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Abstract—It is well-known that estimation of the directed
dependency between high-dimensional data sequences suffers
from the “curse of dimensionality” problem. To reduce the
dimensionality of the data, and thereby improve the accuracy
of the estimation, we propose a new progressive input variable
selection technique. Specifically, in each iteration, the remaining
input variables are ranked according to a weighted sum of
the amount of new information provided by the variable and
the variable’s prediction accuracy. Then, the highest ranked
variable is included, if it is significant enough to improve the
accuracy of the prediction. A simulation study on synthetic non-
linear autoregressive and Henon maps data, shows a significant
improvement over existing estimator, especially in the case of
small amounts of high-dimensional and highly correlated data.

Index Terms—directed dependency, input variable selection,
non-linear prediction, conditional mutual information

I. INTRODUCTION

Complex dynamical systems often consist of interacting
subsystems with unknown inter-dependencies. A wide variety
of time series analysis methods ranging from statistical and
information theoretical to empirical based have been proposed
in order to characterize the interaction between time-varying
subsystems. These methods are primarily based on mutual
information [1], phase synchrony [2], [3], and directed infor-
mation flow [4], [5]. One limitation of mutual information and
phase synchrony is that they are unidirectional and, therefore,
they are not able to determine the direction of the information
flow [6]. They are non-causal and cannot distinguish whether
dependency is due to subsystem A is communicating with
B, or B with A [5]. Alternatively, directed information flow
measures [6], [7] have been proposed for assessing directed
dependencies.

Information theoretical-based transfer entropy (TE) [7] es-
timates the directed information flow from a variable X to
another variable Y by using conditional mutual information
(CMI). TE does not depend on any model in its formulation
compared to other directed information flow measures like
Granger causality [8], which makes this method capable of
assessing both linear and non-linear interactions. This advan-
tage has led to using TE in neuro-physiological [9], [10] and
economical [11] applications.

Bivariate TE cannot determine whether information flow is
due to direct path from X to Y [4], or it is due to information

from another variable Z. Partial transfer entropy (PTE) [9],
also called causally conditioned TE in [4], is an extension of
bivariate TE which quantifies the amount of directed informa-
tion flow from X to Y excluding information coming from Z.
Reliable estimation of PTE in high dimensional multivariate
data by using classical probability distribution estimators like
nearest neighbor (NN) [12], context tree weighting [13], and
kernel density estimation (KDE) [14] is limited by the problem
of “curse of dimensionality” [12], [14], [15]. To address this
limitation, one can for example decrease the dimensionality
through input variable selection techniques also known as non-
uniform embedding (NUE) [9], [12], [14].

In [12], an NUE algorithm was proposed which uses CMI
for selecting the most informative candidates about the current
value of the target variable Y from a candidate set consisting
of past values of X , Y , and Z. The termination criterion of
the algorithm is defined by a confidence bound estimated by
a bootstrap statistical test [12]. The size of bootstrap has an
effect on the accuracy of the estimated confidence bound and,
as a result, the estimated PTE. A higher bootstrap size, up
to a threshold, generally leads to higher accuracy [16]. The
size of the bootstrap depends on the quality of the signal
[16]. The number of bootstraps were limited to around 100
in the literature [9], [12], [14], [15] because of computational
complexity reasons.

An input variable selection technique using KDE-based non-
linear prediction was proposed [16] as an alternative to the
bootstrap test for terminating the algorithm.

In this paper, we propose a new NUE procedure, hereinafter
will be referred to as mean of the squared residual (MSR)-
based NUE, which uses MSR of the NN-based non-linear
prediction as a termination criterion and utilizes a weighted
sum of NN-based CMI and MSR for selecting candidates.
Then, we compare its performance with the existing bootstrap-
based approach which is part of the newly released MATLAB
ITS toolbox [9], [14], [17].

The rest of the paper is organized as follows. In Section
II, required background on PTE will be briefly reviewed. This
is followed by the introduction of our proposed MSR-based
estimator in Section III. Then, simulated data generated by
Henon maps and non-linear autoregressive (AR) models will
be described in Section IV. Results of the comparison between
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the proposed and existing procedures will be presented in
Section V. Section VI will discuss the results.

II. BACKGROUND

A. Partial Transfer Entropy

Let us consider the M nodes network shown in Fig. 1
where we are interested in the information that flows from
node X to node Y and which is not due to indirect paths
through the remaining M − 2 nodes Z = Z1, ...,ZM−2 (see
Fig. 1a) or due to common shared information from Z (see
Fig. 1b). Let the output of node X be the stationary stochastic
process X1, X2, ..., XN , where Xn ∈ R,∀n, the same notation
applies to the output of the nodes Y and Z . Moreover, let
X−n = [Xn−1, Xn−2, ..., X1] describe the past of Xn. Similar
notation applies to Y −n and Z−n . The PTE from an individual
node X to Y in the presence of Z is then defined as:

PTE(X →Y | Z) , CMI(Yn;X
−
n | Y −n ,Z−n )

= h(Yn | Y −n ,Z−n )− h(Yn | X−n , Y −n ,Z−n ),
(1)

where h(.) and CMI denote Shannon differential entropy
and conditional mutual information, respectively. NUE ap-
proximates the past of, for example Yn, by selecting the
optimal candidate set from the embedding vector V Y

n =
[Yn−m, Yn−2m, ..., Yn−dm] which is a subsampled version of
Y −n [12], where m and d are the embedding delay and
embedding dimension, respectively [12], [17].

B. Bootstrap-based Non-uniform Embedding

In the bootstrap-based NUE technique, the most informative
candidates about the target Yn are selected from a candidate
set C = [V Y

n , V X
n , V Z

n ]. The algorithm starts by the empty set
of selected candidates, S0

n = ∅. Then, at each step k ≥ 1, the
candidate W k

n that maximizes the CMI is found by [12], [14]:

W k
n = argmax

Wn∈C\Sk−1
n

CMI
(
Yn;Wn | Sk−1

n

)
, (2)

where Sk−1
n =

k−1⋃
i=0

W i
n is the set of selected candidates at last

step k − 1.

(a) Indirect Path

?

(b) Common Information

?

Z Z

Fig. 1: An M = 5 nodes network where (a) indirect paths
through remaining nodes Z, (b) common shared information
from Z, may cause falsely (dashed line) detected directed
dependency (solid line) from X to Y .

Then, a significance test is accomplished by 100 randomiza-
tion of Yn and W k

n and estimating the 95th percentile CMI95

of the empirical distribution generated by CMI(Ŷn; Ŵ
k
n |

Sk−1
n ), where Ŵ k

n and Ŷ k
n denote the randomized version of

W k
n and Yn, respectively. If CMI(Yn;W

k
nS

k−1
n ) is larger than

CMI95, W k
n will be included in the selected candidates Sk

n and
the algorithm proceeds to search for more candidates in step
k+1. Otherwise, the procedure is ended and Sk−1

n is returned
as the optimal subsample of the vector variable [X−n , Y

−
n ,Z

−
n ].

The Sk−1
n is finally used to estimate the PTE in (1).

C. Conditional Mutual Information Nearest Neighbor-based
Estimation

NN-based estimation of the CMI in (2) has attracted at-
tention in [9], [12], [15], [17] for performing bootstrap-based
NUE. The CMI in (2) can be expressed as the sum of four
unconditional entropies:

CMI
(
Yn;Wn | Sk−1

n

)
= h(Yn,S

k−1
n )− h(Sk−1

n )

−h(Yn,Wn,S
k−1
n ) + h(Wn,S

k−1
n ).

(3)

Then, the CMI is estimated by using a NN approach in which
the entropy h(Yn,Wn,S

k−1
n ) is estimated through a neighbor

search and the rest of the entropies in (3) are estimated by
using a range search [12], [18].

III. PROPOSED ESTIMATOR

Our estimator uses the MSR of its prediction as a termi-
nation criterion and utilizes the weighted sum of the CMI
and the MSR for selecting candidates. For the prediction,
one can for example use KDE-based or NN-based non-linear
prediction. In this work, we will focus on NN-based non-linear
prediction, since it performed significantly better than KDE-
based prediction on synthetic data.

The MSR-based estimator progressively selects the most
informative candidates from the candidate set C =
[V Y

n , V X
n , V Z

n ]. It initiates by the empty set of selected can-
didates, S0

n = ∅, and then proceeds at each step k ≥ 1 by
finding the candidate W k

n which maximizes a weighted sum
of the CMI and MSR:

W k
n = argmax

Wn∈C\Sk−1
n

[
(1− λ) CMI

(
Yn;Wn | Sk−1

n

)
−λMSR(Yn | Un)],

(4)

where 0 ≤ λ ≤ 1 is the weight and Un = [Wn,S
k−1
n ] ∈ Rk.

The CMI in (4) is estimated by using the NN-based approach
described in Section II-C. The MSR of the prediction of Yn
given the candidate Wn and the set of selected candidates at
the last step, Sk−1

n , is denoted by MSR(Yn | Un).
Let yn = [yn(1), yn(2)..., yn(M)]T be a set of M realiza-

tions of Yn. Furthermore, let M ×k matrix un be a set of M
realizations of the vector variable Un. An estimator for the
prediction of Yn given Un can be formed by the average of
the realizations of Yn which are found by using the neighbor
search in the predictors (independent variables) Un. Let us
denote by li the Euclidean distance from the ith row of un

(will be denoted by un(i) for simplicity) to its P th neighbor.
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Then the set of indices of rows of un whose distance from
un(i) is less than d is given by p(i):

p(i) = {j ∈ {1, 2, ...,M} : ‖un(i)− un(j)‖2 < li | j 6= i},
(5)

where cardinality of the set p(i) is P−1. For instance, p(i) =
{1, 4, 15} means that the Euclidean distance from the 1st, 4th,
and 15th rows of un to the ith row of un is less than li. The
prediction of the ith realization of Yn (i.e. yn(i)) given Un

is then estimated as an average of realizations of Yn whose
indices are in p(i):

ŷn(i|Un) ,
1

P − 1

∑
b∈p(i)

yn(b), (6)

where yn(b) denotes bth realization of Yn. For example, if
p(i) = {1, 4, 15} then ŷn(i|U) is equal to the average of
{yn(1), yn(4), yn(15)}. The residual Bn(i|Un) can be calcu-
lated afterward as:

Bn(i|Un) = yn(i)− ŷn(i|Un). (7)

The MSR of Yn given Un is then defined as the mean of
the squared residuals Bn(i|Un) over all M realizations:

MSR(Yn | Un) =

M∑
i=1

Bn(i|Un). (8)

After calculating MSR(Yn | Un) and replacing that in
(4), W k

n will be computed. Then, it will be included in the
selected candidates, if it fulfills a new termination criterion
which is also based on NN-based non-linear prediction. We
first assume that S1

n = W 1
n , which means that there is no

significance test at the first step in the proposed algorithm.
The main idea behind the new termination criterion is that
if the candidate W k

n is significant enough, it will decrease
the MSR of the prediction. Accordingly, at each step k ≥ 2,
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Fig. 2: Ground truth of the (a) Henon map and (b) AR
model, used in this study. Information flow is shown from
columns (driver) to the rows (Targets).Black squares show the
information flow is significantly different from zero.

if MSR(Yn|W k
n ,S

k−1
n ) < MSR(Yn|Sk−1

n ) then WK
n is in-

cluded in Sk
n and the algorithm continues to search for more

candidates at step k + 1. Otherwise, the algorithm stops and
Sk−1
n will be considered as the optimal subsample of the

vector variable [X−n , Y
−
n ,Z

−
n ]. Finally, the PTE is estimated by

using (1) in which case [X−n , Y
−
n ,Z

−
n ] is replaced by Sk−1

n and
[Y −n ,Z

−
n ] is replaced by Sk−1

n except any lagged component
of Xn.

IV. DATA FOR PERFORMANCE EVALUATION

A. Simulated data

Simulated data generated by a Henon map and a non-linear
AR model will be used in order to evaluate the proposed MSR-
based estimator and compare it to the existing bootstrap-based
estimator. Henon maps and AR models have been widely
used to generate multivariate data with controlled connectivity
within them [12], [14], [15]. The Henon map is given as [12],
[14], [15]:

Ym,n = 1.4− Y 2
m,n−1 + 0.3Ym,n−2 for m = 1,M

Ym,n = 1.4− [0.5Q(Ym−1,n−1 + Ym+1,n−1)

+(1−Q)Ym,n−1]
2 + 0.3Ym,n−2

for m = 2, ...,M − 1,

(9)

where Q is the coupling strength. The ground truth of the
Henon map is shown in Fig. 2a. As the figure shows, a node
m, except the first and last nodes, is coupled and therefore has
non-linear information flow to the (m − 1)th and (m + 1)th

nodes.
The considered non-linear AR model is defined as [12],

[14], [15]:

Y1,n = 0.95
√
2Y1,n−1 − 0.9125Y1,n−2 + ε1

Y2,n = 0.5Y 2
1,n−2 + ε2

Y3,n = −0.4Y1,n−3 + 0.4Y2,n−1 + ε3

Y4,n = −0.5Y 2
1,n−1 + 0.25

√
2Y4,n−1 + ε4

Y5,n = −0.25
√
2Y4,n−1 + 0.25

√
2Y5,n−2 + ε5,

(10)

where ε1,...,5 are mutually independent zero mean and unit
variance white Gaussian noise. Node 1 has non-linear infor-
mation flow to nodes 2 and 4. There is also linear information
flow from nodes 4 and 2 to nodes 5 and 3, respectively.
Aforementioned PTEs are considered as the ground truth for
the considered AR data, as shown in Fig. 2b.

B. Statistical Tests

In order to compare the proposed NUE procedure with
the existing one, we use the termination criterion of both
bootstrap-based and MSR-based algorithms also for testing
the significance of the estimated PTE: if the optimal candi-
date set Sn of the target variable Yn does not include any
lagged component of the node X, then its PTE is zero and,
otherwise the PTE from X to Y is positive. The termination
criterion results were used to calculate true positive (TP),i.e
for example, number of truly (defined by (9) and (10) and
shown in Fig. 2) detected directed coupled nodes, true negative
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(a) Bootstrap-based, Henon Map
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(b) MSR-based, Henon Map
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(c) Accuracy, Henon Map
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(d) Bootstrap-based, Autoregressive
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(e) MSR-based, Autoregressive
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(f) Accuracy, Autoregressive
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Fig. 3: Information flow matrices and accuracies of both MSR and bootstrap based estimators on both Henon map (first row)
and AR model (second row). Information flow is shown from columns to the rows. The integers inside first two figures in
each row, shows the number of time the associated information flow are selected over 100 realizations. Accuracies are shown
as an average over all realizations.

(TN), false positive (FP), and false negative (FN). The ratio of
correctly detected observations is then defined on the accuracy
as ACC:

ACC = 100× TP + TN

TP + TN + FP + FN
. (11)

V. SIMULATION STUDY

Simulated data sequences containing both linear and non-
linear interactions were generated at different lengths, N =
2l, l = 5, 6, ..., 10, in order to evaluate the NUE algorithms.
The embedding delay m and dimension d were chosen as 1
and 5 samples, respectively. The accuracy is computed as an
average over 100 generated realizations. The MSR-based NUE
is calculated with 5 different weights, λ = 0, 0.25, 0.5, 0.75, 1,
to test the effect of the weight. For estimation of the CMI
and prediction in (4) and (2), P = 11 nearest neighbor is
considered.

The information flow matrices over 100 realizations of
the Henon map, with medium-length N = 512, medium-
coupling strength Q = 0.6, and for the MSR-based method,
medium weight λ = 0.5, are shown in Figs. 3a and 3b.
The information flows are depicted from columns to rows,
for example, element (2, 1) represents the PTE from node 1

to node 2. The darker color of an element, the more of the
realizations this information flow is significant in. The integers
inside the figures show the number of realizations in which the
associated information flows are detected as significant. As can
be seen, both the MSR-based and bootstrap-based estimators
detect true directly connected pairs in all realizations, i.e. in
600 out of 600 information flows. The number of FP, meaning
the pairs that are not directly connected but they are falsely
detected, is for the MSR-based NUE zero and 47 for the
existing NUE algorithm.

Fig. 3c represents the accuracy of the MSR-based with 5
different λ’s and the existing bootstrap-based NUE algorithm.
In this case, the data are the Henon map with medium coupling
strength Q = 0.6. As the figure demonstrates, the accuracy of
the proposed MSR-based NUE algorithm for any λ is higher
than the bootstrap-based one (black line) at all data lengths.
It is also noteworthy that the proposed estimator with higher
λ attain better performance at data length under 128 samples.

The causal matrices of the 512 samples AR model data
are summarized in Figs. 3d and 3e. It is observed that
both estimators again detect all 500 directly connected pairs.
Similar to the Henon map data results, the FP value of the
bootstrap-based estimator is significantly higher than that of
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the proposed MSR-based one; 212 in comparison to 6 pairs.
Fig. 3f plots accuracies of the NUE algorithms for the AR
model with data lengths ranging from 32 to 1024 samples. The
MSR-based estimator, with all λ except λ = 1 at length 32 and
64 samples, presents higher accuracy than the existing one. It
is worth noting that the accuracy of the bootstrap-based NUE
algorithms significantly reduces at data length higher than 64
samples.

Finally, 512 samples Henon map data were generated with
different coupling strengths ranging from 0.2 to 0.8 by 0.2
steps in order to evaluate both estimators as a function of the
strength of the directed dependence. The results are shown in
Fig. 4. Except for the very low coupling strength Q = 0.2,
the proposed estimator outperforms the existing one. Higher
λ for very low correlated data attains slightly better accuracy
than for the lower weights. The performance of the existing
procedure declines at coupling strength higher than Q = 0.4.
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Fig. 4: Accuracy as a function of coupling strength.

VI. DISCUSSION

The comparison between the existing and proposed esti-
mators using simulated data including Henon maps and AR
models, revealed a significantly higher FP of the bootstrap-
based estimator, which is consistent with the results observed
in previous work [15], where they also found high FP for the
bootstrap-based estimator on some synthetic data. The higher
FP appears to be due to the inefficient termination criterion of
the bootstrap-based estimator, while the proposed procedure
with the new termination criterion can stop the algorithm at
the correct step that hinders selecting false directed dependent
pairs. By training the MSR-based procedure and choosing a
correct λ based on the application, it is possible to gain better
performance specifically for small data length. Estimating the
MSR is computationally less complex than for the CMI since
it only includes a neighbor search, while CMI estimation
contains a neighbor search and range searches. Therefore, for
very high dimensional data where estimating the PTE would
be time consuming, it is suggested to use λ = 1 which only
uses MSR for the selection step (sophisticated comparison of
the computational load is planned to be performed in the future
works). For very low coupling strength, the accuracy of the

proposed estimator was not as good as for the bootstrap-based
method.
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