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Johanna Ärjea,b,c, Dimitrios Miliorisd, Dat Thanh Tranb, Jane U. Jepsene, Jenni Raitoharjub, Moncef Gabboujb,

Alexandros Iosifidisf , Toke Thomas Høyea
a Department of Bioscience, Aarhus University, Denmark, johanna.arje@tuni.fi

b Department of Computing Sciences, Tampere University, Finland
c Department of Mathematics and Statistics, University of Jyvaskyla, Finland

d Nokia Bell Labs & MIT, USA
e Norwegian Institute for Nature Research, Norway

f Department of Engineering, ECE, Aarhus University, Denmark

Abstract—Phenology describes the timing of life history events
like flowering in plants and is a sensitive indicator of biological
responses to climate change. However, recording plant phenology
across space and time is a labour-intensive task. The creation of
autonomous systems for in situ monitoring could greatly reduce
expensive and time consuming manual human labour to both
collect and analyze the data. One of the bottlenecks in creating
such an autonomous system is computational complexity of the
adopted Computer Vision methods. Deep Convolutional Neural
Networks (CNNs) are state-of-the-art object detectors but can be
very slow and computationally demanding. Light CNN topologies
with only few layers which can achieve good performance are
needed for lowering the processing power requirements. In this
paper, we compare a light-weight CNN with two deeper CNNs
on an object detection as well as image classification task on a
dataset of Dryas flowers from Greenland.

Index Terms—automated biomonitoring, classification, convo-
lutional neural networks, object detection, plant phenology

I. INTRODUCTION

Climate warming is causing changes in the timing and
duration of flowering seasons [1]–[3]. This effect of global
warming is most readily observed in the Arctic where the
changes are happening most rapidly. Also, the lower number of
plant species and the two-dimensional structure of the vegeta-
tion make it convenient to study these changes in arctic areas.
To study the changes in flowering, biologists typically monitor
plants in small permanently marked areas and manually count
buds, flowers and wilted flowers repeatedly during the growing
season to estimate the start and end of the flowering season.
With more efficient methods of recording plant phenology, it
could become possible to track individual flowers and even
to link such phenological dynamics at the individual level to
visitations by pollinators, and ultimately to relate the timing
and number of visits by pollinators to the likelihood of seed
set in individual flowers. Automating the monitoring process
would greatly reduce the cost of collecting and analyzing
flowering and pollination data and would open up new insights
into species interactions. It could also enable monitoring sites
that are difficult to reach.

The automated monitoring of arctic flowers and pollinators
involves three different machine learning tasks: detecting flow-
ers, identifying the flowering stage, and detecting pollinators
visiting flowers. The state-of-the-art approaches for object
detection and image classification use deep learning models
(CNNs, see e.g. [5], [6]). These models can produce high
accuracy but are very slow due to large amount of parameters
raising the computational costs [7]. Even faster methods, e.g.,
YOLO [8], SPP-CNNs [9], use CNN once and are still affected
by the number of parameters. Also, YOLO struggles to detect
small objects in groups [8]. In addition to the large number of
parameters in deep CNNs, the computational costs are even
higher when these complex models are used to detect and
classify objects in big, high-resolution images.

Tran et al. [10] studied the detection of arctic Dryas integri-
folia flowers and pollinators visiting them using CNNs for the
detection task, but were less concerned about the processing
speed. For automation to truly benefit arctic biomonitoring, the
proposed system needs to analyze large amounts of monitoring
images fast. In this paper, we concentrate on flower detection
and classification. We propose a light-weight CNN for both
tasks and use a sliding window approach for detecting flower
locations in test images. We compare the light-weight network
with two deeper CNN architectures – including ResNet-50 –
in flower detection and classification tasks. We compare the
models based on mean average precision (mAP) scores and
accuracy, but also on their training and prediction times.

II. DATA

The data for this work was collected from three time-lapse
cameras placed over different Dryas integrifolia flower beds in
Narsarsuaq, Greenland over summer seasons 2017 and 2018.
The images were recorded with Wingscapes TimelapseCam
Pro cameras and stored as 6080 x 3420 resolution JPEG
images. To ensure sufficient data on the flowering season, the
flower beds were photographed once a minute, resulting in
three time series of images, one from each flower bed. Two



time series were captured over the summer season 2017 and
one over the summer season 2018.

A subset of each time series was annotated using VGG
Image Annotator software [12]. The subsets consist of several
images per day, a total 1448 frames all together. In the
annotation process, an operator drew a rectangle around every
flower found in a single image and labeled it belonging to one
of four classes: bud, flower, wilted flower, or seed pod (Figure
1). One time series of images from 2017 and one from 2018
were used for training and validating the models. The other
time series from 2017 was kept separate for testing.

Fig. 1: Example of flower annotations. Red bounding boxes
are drawn around buds, green boxes around flowers and blue
boxes around any flower stage that is only partially visible in
the image.

III. FLOWER DETECTION AND CLASSIFICATION

We propose a two-step system for detecting and classifying
Dryas integrifolia flower stages. In the first step, we train
CNN models on a binary classification problem to separate
any flower stage from the background. We train the networks
with the annotation data, combining all flower categories
into one, and background bounding boxes randomly sampled
from the frames - making sure they do not overlap with the
annotations. To detect the locations of flowers, we use the
sliding window approach. We use several different window
sizes to help detect objects of varying size and combine the
resulting probability maps into one by taking the average over
them. To obtain bounding box predictions, we first optimize
a probability threshold that the predicted flower probabilities
must surpass. Next, the threshold is used to set any uncertain
pixels in probability map to zero and the remaining predicted
probabilities to one. Finally, we place bounding boxes around
all connected pixels to make our final flower location proposals
and use non-maximum suppression to discard overlapping
bounding boxes.

For flower stage classification, we use the same network
architectures as for detection. In order for the networks to
classify predicted bounding boxes well, we train and optimize
them with predicted bounding boxes of the training and
validation data instead of the original annotations. This time
the training also uses all four flower categories (bud, flower,
wilted flower and seed pod) and the background category. For

each bounding box predicted by the detection network, we
search the annotated bounding box with highest overlap and
set the ’ground truth’ label accordingly. The labels predicted
by the flower classification networks are compared to these
’ground truth’ labels.

A. Network architectures

1) The proposed light-weight model: For automatic flower
monitoring with large amount of frames to go through, speed
is a key factor in choosing the best network model. Deep
CNNs can achieve high accuracy but are slow due to the
high amount of parameters. Thus, we propose a Light-weight
Convolutional Neural Network (LW-CNN) model [13]. It
consists of three convolutional layers (32, 32 and 64 filters)
and a fully connected layer (Fig. 2). The kernel size for all
convolutional layers is 3× 3. In order to learn the non-linear
relations and extract the features, a fully connected layer of
128 neurons follows. The model uses 2× 2 max-pooling with
strides set to 2 in all dimensions. Biases are added to the
results of the convolution layers, with a bias-value added to
each filter-channel. Rectified Linear Unit (ReLU) has been
used in order to add some non-linearity to the process, and it
is executed after the pooling process. To predict the right class,
we get the likelihood of the images which belong to each one
of the classes and use the softmax function. We obtain the
cost by calculating the cross entropy for each prediction.

Fig. 2: Description of the light-weight CNN

2) Models used for comparisons: We compare our
LW-CNN network to two other network architectures. ResNet-
50 is a deep CNN that uses residual learning [14]. It consists of
50 residual layers making it a very deep network with a large
amount of parameters. For this study, we use a pre-trained
ResNet-50 with a sigmoid activation function for the output
layer. The pre-trained weights are finetuned with the training
data.

The second network for comparison was used in [10] for a
different subset of the data presented in this work. It follows
the architechture of [15] with 12 convolutional layers and a
global average pooling layer, and softmax activation function
at the output of the network. The model uses dropout of 0.2
after convolutional layers 3, 6 and 9.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

For the flower detection task, we combined all four flower
stage categories into one. To train the models, we randomly
sampled patches of the image background, making sure they
do not overlap with the annotated bounding boxes by more
than 20 %. The background patches were set to have width
and height of 70 % of the maximum width (729 px) and height
(713 px) of the annotated bounding boxes. To maintain the



scale, if an annotated bounding box was found to be smaller,
it was extended to these dimensions as well.

As the images are of high resolution, we scaled them to 0.01
size to save time training and testing the model. The annotated
bounding boxes and background patches were scaled to size
64×64 px before feeding them to the CNN models.

The aim of this automated flower monitoring system is to
track individual flowers. As flowers on the edge of the frames
are sometimes visible and sometimes not, we created a buffer
on the edges of the image. The buffer was set to half of the
maximum dimensions of the annotated bounding boxes in the
training data, i.e., half of the maximum width at the sides and
half of the maximum height at the top and bottom. Any box
with a center outside the buffer was left out of the training
data.

To enhance the performance of the detection networks, we
used data augmentation on the training patches. Before each
epoch, all training patches were randomly moved around a
maximum 10 % in each direction, randomly flipped horizon-
tally, and randomly zoomed in to a maximum scale of 70 %.

We used two flower image time series for training and
validation. Approximately 70 % of the frames in these time
series were selected for training and the rest for validation.
The training images were selected randomly while trying to
keep the proportion of different categories as even as possible.
The third time series was used for testing. Table I shows the
label distribution for training, validation and test data.

TABLE I: Label distribution

Data partition Bud Flower Wilted flower Seed pod Frames
Training 886 1650 1782 1057 879
Validation 770 2482 2748 481 416
Testing 410 1026 1213 2057 153

Once the models had been trained, we used them to detect
the locations of flowers in the test images. The test images
were scaled to 0.01 size and a sliding window approach with a
stride of 5 px was used to go over the image and predict flower
probabilities. To detect objects of different scales, each test
frame was processed with four sliding window sizes (45, 55,
65, 75). The predicted probability maps were averaged and the
average map was upsampled back into the original image size
of 6080×3420 px. We optimized the probability threshold that
the predicted flower probabilities must surpass by maximizing
the average Intersection over Union (IoU) for annotated and
predicted bounding boxes in the validation frames. As with
annotated boxes, if the center of the predicted box fell outside
the buffer the box was disregarded.

For flower stage classification, the networks were trained
and optimized with predicted bounding boxes of the training
and validation data. For each predicted bounding box, we
searched the annotated bounding box with the highest overlap
and set the ’ground truth’ label accordingly. If no annotated
bounding box overlapped with the predicted box with In-
tersection over Minimum (IoM) ≥ 0.3, we set the ’ground
truth’ label to background. As the 5-category classification

task is a more complex one, we increased the augmentation
of the training data by randomly moving the bounding boxes
a maximum 40 % in each direction before each epoch. The
horizontal flipping and random zooming in remained the same
as before.

The detection networks are compared based on training and
prediction time, memory required for training, mAP scores, the
number of False Positives Per Image (FPPI) and the average
percentage of misdetected objects, i.e., False Negative (FN).
The flower classification networks are compared based on
classification accuracy.

All three networks were built using Keras [16]. The num-
ber of epochs and the learning rate for all models were
optimized based on validation accuracy. We trained the de-
tection networks for 50 epochs for each learning rate in
(0.001, 0.0001,0.00001, 0.000001), 200 epochs all together.
The classification networks were trained for 200 epochs for
each learning rate. All the layers of the pre-trained ResNet-50
were finetuned for the same number of epochs. Both training
and testing were run on a NVIDIA Tesla K80 GPU.

B. Flower detection results

Table II shows the accuracy, detection statistics and com-
putation times for the flower detection networks. All three
CNNs give similar results in terms of binary classification.
The validation and test accuracy in Table II are calculated for
known locations, i.e. patches of either background or annotated
patches with a flower object in the center, and the accuracy is
close to 100 % for all three networks. However, keeping the
number of epochs fixed, increasing the depth and complexity
of a network substansially increases the computing time for
training the network. Training a ResNet-50 architecture with
50 layers takes approximately four times as long as training the
LW-CNN with only three convolutional layers - both achieving
similar classification accury.

With the dataset being reasonably small, the training time
of any of the three networks is not a challenge. However,
considering that the aim is to use a chosen network to go
through hundreds of thousands of time-lapse camera frames,
the time used for testing is much more critical. Using the
sliding window approach to produce a probability map of
flowers for one test frame slows down considerably with the
increasing complexity of the network.

While all the networks produce excellent classification
results, the detection of flower locations is not as easy. As
we draw bounding box predictions around connected areas in
the probability map, flowers growing close to each other are
easily enclosed in one large bounding box covering multiple
flowers. This issue can be seen in Fig. 3a where human eye
can easily distinguish the five flowers at the bottom of the
frame but as they are connected they will all be enclosed in
one large bounding box (Fig. 3b).

The problem of separating the flowers is also reflected in
the mAP scores of Table II. Our approach works best with the
LW-CNN as it has the highest mAP score due to it being the
best of the three networks at separating close-by flowers, but it



TABLE II: Performance statistics for flower detection networks. Accuracy is given for annotated validation (ACCval) and test
(ACCtest) bounding boxes. Detection statistics are mAP, average number of FPPI, and % of FN predictions. Total number of
annotated objects in the 153 test frames is 4713.

Training time Known locations Known locations Testing time
Model (on GPU) Req. memory ACCval ACCtest per image (on GPU) mAP FPPI FN %
ResNet-50 [14] 04:18:05 3.4 GB 99.45 % 95.76 % 0:10:22 0.35 6.91 7.25 %
CNN [15] 03:34:47 2.9 GB 99.41 % 97.29 % 0:02:43 0.36 0.90 13.98 %
LW-CNN [13] 01:11:31 2.7 GB 99.39 % 96.46 % 0:01:22 0.52 3.20 13.87 %

(a)

(b)

(c)

Fig. 3: A mask and two test frame predictions of the LW-CNN.
The binary mask is formed by setting all probabilities above
a set threshold to one. Annotated bounding boxes are shown
in red and predicted bounding boxes in green. The big red
rectangle represents a buffer where any annotated or predicted
bounding box with its center outside the buffer will be left
out. This behaviour is demonstrated as in (a) the large green
box at the bottom is included while in (b) it has been left out.

does produce on average 3.2 false positive objects per frame.
The mAP is a good measure of performance in retrieval tasks
where all objects are assumed to be retrieved. However, this
is not the case with our detection task as can been seen by
the percentage of false negative predictions. The percentage of
objects not detected is higher than in [10] because of the use
of the buffer at the frame edges. While leaving out all training
objects with their center outside the buffer, we also leave out
any predicted bounding boxes with the same criteria. Due
to the issue of our methods not separating close-by flowers,
many predicted bounding boxes containing flowers close to
the buffer tend to have their center outside the buffer and are
therefore left out of the final predictions. This phenomenom
can be seen in Fig. 3b, 3c with the row of flowers near the
bottom buffer.

C. Flower classification results

The classification results for flower stages are presented in
Table III. Again, classification accuracies for annotated boxes
of the validation data are very good. Classifying flower stages
for the test data proves a more difficult task with accuracies
decreasing substansially for predicted flower locations.

Table IV shows confusion matrices for classifying the flower
stages of predicted flower locations. The open flowers are
identified well while wilted flowers and seed pods are easily
mixed. The bud stage is the most difficult category to classify
but interestingly they are not confused with the background
but with seed pods. The LW-CNN does a very good job
identifying the background boxes considering that those were
false positive predictions of the detection network.

V. CONCLUSIONS

In this work, we propose an automated monitoring system
for arctic Dryas flowers with time-lapse images. Our proposed
system works in two steps, a binary network for detection
and a second network for classifying the detected objects.
We explore a light-weight CNN for detecting and classifying
the flower stages and compare the network structure with
two deeper CNN architectures in terms of performance and
computation time. The networks produce similar classification
accuracies but have differences in detecting flowers. The light-
weight network yields the highest mAP score for detection,
and the highest classification accuracy for predicted flower
locations. While the training time of the networks is quite fast,
the time used for detecting flowers in the test frames is ten-fold
for the deep ResNet-50 architecture compared to the proposed
light-weight network. As automated flower monitoring would



TABLE III: Performance statistics for flower stage classification networks. Accuracy is given for predicted validation (ACCval)
and test (ACCtest) bounding boxes. Total number of annotated objects in the 153 test frames is 4713 while the number of
predicted objects varies depending on the network.

Training time Predicted locations Predicted locations
Model (on GPU) ACCval ACCtest

ResNet-50 [14] 09:24:43 90.60 % 58.32 %
CNN [15] 04:06:16 78.86 % 65.54 %
LW-CNN [13] 02:05:09 90.27 % 69.15 %

TABLE IV: Confusion matrices for flower stage classification of predicted flower locations in test frames. (B = Bud, F =
Flower, W = Wilted flower, S = Seed pod, X = Background)

Predicted categories
ResNet50 [14] CNN [15] LW-CNN [13]

Tr
ue

ca
te

go
ri

es B F W S X B F W S X B F W S X
B 39 5 78 2 63 0 2 13 4 0 30 5 102 6 30
F 3 269 75 0 12 0 387 96 29 15 2 478 82 7 13
W 0 10 267 6 114 4 31 197 149 18 1 25 395 96 46
S 5 11 556 120 39 28 23 323 1128 36 3 7 333 999 53
X 15 55 38 2 829 1 20 32 83 13 13 64 74 30 322

likely involve processing tens of thousands, or even millions,
of images, this renders the more complex networks unsuitable.
Although the testing time with the sliding window approach
is quite long even for the light-weight network, parallelizing
the computation on multiple GPU nodes would speed up the
process considerably.

The most difficult part of the detection and classification
process in our approach is separating overlapping and close-
by flowers as even a single connecting pixel results in large
predicted bounding boxes covering multiple objects. The con-
nected flower predictions could be due to the low resolution
we use in orded to speed up the detection process. While
most flowers in the frame are detected, tracking individual
flowers is cumbersome if all the flowers are not identified
separately. This also complicates the flower stage classification
as a predicted bounding box can cover objects of different
stages but will only receive one stage prediction. Hence, we
found it better to also train the classification networks with
predicted bounding boxes.

The classification of predicted flower locations proved chal-
lenging. However, some classification errors may not be a
problem because of the way the data is collected as time-
lapse images. With knowledge of the sequence of life history
events, we could post process the predictions to disable going
backwards in flowering stages. Also, as flowering is a gradual
process it can be difficult even for experts to distinguish
between the stages of open flowers and wilted flowers. For
future work, we could try combining these two stages. In
addition, the challenging bud stage could be omited.

While there remain issues to be solved before the auto-
mated flower monitoring system can be introduced in practice,
automating the monitoring process is a necessary step. The
rapid rate of changes due to global warming requires more
efficient biomonitoring. In addition, an automated system
enables researchers to monitor details that cannot be moni-
tored manually, e.g., tracking individual flowers through the
flowering stages and pollinator visitation.
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