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Abstract—We investigate user activity and data detection

problem in a multiple-input multiple-output uplink cloud-radio
access network, where the data matrix over a time-frame has
overlapped burst sparsity due to sporadic user activity. We exploit
this sparsity to recover data by proposing a weighted prior-sparse
Bayesian learning algorithm. The proposed algorithm, due to
carefully selected prior, captures not only the overlapped burst
sparsity across time but also the block sparsity due to multi-user
antennas. We also derive hyperparameter updates, and estimate
the weight parameters using the support estimated via index-
wise log-likelihood ratio test. We numerically demonstrate that
the proposed algorithm has much lower bit error rate than the
state-of-the-art competing algorithms.

Index Terms—Cloud-radio access network (C-RAN), compres-
sive sensing, sparse Bayesian learning (SBL).

I. INTRODUCTION

The cloud-radio access network (C-RAN) is being rec-
ognized as a next generation system paradigm to provide
high spectral and energy efficiency. The C-RAN architecture,
as shown in Fig. 1a, consists of a baseband processing
unit (BBU) pool, multiple remote radio heads (RRHs), and
capacity-limited fronthaul links connecting them. The BBU
pool performs signal processing tasks, while RRHs, with radio
frequency (RF) components, transmits/receives the RF signals
to/from the geographically distributed users [1]. The C-RANs
can efficiently provide massive machine-type communication
(mMTC) due to its vast geographical coverage [2].

In a multiple input multiple-output (MIMO) uplink C-RAN,
only few MIMO mMTC users are active at a particular time
instant [2]. This makes the uplink data from the MIMO
mMTC users block sparse. Further, the mMTC users transmit
their information in a frame consisting of multiple time slots
[3] and their activity is sporadic – they can start and stop
transmitting data any where in the frame [4]. This also leads
to overlapped burst sparsity across the time slots in a frame.
Fig. 1b shows aforementioned block sparsity and overlapped
burst sparsity for K = 7 mMTC users, each with M = 2
antennas (corresponding to 2 rows in users axis), transmitting
in a frame length of T = 10 time slots. This sparse nature of
data can be exploited to recover it using advanced compressive
sensing techniques [3], [5]–[8]. The authors in [5] exploited
both, data and uplink channel sparsity to jointly detect active
users and estimate channel in a C-RAN. This work, however,
considered high-capacity fronthaul links between BBU pool
and RRHs, which is impractical. Reference [6] proposed
a compressive sampling matching pursuit based alternating
algorithm to mitigate the interference and recover data. This
scheme is highly sensitive to the choice of dictionary matrix,
and requires the knowledge of sparsity level of the sparse
vector. All of these works, crucially, considered single time

(a) (b)
Fig. 1: (a) A C-RAN architecture with a BBU, fronthaul links and the RRHs.
Red and green users are inactive users and active ones, respectively; (b) Device
activity with time for M=2 user antennas.

slot transmission. The mMTC users, however, transmit data
over multiple time slots in a frame.

References [3], [8] extended the system model from a
single-slot to multi-slot transmission for an uplink grant-free
non-orthogonal multiple access (NOMA) system. The authors
in [3] proposed joint data and user activity detection algo-
rithm for an uplink grant-free NOMA system. This algorithm,
based on approximate message passing (AMP), uses the prior
information of the transmit symbols. Reference [8] proposed a
threshold-aided block sparsity adaptive subspace pursuit (SP)
algorithm, in which the uplink data matrix-recovery problem
is transformed into its vector-recovery counterpart, with the
vectors having the block sparsity. This, however, radically
increases their solution complexity.

These algorithms assume joint sparsity across the time-
frame but fail to capture the overlapped burst activity of
users. Further, none of the existing algorithms consider MIMO
user, and thus do not capture the block sparsity across the
multiple user antennas. The main contributions of this paper
to overcome the limitations of the aforementioned works, and
can be summarized as follows.
•We propose a weighted prior-sparse Bayesian learning (WP-
SBL) algorithm for MIMO uplink C-RAN model which jointly
detects the user activity and data by exploiting its overlapped
burst sparse structure across time and block sparsity across
user antennas.
• We propose novel updates for the weights in the proposed
prior to capture the overlapped burst sparsity of the data
matrix. We estimate the user activity profile using index-wise
log-likelihood ratio tests (LLRTs), which we further use to
update the weights. We also derive sub-optimal updates for
the hyperparameters, whose optimal updates are intractable.
• We numerically show that by capturing and appropriately
modeling different sparsities using the prior, and with the novel
weight updates, the proposed WP-SBL algorithm achieves
lower bit error rate (BER) than them.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider, as shown in Fig. 1a, a MIMO uplink C-
RAN system with K M -antenna users and R N -antenna
RRHs, which are connected to the BBUs with limited-capacity
fronthaul links. The green users in Fig. 1a are active users, and
the red ones are inactive. The data transmission phase consists
of T time slots, and we aim to detect the active users Ka � K
users and the data sent by them.

Let the transmit signal of the kth user at the tth time slot
be stk = [stk,1, . . . , s

t
k,M ] ∈ CM with E|stk,m|2 = 1 for

k ∈ [K] and m ∈ [M ], where the notation [K] represents the
set {1, . . . ,K}, and [M ] represents the set {1, . . . ,M}. The
received signal at the tth time slot at the rth RRH, denoted as
ytr ∈ CN , is given as

ytr =
√
Ps

K∑
k=1

Ht
r,ks

t
k + ntr =

√
PsH̃

t
rs
t + ntr. (1)

The matrix Ht
r,k ∈ CN×M is the frequency domain channel

between the rth RRH and the kth user. The vector ntr ∈ CN
is the Gaussian noise distributed as CN (0, (σtr)

2
IN ). The

concatenated matrix H̃t
r ,

[
H̃t
r,1, . . . , H̃

t
r,K

]
∈ CN×MK

and the concatenated vector st , [st1; . . . ; stK ] ∈ CMK . The
constant Ps is the signal power. The channel matrix Ht

r,k, for
all k ∈ [K], models both small and large scale fading. It is
thus expressed as Ht

r,k = Gt
r,kd

1/2
r,k , where Gt

r,k is the small
scaling fading, and each of its entry is CN (0, 1). The scalar
dr,k represents the distance-dependent large scale path loss
between the rth RRH and the kth user.

We assume that each RRH, due to the capacity-constrained
fronthaul links between RRH and BBU, compresses its receive
signal using a compression matrix At

r = S̃trF ∈ CγN×N
[6]. Here the scalar γ ∈ (0, 1) is the compression factor,
S̃tr ∈ {0, 1}γN×N is the selection matrix formed by randomly
selecting γN rows of an N ×N identity matrix, and F is an
N ×N DFT matrix [9]. The compressed receive signal at the
BBU pool, denoted as ỹtr ∈ CγN , sent from the rth RRH is

ỹtr = At
ry

t
r =

√
PsA

t
rH̃

t
rs
t + At

rn
t
r,∀t ∈ [T ],

where [T ] denotes the set {1, . . . , T}. Note that due to choice
of the compression matrix, the equivalent noise ñtr = Arn

t
r

is still CN (0, (σtr)
2IN ) . The concatenated received signal

ỹt = [ỹt1; . . . ; ỹtR] ∈ CγNR is
ỹt = Φ̃

t
st + ñt,∀t ∈ [T ]. (2)

The matrix Φ̃
t
,
√
Ps

At
1H̃

t
1...

At
RH̃t

R

 ∈ CγNR×MK (3)

is the signal measurement matrix corresponding to tth time
slot. The concatenated noise vector ñt , [ñt1; . . . ; ñtR] ∈
CγNR is distributed as CN (0, σ2IγNR), where we assume
that (σtr)

2 = σ2, for all r ∈ [R], t ∈ [T ]. We assume that the
channel remains constant over the entire frame [8], and we
thus have Ht

r = Hr and Φ̃
t

= Φ̃,∀t ∈ [T ]. Concatenating the
observations across the time instances, we get the complete
observation Y = [ỹ1, . . . , ỹT ] ∈ CγR×T at the BBU pool:

Y = Φ̃S + N. (4)

Here matrices S , [s1, . . . , sT ] ∈ CMK×T and N ,
[ñ1, . . . , ñT ] ∈ CγNR×T .

In a 5G IoT/mMTC random access system [4], out of the
K users, only few (Ka � K) are active at a particular time
instant [2]. Also, if the kth user is active, stk ∈ CM is non-zero,
which makes the vector st in (1), block sparse. Further, the
user activity in a frame is sporadic [10], i.e., a IoT/mMTC user
can start and stop transmitting data any where in the frame.
The data symbol matrix S thus has overlapping burst sparsity
across time in addition to block sparsity across antennas, which
is depicted in Fig. 1b for K = 7 users with M = 2 antennas
each and frame length T = 10. The proposed algorithm
exploits both these sparsities to estimate active user’s data.

We assume, similar to [6], [11], that the BBU pool has
complete channel information of all the users in the system.
We assume that the block-faded channel, with coherence time
greater than the frame duration T , can be estimated by the
BBU in the channel estimation phase, when all the users
transmit pilots to the BBU. The BBU applies CS techniques
to estimate channels of all the users [5].

III. SPARSE BAYESIAN LEARNING BASED DATA RECOVERY

We now develop Bayesian learning framework to detect the
user activity and their data. This framework assumes that the
unknown data is generated from a prior distribution which
captures its burst sparsity across different time and block
sparsity across antennas. Using this prior and the observations
(likelihood), the posterior distribution of unknown data is
evaluated. To achieve this aim, we assign a weighted Gaussian
prior on the unknown data matrix S, such that the data sent
from the kth user in tth time slot stk is generated from

p(stk|ᾱk,Wk) =

M∏
m=1

CN

stk,m|0,
(

T∑
q=1

Wk(t, q)αqk

)−1
=

M∏
m=1

(Wk(t, :)ᾱk)

π
exp

(
−Wk(t, :)ᾱk|stk,m|2

)
. (5)

Here αqk represents the hyperparameter of the kth user, as-
sociated with the time slot q. The scalar Wk(t, q) represents
the weight/importance of αqk in the tth data vector stk. The
row vector Wk(t, :) = [Wk(t, 1), . . . ,Wk(t, T )] ∈ R1×T

+ ,
and the column vector ᾱk = [α1

k, . . . , α
T
k ] denote the weight

and the hyperparameter vectors, respectively. The overall prior
distribution of the data matrix S thus becomes

p(S|ᾱ,W) =

T∏
t=1

K∏
k=1

M∏
m=1

p(stk,m|ᾱk,Wk(t, :))

=

T∏
t=1

CN (st|0MK ,Λ
t), (6)

where ᾱ , {ᾱ1, . . . , ᾱK}, W , {W1, . . . ,WK}, Λt ,
diag(λt11M ; . . . ;λtK1M ) ∈ RMK

+ and λtk , (Wk(t, :)ᾱk)−1.
Intuition of weights: We consider, as given in (5), a Gaussian

prior with zero mean and the variance, which is the inverse
of weighted sum of local hyperparamters of data from all the
time slots. An intuition behind the weights and the choice
of hyperparameters can be explained via a toy example. We
consider a user k, which transmits data in t = 2, 3, 6 time slots
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out of total T = 6 time slots. The sparsity profile of the user is
shown in Fig. 2. The prior distribution of s2k thus depends on

Fig. 2: Activity pattern of user k for T = 6.

{s3k, s6k} and vice-versa. To fully exploit the shared sparsity,
we assign a prior on the kth user’s data at the tth time slot,
stk, which couples all the time slot’s hyperparameters αqk,∀q
together through the weights Wk(t, q),∀q. For example, for
the user activity pattern in Fig. 2, the overall weight matrix
should be as follows

Wk =


1 0 0 0 0 0
0 1/3 1/3 0 0 1/3
0 1/3 1/3 0 0 1/3
0 0 0 1 0 0
0 0 0 0 1 0
0 1/3 1/3 0 0 1/3

 . (7)

We note that for the inactive time slots, i.e., ∀t ∈ {1, 4, 5},
Wk(t, t) = 1 and Wk(t, q) = 0,∀q 6= t. This case thus
becomes equivalent to conventional SBL in [7], as the prior for
these indices becomes independent Gaussian distribution. For
the active time slots, we exploit their shared sparse structure
and assign equal weights to the all the non-zero time slots. In
other words, for all t ∈ {2, 3, 6}, the weights Wk(t, q) = 1/3,
for all q ∈ {2, 3, 6}, and Wk(t, q) = 0, for all q ∈ {1, 4, 5}.

We next assign, similar to [7], a Gamma distribution as a
hyperprior over the hyperparameters αtk, which is given as

p(αtk) = Gamma (αtk|c, d) = Γ(c)−1dc(αtk)
c
e−dα

t
k . (8)

Here Γ(c) =
∫∞
0
tc−1e−tdt is the Gamma function. This hier-

archical choice of priors (Gaussian-Gamma) becomes equiv-
alent to Student-t distribution and thus results in the sparse
solution [7]. We assign smaller values of order 10−4 to d and
large value to c (e.g. c = 1), similar to [12], which encourages
large value of αtk, and thus promotes the sparsity.

We now develop a Bayesian learning based algorithm for
the proposed choice of hierarchical prior. The likelihood dis-
tribution p(Y|S) for the observation matrix Y , [ỹ1, . . . , ỹT ]
can be written as

p(Y|S)=

T∏
t=1

p(ỹt|st)=

T∏
t=1

π−γNR exp
(
−||ỹt − Φ̃

t
st||2/σ2

)
.

For fixed values of weights W, and the hyperparameters ᾱ,
the posterior distribution of S can be obtained as

p(S|Y, ᾱ,W) =

T∏
t=1

p(st|ỹt, ᾱ, ,W). (9)

Here
p(st|ỹt, ᾱ,W)∝p(ỹt|st)p(st|ᾱ,W)=CN (µt,Σt). (10)

The vector µt ∈ CMK and the matrix Σt ∈ CMK×MK are
the posterior mean and covariance matrix of st given by

µt = σ−2Σt(Φ̃
t
)
H

ỹt; Σt =
(
σ−2(Φ̃

t
)
H

Φ̃
t

+ Λt
)−1

, (11)

respectively [7]. The matrix Λt = diag(λt11M ; . . . ;λtK1M )
∈ RMK

+ is the variance matrix. The hyperparameters ᾱk, and
optimal weights Wk are unknown, which are estimated next.
Hyperparameter Estimation: We now evaluate the maximum
a posteriori estimate of the hyperparameters ᾱk,∀k ∈ [K], by

maximizing the posterior distribution p(ᾱ|Y)

α̂tk = arg max
αt

k

log p(ᾱ|Y). (12)

We employ expectation maximization (EM) algorithm to it-
eratively maximize its lower bound, E

[
log p(ᾱ,S|Y,W)

]
,

where E(·) denotes the expectation with respect to the pos-
terior p(S|Y, ᾱ,W) [12]. In the ith iteration:
E-step: the posterior, p(S|Y, ˆ̄α(i−1),W) given by (10), is
calculated, where α̂(i−1) are the hyperparameter estimates
from the previous iteration.
M-step: the lower bound E

[
log p(ᾱ,S|Y,W)

]
is maximized

with respect to ᾱ. We next derive the M step to update the
hyperparameters ᾱ, as follows
α̂
t,(i)
k = arg max

αt
k≥0

E
[
log p(ᾱ,S|Y,W)

]
(a)
= arg max

αt
k≥0

E

[
log

(
K∏
k=1

M∏
m=1

T∏
t=1

p
(
stk,m|ᾱ,W

))
p(αtk)

]
(b)
= arg max

αt
k≥0

K∑
k=1

M∑
m=1

T∑
t=1

log
( T∑
q=1

(Wk(t, q)αqk)
)

−
( T∑
q=1

Wk(t, q)αqk
)
E[||stk||2]+Mc logαtk−Mdαtk. (13)

Equality (a) is obtained using p(ᾱ,S|Y,W) ∝∏K
k=1

∏M
m=1

∏T
t=1 p(s

t
k,m|ᾱk,Wk)p(αtk). Equality (b)

is derived by using the prior distributions p(stk|α) and p(αtk)
from (5) and (8), respectively. We next differentiate (13) with
respect to αtk and set to zero, to get

Mc

αtk
−Md+

T∑
j=1

MWk(j, t)∑T
q=1 Wk(j, q)αqk

−
T∑
j=1

Wk(j, t)E||sjk||
2 =0

The optimal point αtk, thus satisfies

Mc

αtk
+

T∑
j=1

MWk(j, t)∑T
q=1Wk(j, q)αqk

=Md+

T∑
j=1

Wk(j, t)E||sjk||
2. (14)

We notice that a closed form expression for the optimal
hyperparameter αtk is difficult to calculate. We, thus, similar to
[12], calculate a sub-optimal solution of (14). Since the hyper-
parameters αtk and the weights Wk(t, j), ∀k ∈ [K], t, j ∈ [T ]
are non-negative, we have

Wk(j, t)αtk <

T∑
q=1

Wk(j, q)αqk

=⇒ 1

Wk(j, t)αtk
>

1∑T
q=1 Wk(j, q)αqk

> 0. (15)

Multiplying the non-negative scalar MWk(j, t) and summing
over all j ∈ [T ], we get

MT

αtk
≥M

T∑
j=1

Wk(j, t)∑T
q=1 Wk(j, q)αqk

≥ 0. (16)

Adding Mc/αtk to all sides, we get the lower and upper bounds
on the L.H.S. in (14) as follows
Mc+MT

αtk
≥Mc

αtk
+M

T∑
j=1

Wk(j, t)∑T
q=1Wk(j, q)αqk

≥Mc

αtk
. (17)

Using (14) and (17), we get the bounds on the R.H.S. in (14)
Mc+MT

αtk
≥Md+

T∑
j=1

Wk(j, t)E||sjk||
2 ≥ Mc

αtk
, (18)
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which results in

α̂tk∈

[
Mc

Md+
T∑
j=1

Wk(j, t)E||sjk||2
,

Mc+MT

Md+
T∑
j=1

Wk(j, t)E||sjk||2

]
.

(19)
Using (19), we chose a sub-optimal solution to (14) [12]

α̂tk=
Mc

Md+
∑T
j=1Wk(j, t)E[||sjk||2]

,∀k ∈ [K], t ∈ [T ]. (20)

Reference [12] proposed pattern-coupled SBL to recover
block sparse signals which assigned a hierarchical Gaussian
prior over the block sparse vector. The prior for each entry,
along with its own hyperparameter, depended on its immediate
neighbor hyperparameters also. The work considered block-
sparse vector recovery problem, unlike the current problem of
user activity and data matrix recovery with burst-sparsity in
time and block sparsity across antennas, in an uplink C-RAN
MIMO system. Also, it can only capture the block sparsity of
size three (i.e., itself and its two neighbors) and the weights are
assumed to be constant over the EM iterations. As discussed in
paragraph after (6), any random choice of the weights, similar
to [12], will not be able to capture the burst sparsity among
different time instances. We next propose a novel method to
estimate the weights in each EM iteration.
Computation of weights: We discussed in paragraph after (6)
that the weight Wk(t, q) quantifies the relevance of the kth
user’s data in qth time slot sqk, in the recovery of its data in the
tth time slot stk. Fixing the values of the weights will make it
difficult for the algorithm to capture the hidden burst-sparsity
structure. We, therefore, propose a rule to update weights,
along with the updates of posterior parameters of S and the
hyperparameters ᾱ, given by (11) and (20), respectively. We
also discussed in paragraph after (6) that the optimal weights
depend on the sparsity structure of the data matrix S. The
weight Wk(t, q),∀q ∈ [T ], used to recover the data stk, is
zero if sqk and stk do not share any sparsity, and non-zero
otherwise. Equivalently, if the binary variable βtk denotes the
hard support (activity/inactivity) of stk, i.e., βtk = I(stk 6= 0M ),
where the notation I(·) denotes the indicator function, the
optimal weights Wk(t, q),∀q ∈ [T ], have the form

if βtk = 1 : Wk(t, q) =
βqk∑T
j=1 β

j
k

, (21)

if βtk = 0 : Wk(t, q) = I(q = t). (22)
To update the weights, we therefore require the true hard
support, denoted by βtk,∀k ∈ [K],∀t ∈ [T ]. The authors
in [13] proposed index wise LLRTs to detect the non-zero
support of the sparse vector, and to fasten the convergence of
the EM algorithm for sparse vector recovery. Reference [14]
used the LLRT-based support detection to reduce the number
of message exchanges between different nodes in a distributed
network, for joint sparse vector recovery. We, unlike [13] and
[14], detect sparse data matrix, with burst and block sparsity.
We employ the LLRTs to detect the non-zero support (activity
pattern) of the data matrix S, which we will use to update the
weights W. The two hypotheses in this LLRT for the kth user
data at tth time slot are defined as [14]

H0 : stk = 0M ; H1 : stk 6= 0M . (23)

From the definition of the prior in (6), we have stk = 0 if
λtk = 0 and stk 6= 0M if λtk > 0. The two hypotheses
in (23) are thus equivalent to λtk = 0 and λtk > 0. We
decide in favour of one of the hypotheses by comparing the
ratio of the two marginalized likelihood distributions p(ỹt|H1)
and p(ỹt|H0) with a detection threshold [14]. The marginal
likelihood p(ỹt|ᾱ,W) = p(ỹt|Λt) has the following form

p(ỹt|Λt) =

∫
p(ỹt|st)p(st|ᾱ,W)dst

(a)
= CN (0γNR, σ

2IγNR + Φ̃
t
Λt(Φ̃

t
)H). (24)

The LLRT for the nth index, for all n ∈ [Ns], where Ns =
MK in the tth time slot thus reduces to

log
p(ỹt|H1)

p(ỹt|H0)
= log

p(ỹt|Λt)

p(ỹt|Λt
s,−n)

≥ θ, (25)

where θ is the detection threshold, the marginal likelihood
p(ỹt|Λt) is given by (24), and the diagonal matrix Λt

−n ∈
RNs×Ns

+ is such that Λt
−n(n, n) = 0 and Λt

−n(n′, n′) =
Λt(n′, n′),∀n′6=n∈[Ns]. After substituting marginal likelihood
from (24) and simplifying it, the index-wise support, which we
denote as btn,∀n∈[Ns] can be obtained as [14]

btn=I

{(Φ̃t

n)
H

(σ2I + Φ̃
t
Λt
−n(Φ̃

t
)
H

)−1ỹt}2

(Φ̃
t

n)
H

(σ2I + Φ̃
t
Λt
−n(Φ̃

t
)
H

)−1Φ̃
t
≥ θ̄

 . (26)

The normalized threshold θ̄ is computed as θ̄ =
(
Q−1

(
η
2

))2
,

where Q(·) is standard Q-function and η is algorithm param-
eter [14]. As the activity/inactivity of a user is same for all
its antennas m ∈ [M ], the binary support estimate, denoted as
β̂tk,∀k ∈ [K] can be computed as

β̂tk = I

(
M∑
m=1

bt(k−1)M+m >
⌈ (M − 1)

2

⌉)
. (27)

We update the weight parameters Wk(t, q) using the above
hard-support estimate β̂tk,∀t ∈ [T ]. Depending on the value of
the binary variable β̂tk, we propose two separate updates for
the weight parameters.
If β̂tk = 1: When the LLRT-based support detection results in
β̂tk = 1, it implies that the kth user is active at the tth time slot.
Our goal in this case is to exploit the possibly existing burst or
overlapped-sparsity across different time slots. As discussed in
the example in paragraph after (6), the optimal update for this
case, should be to give equal weights to all the active time
slots, i.e., Wk(t, q) = Wk(t, t) such that β̂qk = 1. The weight
updates Wk(t, q) are thus given by (21).
If β̂tk = 0: When the support detection rule results in β̂tk = 0

for the kth user at the tth time slot, we update the weights
according to (22). In this case, we have β̂tk = 0, which implies
that the kth user is inactive at the tth time slot and no data is
received corresponding to the tth time slot from the kth user.
There is no coupling between stk, data from kth user at tth
time slot and sqk,∀q 6= t at the other time slots. We thus make
the priors of different time-slots independent of each other, by
updating the weights as given in (22).

Remark 1. We note that when the users are active at all time
slots, data detection problem becomes jointly sparse matrix
recovery problem [15]. Our algorithm then gives βtk = 1,∀t ∈
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[T ], which results in Wk(t, q) = 1/T, ∀t, q from (21). It is
interesting to note that in this case, our algorithm for active
users reduces to the well-known SBL based algorithm for joint
sparse signal recovery, called multiple SBL (M-SBL) [15].

IV. SIMULATION RESULTS

We now, similar to [3], compare the bit error rate (BER)
of the proposed WP-SBL algorithm with following schemes
(i) SBL [7]: estimates the vectors st,∀t ∈ [T ] by applying
SBL on each of the vector; (ii) M-SBL [15]: estimates S
by applying M-SBL and assuming the joint sparsity; (iii)
AMP [3]: estimates S by assuming joint sparsity. The prior
distribution assumed therein captures the information of the
discrete data symbols; (iv) SP [8]: a threshold-aided adaptive
SP, which estimates the data assuming the joint sparsity alone
and; (v) Oracle WP-SBL: assumes that the true support of
the data matrix βtk,∀k, t, is known. It estimates the data by
applying proposed WP-SBL algorithm using the knowledge
of its true support. The BER of the oracle WP-SBL algorithm
serves as the lower bound for the proposed algorithm.
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Fig. 3: BER obtained by varying (a) SNR; (b) active users Ka with Ps=8 dB.

For this study, we consider a C-RAN system with total
number of users K = 25 and number of RRH, R = 10.
Each user and RRH are equipped with M = N = 2
antennas. The maximum number of active users is set as
Ka = 4. We set the fronthaul compression factor γ = 0.5,
the frame size, as in the 5G standard [4] as, T = 14 and
the maximum burst size B = 8. The channel is generated
by considering both, small and large scale fading [16]. We
assume that the users and the RRHs are located uniformly in a
region of 1000× 1000 m2. The large scale fading coefficients
are modeled as dr,k = PLr,k10

zr,k
10 , where the term 10

zr,k
10

accounts for the shadow fading effects, with zr,k ∼ N (0, σ2
sh)

and PLr,k denotes the path loss between the rth RRH and kth
user [16]. The path loss is modeled same as [16, Eq. (52)]
and the frequency, distances and heights are taken same as
that in [16]. We normalize the channel with the noise power
N0 = −121.4 dB and take σ2 = 1. The SBL hyperparameters
are initialized as αtk = 100,∀k,∀t, the maximum number of
EM iteration, Imax = 100 and the stopping threshold is set as
ε = 10−3, and η = 10−2.5 [14]. The values of these parameters
are same for all the following simulations.

We first plot in Fig. 3a the BER obtained by varying transmit
SNR = Ps. We see that the proposed WP-SBL algorithm
outperforms all the existing algorithms after SNR = 4 dB.
This is because (i) the standalone SBL does not takes into
account the burst nature of the user activity across the frame

and; (ii) the M-SBL, AMP and SP algorithms wrongly model
the burst sparsity as the joint/common sparsity across time
slots. The AMP algorithm also models the burst sparsity as
the joint sparsity, its discrete prior, however, results in better
data recovery as compared to SP and M-SBL. The proposed
algorithm, in contrast, considers the burst activity of users.

We next show in Fig. 3b the BER for different number of
active users, Ka with Ps = 8 dB. We note as the number
of active users Ka increases, the number of unknown data
symbols to be recovered (MKa) also increases. As the number
of observations (γR) still remains same, the BER of all the
algorithms degrade. The proposed WP-SBL algorithm has still
lower BER than the algorithms.

V. CONCLUSION
We designed a weighted prior SBL algorithm to recover

data in MIMO uplink C-RAN. We derived the updates of the
hyperparameters, and proposed the novel weight updates using
the index-wise LLRTs. We numerically showed that the pro-
posed algorithm outperforms the state-of-the-art algorithms.
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