the
model, rather than the whole sequence of vectors as with the
CNN.

The structure of the RNN comprises a sequence of recurrent
layers, each with a number of nodes, followed, optionally, by
dense layers. To avoid the diminishing gradients problem, each
RNN layer is implemented using long short term memory
(LSTM) cells [27]. All layers use the hyperbolic tangent
activation function with the exception of the final layer which
uses a sigmoid to output a probability of whale detection.

VII. EXPERIMENTAL RESULTS

The aim of these experiments is to explore the accuracy of
the deep learning detection methods. Initially optimisation of
the CNN and RNN is carried out by varying their individual
architectures in order to reach a maximum accuracy for a fixed
set of input features. After the highest achieving system for
both CNN and RNN has been found we use these architectures
to examine the effect of time and frequency resolutions in
feature extraction and the effect of sampling frequency. This
aims to identify whether reducing processing time through input
features has an affect on detection accuracy and to discover
which model performs best overall. All training was carried
out over 100 epochs, using an RMSprop optimiser and a binary
cross-entropy loss function.

Tests use a database of North Atlantic right whale up-calls
that was obtained as part of the Marinexplore and Cornell
University Whale Detection Challenge !, where the audio is
segmented into 2 second duration blocks. Each block is labelled
as either containing a right whale or not, with annotations
produced manually. A set of 10,934 audio blocks for are used
for training, 1,122 for validation and 1,962 for testing. The
training, validation and test sets are configured to contain equal
numbers of blocks with and without right whales.

A. CNN optimisation

Initial testing with the CNN considered the effects of the
number of layers, filter size and number of filters in each layer.
Specifically, testing from 1 to 4 layers, each with 32, 64 or
128 filters of sizes of 3 x 3, 5 x 5 and 8 x 8 were performed.
For consistency, the spectral vectors for all tests were extracted
every 32ms using a 64ms window which gave a frequency
resolution of 15.6Hz at the 2kHz sampling frequency that was
used. The entire two second sequence of feature vectors formed
the input image to the CNN. Highest detection accuracy of
91.6% was obtained with 3 layers with 32, 64 and 128 filters in
each layer of size 3 x 3. This configuration forms the baseline
architecture for further CNN tests.

Uhttps://www.kaggle.com/c/whale-detection-challenge/data



B. RNN optimisation

Initial testing with the RNN considered the effects of the
number of layers and nodes, investigating 1, 3 and 5 layers
with 32, 64 or 128 nodes. Further tests added either 1 or 2
dense layers to the output of the RNN. For consistency, the
spectral vectors for all tests were extracted using the same
32ms temporal resolution and 15.6Hz frequency resolution
configuration as for the CNN tests. Stacking of the spectral
vectors was also investigated with the input to the RNN
comprising 1 to 4 stacked spectral vectors. Highest detection
accuracy of 89.8% was found using 3 layers, all with 32 nodes,
two dense layers, also with 32 nodes, and no frame stacking
and this forms the baseline configuration for subsequent RNN
tests. A bidirectional architecture was also tested, but gave no
increase in accuracy.

C. Feature extraction and sampling frequency

These tests now compare the best performing CNN and
RNN architectures under a range of different input features
that vary according to their time and frequency resolutions and
sampling frequency. Frame widths between 256ms and 16ms
are considered first with a fixed 50% overlap of frames. This
gives a time resolution, At, between 128ms and 8ms. In terms
of the frequency resolution, A f, this varies between 3.9Hz and
62.5Hz, depending on the window size and sampling frequency.
The number of time-frequency points per second, L, for each
configuration is computed using (1) and gives an indication
of processing requirements. For each time resolution, Table
I shows the resulting frequency resolution, number of time-
frequency points per second and the detection accuracy for the
CNN and RNN models, for sampling frequencies of 2kHz and
1kHz. We chose not to downsample further as initial testing
showed a reduction in accuracy as this begins to loose spectral
regions containing whale sounds.

For the CNN the highest accuracy for both sampling
frequencies is found with the 64ms-7.8Hz time-frequency
resolution, with 92.1% for 2kHz and 92.0% for 1kHz. The
highest accuracy achieved by the RNN is 90.6% with a
1kHz sampling frequency using a 32ms-15.6Hz time-frequency
resolution. This accuracy is reduced slightly to 90.4% with
a 2kHz sampling frequency on a 16ms-31.3Hz resolution,
however both are noticeably lower than the detection accuracy
of the CNN. Considering the number of points (for both
the CNN and RNN), and hence processing time, the 1kHz
systems requires half the computations and gives almost equal
performance to the 2kHz systems.

To compare the processing time for detection on the CNN
and RNN, which is an important consideration for deployment
on an ASV, the average time taken to process each 2 second
audio block is measured. This is for detection only, not training,
and tests are carried out on an Intel Core i7-870 CPU. For
both the RNN and CNN the same input features of At=64ms
and A f=7.8Hz are used, both at the 1kHz sampling frequency.
The average time per detection for the CNN is 3.05ms while
for the RNN is 11.98ms. While these are much faster than
real-time, in practice a much slower processor would be used

TABLE I
CNN AND RNN DETECTION ACCURACIES AND NUMBER OF POINTS PER
SECOND FOR VARYING TIME AND FREQUENCY RESOLUTION FEATURES
WITH 50% FRAME OVERLAP.

At 128ms 64ms 32ms 16ms 8ms
2kHz | Af 3.9Hz 7.8Hz 15.6Hz | 31.3Hz | 62.5Hz
2kHz | L 1489 1745 1873 1937 1969
2kHz | CNN | 91.4% | 92.1% 91.6% 90.2% 89.9%
2kHz | RNN | 89.2% | 89.9% 89.8% 90.4% 88.3%
1kHz | Af 39Hz 7.8Hz 15.6Hz | 31.3Hz | 62.5 Hz
1kHz | L 745 873 937 969 985
1kHz | CNN | 91.2% | 92.0% 91.6% 90.6% 90.0%
1kHz | RNN | 89.3% | 90.5% | 90.6% 89.8% 88.9%

on the ASV, making the faster detection time of the CNN more
significant.

Furthermore, we also compared our optimal CNN against
a baseline ResNet architecture, pre-trained on the ImageNet
dataset, with no additional layers [28]. This used the 64ms-
7.8Hz acoustic feature sampled at 2kHz as input. This gave
a detection accuracy of 91.4% which is slightly lower than
the CNN trained on the same features. However, ResNet took
22ms to process each audio block which is seven times longer,
which we attribute to its depth.

The tests in Table I were performed with 50% frame
overlap which means that frequency resolution deteriorates
as time resolution improves. In Table II we consider these
independently by varying the frame slide, .S, whilst using a
fixed frame width. We specifically investigate two fixed widths
to give both high and low frequency resolutions - A f={3.9Hz,
15.6Hz}. The frame slide continues to be adjusted to give
varying time resolutions, At, from 64ms to 8ms.The resulting
CNN and RNN detection accuracies and number of time-
frequency points per second are shown in Table II for the
2kHz and 1kHz sampling frequencies.

For both frequency resolutions and both sampling frequencies
the time resolution has relatively little effect between 64ms
and 16ms, with highest accuracy for both detection methods
at 32ms. In terms of frequency resolution, the finer resolution
gives higher accuracy for all CNN configurations. However,
the maximum RNN accuracy is achieved using a frequency
resolution of 15.6Hz, and where all configurations of the 1kHz
sampling frequency achieve higher accuracy than their finer
resolution counterparts. For example, highest performance of
92.5% is attained with a CNN using a 1kHz sampling frequency,
3.9Hz frequency resolution and 32ms time resolution which
produces 2980 points. This could be reduced to 937 points
(corresponding to a three times reduction in data) by using a
wider frequency resolution but with a reduction in accuracy to
91.6%.

VIII. CONCLUSION

A range of deep learning methods have been applied to
the detection of right whales, with the best performance, in
terms of accuracy given by the CNN. An RNN also achieved
high accuracies across a variety of input features however the
accuracy of the CNN was consistently higher. Downsampling



TABLE 11
CNN AND RNN DETECTION ACCURACIES AND NUMBER OF POINTS PER
SECOND FOR VARYING TIME RESOLUTIONS AND FREQUENCY RESOLUTIONS
OF 15.6Hz AND 3.9Hz.

At 64ms 32ms 16ms 8ms
2kHz | Af 15.6Hz | 15.6Hz | 15.6Hz | 15.6Hz
2kHz | L 936.5 1873 3746 7492
2kHz | CNN | 91.1% | 91.6% 91.0% 90.0%
2kHz | RNN | 89.1% | 89.8% 88.7% 89.2%

T2kHZ |TAFT]TT 39Hz | 39Hz | 39Hz | -
2kHz | L 2978 5956 11912 -
2kHz | CNN | 92.1% | 92.3% 91.3% -
2kHz | RNN | 90.2% 89.8% 89.3% -
1kHz | Af 15.6Hz | 15.6Hz | 15.6Hz | 15.6Hz
1kHz | L 468.5 937 1874 3748
1kHz | CNN | 91.0% | 91.6% 91.5% 91.0%
1kHz | RNN | 90.4% | 90.6% 90.5% 90.4%

TikHZ |TAF 39Hz | 39Hz | 39Hz | 3.9Hz
1kHz | L 1490 2980 5960 11920
1kHz | CNN | 923% | 92.5% 91.6% 91.0%
1kHz | RNN | 90.1% 89.6% 89.6% 89.3%

the audio leaves accuracy almost unchanged with some tests
showing better results. Downsampling however leads to a
substantial reduction in processing time which is advantageous
for use on ASVs. Considering time and frequency resolution
the CNN results reveal that a wide time resolution of 32ms
gives good accuracy whilst higher frequency resolutions are
better, albeit at an increased processing cost. The RNN achieved
its best accuracy using downsampled audio and also achieved
higher accuracies from the wider 15.6Hz frequency resolution.
Furthermore, the CNN was found to be able to perform
detections three times faster than the RNN. This makes the
CNN more suitable for deployment on an ASV, given both its
higher detection accuracy and much smaller detection times.
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