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Abstract—In the context of deep learning, the availability of
large amounts of training data can play a critical role in a model’s
performance. Recently, several models for audio classification
have been pre-trained in a supervised or self-supervised fashion
on large datasets to learn complex feature representations, so-
called embeddings. These embeddings can then be extracted
from smaller datasets and used to train subsequent classifiers. In
the field of audio event detection (AED) for example, classifiers
using these features have achieved high accuracy without the
need of additional domain knowledge. This paper evaluates
three state-of-the-art embeddings on six audio classification tasks
from the fields of music information retrieval and industrial
sound analysis. The embeddings are systematically evaluated by
analyzing the influence on classification accuracy of classifier
architecture, fusion methods for file-wise predictions, amount of
training data, and initial training domain of the embeddings.
To better understand the impact of the pre-training step, results
are also compared with those acquired with models trained from
scratch. On average, the OpenL3 embeddings performed best
with a linear SVM classifier. For a reduced amount of training
examples, OpenL3 outperforms the initial baseline.

Index Terms—audio classification, transfer learning, audio em-
beddings, industrial sound analysis, music information retrieval

I. INTRODUCTION

With the availability of large audio datasets in recent years
(e.g. AudioSet [1]), many audio classification tasks based on
deep learning techniques have seen improved classification
accuracy. This has mostly occurred in scenarios where data is
abundant or easily collected, such as speech or environmental
sounds. However, for many audio classification tasks, large
scale data collection is unrealistic. One such example in the
field of Music Information Retrieval (MIR) is classification
of non-western music (e.g. regional traditional music). For
musicological analysis, automatic classification can be a pow-
erful tool; however, performing annotations at large scale
is restricted, among other things, by the amount of domain
knowledge required for the annotations. A similar problem
arises in the field of Industrial Sound Analysis (ISA) for
acoustic quality control applications [2]. The goal is to assess
the health of a given machine by analyzing the sound it
produces. However, large amounts of training examples are
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very costly to obtain for every product, machine, and possible
fault. With this in mind, this work focuses on training and
evaluating a number of ISA and MIR classifiers, under the
premise that only a small amount of annotated training data
will be available.

Transfer Learning (TL) is a powerful technique for building
classifiers for small datasets. The main idea behind TL is to
pre-train models on tasks where data is abundant, and re-use
the knowledge gained during training for tasks where data is
limited [3]. There are two main TL approaches: In the first
approach, a trained model (obtained with a large dataset) is
fine-tuned on the task-specific dataset. In the second approach,
learned feature representations, also called embeddings, are
used to train additional classifiers on task-specific datasets. TL
was shown to be a promising training strategy for a variety
of research fields such as Image Classification [4], Natural
Language Processing [5], Environmental Sound Classification
(ESC) [6]-[8], and several MIR tasks like genre classification
[9] and instrument recognition [10].

This work focuses on the second type of TL and analyzes
the classification capabilities of learned embeddings for six
MIR and ISA tasks. While the MIR tasks mostly deal with
music signals that are predominantly harmonic, the ISA tasks
deal with signals with transient- and noise-like characteristics.
Evaluating both types of tasks allows us to get a broad
overview of the performance of these embeddings on a wide
variety of audio signals. Results obtained with the embeddings
are compared to baseline systems where the classifiers are
trained from scratch using only the task-specific dataset.
Furthermore, the influence on performance of the choice of
classifier, the number of training examples in the final task,
the fusion technique for getting file-wise predictions, and the
size of the embeddings is investigated.

II. PRE-TRAINED EMBEDDINGS FOR AUDIO

Initial work on the use of embeddings for audio classifica-
tion proposed using pre-trained image networks for classifica-
tion [11], [12] due to the lack of large annotated audio datasets
at the time. However, results were still below state-of-the-art
performance for the evaluated tasks.

In [9], a VGG network architecture (originally proposed
for image classification in [13]) was modified and trained
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in a supervised fashion with audio data from the Million
Song Dataset [14]. On all the evaluated tasks, the embed-
dings outperformed a baseline using Mel Frequency Cep-
stral Coefficients (MFCCs) as input representation. However,
performance was still below the state-of-the-art (except for
speech/music classification where nearly perfect classification
was achieved with all methods).

The VGGish embeddings were initially proposed in [15]
by training a modified VGG model using mel spectrograms
as input. Google later published a trained model' using a very
weakly labeled dataset which was a preliminary version of
the YouTube-8M dataset [16]. Besides having weak labels, the
dataset had overlapping tags and events which, while visible
in the video, were not necessarily audible. The problems with
overlapping tags and very weak labels were addressed with
the release of AudioSet [1] which contains 2 million audio
clips with a duration of 10 seconds each. The sound clips
were manually labeled, and an ontology of 527 tags of audible
events was proposed. While the labels were correct for the full
audio clip, it could still happen that the annotated sounds were
not present in some time frames.

The Kumar embeddings were proposed as a solution to
weak labels in AudioSet. In [7], the authors trained a super-
vised convolutional neural network (CNN) with mel spectro-
grams as input on the AudioSet by pooling the embeddings
over time for each file. This is referred to as early fusion. A
linear Support Vector Machine (SVM) classifier was trained on
these embeddings achieving 83.5% accuracy with fine-tuning
of the model, and 82.8% without on an ESC task (ESC50
dataset [17]). Global max pooling across time for each of the
1024 embedding dimensions performed better than average
pooling. For this reason, global max pooling is used as the
early fusion strategy in this work.

Instead of training with weak labels in a supervised fashion,
an auxiliary task for creating an audio embedding model (L3-
Net) was proposed in [6]. A video with matching or non-
matching audio is fed into two separate CNN branches for
video and audio feature extraction. The outputs of both net-
works are concatenated, and a fully connected neural network
classifier is trained with the CNNs to detect whether the audio
corresponds to the video or not. In this way, large amounts
of unlabeled videos can be used for training the network in
a self-supervised way. The pre-trained audio branch is used
for extracting the audio embeddings. Training a linear SVM
classifier on the audio embeddings achieved 79.3% on the
ESC50 dataset by summing the class likelihoods over each file,
and picking the highest for file-wise prediction. This approach
is referred to as late fusion.

The OpenL.3 embeddings were proposed in [8] as an exten-
sion to L3-Net. Different models were trained on the AudioSet

!Pre-trained models and extraction methods:

VGGish: https://github.com/tensorflow/models/tree/master/research/
audioset/vggish

Kumar: the FFT size was changed to 1024 to achieve the same results on
ESC50 as in [7]. https://github.com/anuragkr90/weak_feature_extractor

OpenL3: https://pypi.org/project/openl3/

TABLE I
DATASET DESCRIPTION FOR EACH TASK

Task | Classes | Files | Dur. (min) | Test set | Rand basel.
Tl 5 185 70 no 20.0%
T2 5 50 310 no 20.0%
T3 4 7527 577 no 25.0%
T4 3 2378 42 yes 33.3%
T5 3 1521 10 yes 33.3%
T6 5 150 150 yes 20.0%

in the same self-supervised way as L3-Net to evaluate the
impact on classification accuracy of different design choices
such as embedding size (512 vs. 6144), input representation
(linear magnitude spectrogram, mel spectrograms with 128
and 256 bins), and trained domain (music vs. environmental
audio). The OpenL3 embedding models were compared to
VGGish and SoundNet [18] embeddings for various ESC
datasets, outperforming both. On the ESC50 dataset, 79.82%
classification accuracy was achieved with a feedforward neural
network classifier with two hidden layers (512 and 128 units,
respectively), and Rectified Linear Unit (ReLU) activation.
Results show that the domain of the training data does not
necessarily need to correspond to the final task domain.

III. EXPERIMENTAL DESIGN
A. Tasks and Datasets

Three MIR and three ISA tasks were selected to cover a
wide variety of application fields and signal characteristics. A
description is provided below for each task, baseline model
and dataset used. Furthermore, a short summary of all the
datasets is presented in Table I. The dataset splits have been
standardized for all presented experiments to get comparable
results between all embeddings and networks trained from
scratch. Therefore, the baseline results may differ slightly from
the ones previously reported in the literature.

1) Task 1: Ensemble Size Classification in Music (T1): This
task deals with counting the number of active instruments in a
music recording. The ACMUS-MIR dataset,2 which includes
recordings of string music from the Colombian Andes, was
selected for evaluation. The task was defined as a 5-class
classification problem, covering solo recordings (one instru-
ment) to large ensembles (five or more instruments). The best
performing model reported in [19] is used as baseline, where
the best classification result (80.7% file-wise accuracy) was
obtained with a feedforward neural network. The dataset has
been slightly extended since the initial publication. The same
baseline system achieves 81.0% on version 1.1 of the dataset.

2) Task 2: Musical Instrument Family Recognition (T2):
For the task of instrument family recognition, we use an
in-house dataset called DB-MTC [20], which contains 50
commercial recordings of different composers of Western
classical music. Each recording is a polyphonic piece of
music composed for one instrument family and is, hence,

2ACMUS-MIR instrumental format dataset: https://zenodo.org/record/
3268961
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monotimbral. The five instrument families are woodwinds,
brass, piano, vocal, and strings. As a baseline, we intended to
use the instrument recognition CNN model proposed in [21].
However, this model showed a tendency to overfit on DB-
MTC leading to a classification accuracy of 72%. Therefore,
we removed two of the original four convolutional blocks to
decrease the number of trainable parameters to 10%. With this
modification, state-of-the-art performance was achieved with
a file-wise accuracy of 94%. Full details about the baseline
model can be found in the study website.?

3) Task 3: Speech Music Classification (T3): This task is an
extended version of speech/music classification which consid-
ers four classes: speech, solo singing, choir, and instrumental
music. The dataset of ethnomusicological field recordings
from [22] is used here.* Initially, the model proposed in
[22] was considered as a baseline. This model achieved a
final accuracy of 94% with data enrichment from several
speech/music datasets and augmentation via pitch shifting and
time stretching. Additionally, [22] reports that a multilayer
perceptron with 16 units trained on VGGish embeddings
achieved 86.7%. For comparability between the other tasks
of this paper, no additional augmentation methods or other
datasets were used. The reduced amount of training data led
to overfitting and unstable training with the initial model from
[22].3 Therefore, the smaller CNN architecture from [19] is
used as baseline, leading to a file-wise accuracy of 88.6%.

4) Task 4: Classification of Operational States in Elec-
tric Engines (T4): Electric engines are used in a va-
riety of products such as industrial fans and car seats.
This task deals with classifying three operational states
of such engines: “good”, “heavy-load” and “broken”. The
IDMT ISA_ELECTRIC_ENGINE dataset® is used for this task.
As a baseline, the system using a feedforward neural network
proposed in [2] is applied. The proposed baseline achieved
an average file-wise accuracy of 97.2% on the test set with
six different background noises while being trained only on
recordings without background noise.

5) Task 5: Metal Surface Classification (T5): Metal balls
inside ball bearings may suffer from abrasion leading to
damaged surfaces. In this study, the IDMT_ISA_METAL_BALL
dataset for surface detection is used, which includes three
surface conditions: “eloxed”, “coated”, “broken”.® As baseline,
the feedforward neural network proposed in [2] is used. This
model achieved 98.8% file-wise accuracy on the balanced test
set.

6) Task 6: Plastic Material Classification (T6): Changes
or faults inside plastic material products can potentially be
detected by analyzing their acoustic response from being
struck. The IDMT ISA_PUCKS’ dataset is used in this study,
and includes the acoustic response of several plastic pucks
printed from four different materials. Furthermore, recordings

3Detailed results: https://acmus-mir.github.io/publication/embeddings20/
“https://github.com/matijama/field-recording-db
Shttps://www.idmt.fraunhofer.de/en/publications/isa-electric-engine.html
Shttps://www.idmt.fraunhofer.de/en/publications/isa- metal-balls.html
7https://www.idmt.fraunhofer.de/en/publications/isa-pucks.html

of background noise without any pucks were added as an
additional class. Each one minute recording contains several
hit events of the same puck. The exact times and quantity
of these hit events during each recording are unknown. This
characteristic distinguishes this task from the others since the
relevant sound events are not audible during the entire file. The
CNN proposed in [23] was trained without background noise
and tested only on noisy recordings. Without additional task-
specific pre-processing, the CNN achieved a file-wise accuracy
of 91.5% at the highest background noise level.

B. Evaluated Embeddings and classifiers

VGGish, Kumar, and OpenL3 embeddings were chosen
for this study since they have already shown state-of-the-art
performance on the ESC50 dataset. VGGish are embeddings
trained in a supervised fashion with weak labels, the Kumar
embeddings are trained in a supervised fashion considering
weak labels and with improved annotations from AudioSet,
and OpenL3 are self-supervised embeddings learned from
AudioSet. Available source code and models were used to
extract all the embeddings." The published default values for
sampling rate, window and hop sizes, as well as additional
parameters have been kept in all experiments. The sampling
rate for VGGish is only 16 kHz compared to 44.1 kHz
(Kumar) and 48 kHz (OpenL3). VGGish are the smallest
embeddings with 128 values, Kumar comprises 1024 values,
and OpenL3 can be extracted with 512 or 6144 values. We
use OpenL3 embeddings with 512 output values trained on
music data with mel spectrogram (256 bins) as input since
this configuration achieved the best accuracy over evaluated
datasets [8]. All embeddings are normalized between 0 and
1 on the training set. The calculated normalization values are
applied to the validation and test set.

The validity of the processing pipeline has been confirmed
for all embeddings using ESC50 dataset leading to results
comparable to the ones reported in the initial papers. However,
a tendency to overfit was observed during the training of
the feed forward neural network classifier used in [8] (two
hidden layers of size 512 and 128 as well as an output layer)
on OpenL3 embeddings. A modification to this classifier is
proposed here, where dropout [24] of 0.5 was added between
the hidden layers and before the classification layer. This led
to an improved accuracy from the reported 79.8% to 81.35%
on the ESC50 dataset. This classifier is referred to as D572 in
the remainder of this paper. Additionally, a smaller non-linear
classifier denoted as D128 was used, containing one hidden
layer (128 units), ReLL.U activation and dropout of 0.5 before
the classification layer. D128 has 20% of the parameters of
D512. As a third classifier, the commonly used linear SVM
[6], [7] was chosen with regularization parameter C set to 1
(default). These three classifiers were selected to evaluate the
influence of classifier complexity on the overall performance.
To achieve file-wise results, both early fusion (on a feature
level) and late fusion (on a prediction level) methods are
evaluated. For each task, the performance is compared with
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TABLE II
CLASSIFICATION ACCUARCY IN PERCENT USING 80% OF THE DATASETS
FOR TRAINING WITH VGGISH (V), OPENL3 (O) AND KUMAR (K)

EMBEDDINGS

Emb. T1 T2 T3 T4 TS T6 | Avg
Baseline | 81.0 | 94.0 | 88.6 | 95.7 | 99.1 | 89.1 | 912
V-SVM | 69.5 | 100 | 85.1 | 333 | 363 | 20.0 | 57.4
V-D128 | 75.0 | 100 | 88.8 | 33.3 | 339 | 20.0 | 58.4
V-D512 | 73.0 | 100 | 889 | 333 | 33.3 | 20.0 | 58.2
O-SVM | 845 | 97.0 | 91.5 | 93.0 | 97.1 | 84.7 | 91.3
O-D128 | 82.0 | 96.0 | 92.0 | 87.8 | 96.8 | 80.0 | 89.3
O-D512 | 83.5 | 96.0 | 91.7 | 914 | 974 | 78.0 | 894
K-SVM | 79.5 | 99.0 | 87.8 | 66.8 | 96.2 | 52.7 | 80.3
K-D128 | 755 | 97.0 | 89.1 | 739 | 944 | 433 | 789
K-D512 | 75.0 | 97.0 | 89.1 | 75.6 | 950 | 47.3 | 79.9

the baseline obtained by training a neural network solely on
the task specific dataset.

C. Experiments

Three experiments were conducted in this study to assess the
influence of different training configurations in classification
performance. Each experiment was conducted twice to account
for randomness during training, and with 10-fold cross valida-
tion if no separate tests set were defined (see Table I). D128
and D512 were trained for 500 epochs using Adam optimizer
[25] with a learning rate of 0.001 and a batch size of 256.
The training set was kept unbalanced applying class weights
during training as reported to be the best method for 77 in
[19]. The test data was balanced randomly. Average file-wise
accuracy over all repetitions and folds was used as evaluation
metric.

The first experiment shows the performance of the em-
beddings compared to the baseline for all classifiers using
late fusion. For this experiment, 80% of the data was used
for training, 10% for validation and 10% for testing if no
separate test set exists. Otherwise, 20% of the data was used
for validation. All splits were performed on an audio file level
to avoid having the same file in different sets. The baseline
results may differ slightly from the originally reported since
everything was retrained to obtain comparable results with the
same processing pipeline.

The second experiment evaluates early and late fusion
strategies to obtain file-wise classification accuracy. The same
data distribution as in the first experiment is used here.

The third experiment analyzes the impact of the training
domain using late fusion for all tasks by comparing OpenL3
music and environmental embeddings. The influence of the
embedding size was also evaluated using 512 and 6144 output
values from OpenL3. Finally, the training data was reduced to
10% showing the implications of having a smaller annotated
dataset for training a classifier.

IV. RESULTS
A. Embeddings & Classifiers

Over all tasks, an average accuracy of 91.2% was achieved
with the baseline models in the first experiment (see Table II).
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Fig. 1. Mean accuracy and standard deviation of late fusion (LF) and early
fusion (EF) over all folds per task. Results averaged over all tasks are also
shown (Avg).

While VGGish performs best on 72, the Openl.3 embeddings
achieved competitive results compared to the baseline over
all tasks, in particular for the MIR tasks. While the OpenL3
results are slightly worse for the ISA tasks compared to
the baseline, the VGGish embeddings obtain relatively poor
results in all ISA tasks. Even though the best performance
for the embeddings on the ESC50 dataset was reported using
Kumar embeddings,® this cannot be observed for any of
the evaluated tasks. The results of this experiment suggest
that embeddings trained in a self-supervised fashion can be
a powerful alternative to fully supervised training with large
annotated datasets.

Surprisingly, the linear SVM performed better on average
as a classifier than the two fully-connected networks. This
is an interesting result since SVMs are fast to train, and
easy to incorporate in real-world applications. Since OpenL3
embeddings with a linear SVM showed the best results in this
experiment, all the results reported in the remainder of this
paper are reported for this embedding-classifier combination.
Detailed figures and values for all combinations can be found
online.?

B. Early and late fusion

Fig. 1 shows the performance of early and late fusion
approaches for all tasks using OpenL3 with SVM. Late fusion
performs better or similar to early fusion for all tasks except
T6. Showing the variability of each class at every time frame
to the classifier seems to be a better choice when the classes
are present in the majority of the recordings. For tasks such
as T6 where the class is only audible at certain time frames, it
is beneficial to fuse the features for each file. The early fusion
approach outperforms the baseline for 76 indicating that the
choice of fusion approach should be task-specific.

C. Trained Domain

In line with the findings in [8], the OpenL3 embeddings
trained on the music domain performed best (see Fig. 2). This
shows that the initial training domain must not necessarily fit
to the final task. The final size of the embeddings does not
appear to affect the performance of the classifier, hinting that

8See results reported at https:/github.com/karolpiczak/ESC-50
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Fig. 2. Mean accuracy and standard deviation for all tasks using OpenL3
embeddings: initial training domain (music vs environmental), embedding size
(512 vs 6144), and the amount of data used for training (80% vs 10%).

the different output sizes between the evaluated embeddings
are not purely responsible for their performance.

Finally, reducing the number of training examples to 10%
emphasizes the importance of pre-trained networks for small
datasets. While performance is comparable when using the
entire dataset (baseline: 91.2% vs OpenL3: 91.3%), the
OpenL3 embeddings clearly outperform the baseline when
fewer training examples are available (baseline: 73.5% vs
OpenL3: 82.6%).

V. CONCLUSIONS

From the evaluated embeddings, OpenL3 performed best
over all tasks and was on par with the baseline using models
trained from scratch. This shows that self-supervised em-
beddings such as OpenL3 are a promising alternative to
pre-training models on large annotated datasets for getting
descriptive features. Lowering the amount of training examples
changed the performance in favor of pre-trained embeddings.
Therefore, embeddings seem to be a good starting point for
novel tasks with small datasets, and important for future
research. In general, linear SVMs trained on embeddings
performed better than non-linear dense models, making them
a feasible choice for real-world applications. Even though the
initial training domain does not necessarily need to fit the
target domain, there was more room for improvement on ISA
tasks compared to the baseline and MIR tasks. This suggests
that noise-like signal are not fully covered in the evaluated
embeddings. As future work, retraining one or several layers
as well as combining the intermediate activations as reported
in [9], [13], [18] can be a possible extension. Furthermore, the
impact of capturing embedding changes over time is another
interesting direction.
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