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Abstract—Dysarthria is a neuro-motor speech disorder that
renders speech unintelligible, in proportional to its severity.
Assessing the severity level of dysarthria, apart from being a
diagnostic step to evaluate the patient’s improvement, is also ca-
pable of aiding automatic dysarthric speech recognition systems.
In this paper, a detailed study on dysarthia severity classification
using various deep learning architectural choices, namely deep
neural network (DNN), convolutional neural network (CNN) and
long short-term memory network (LSTM) is carried out. Mel
frequency cepstral coefficients (MFCCs) and its derivatives are
used as features. Performance of these models are compared
with a baseline support vector machine (SVM) classifier using
the UA-Speech corpus and the TORGO database. The highest
classification accuracy of 96.18% and 93.24% are reported
for TORGO and UA-Speech respectively. Detailed analysis on
performance of these models shows that a proper choice of a
deep learning architecture can ensure better performance than
the conventionally used SVM classifier.

Index Terms—dysarthria, intelligibility, automatic assessment,
deep learning

I. INTRODUCTION

Dysarthria is a motor speech impairment, often character-
ized by speech that is indiscernible by human listeners [1].
It results from a neurological injury such as cerebral palsy
or any neuro-degenerative disease such as Parkinsons disease
[2]. The motor speech sub-systems get impaired, leading to
imprecise articulation, low audibility, atypical speech prosody
and variable speech rate, which deteriorate the speech quality
[3]. The speech intelligibilty can be analysed to determine
the dysarthria severity level, and this can help in monitoring
the patient’s progression and planning speech therapy ses-
sions [1]. Subjective assessment by a trained speech language
pathologist would be expensive and inconsistent, which paves
way to the need for an automatic dysarthria severity level
classification system. The dysarthric patients suffer from poor
co-ordination of muscles and related physical disabilities that
make the use of keyboard or touch-screen based interactive
applications difficult for them. This demands the need for
automatic speech recognizers (ASR), and dysarthria severity
level classification can improve the performance of an ASR
as evident in [4].

In literature, dysarthric speech intelligibility assessment has
been done either by ASR based methods [5] or by blind
intelligibility assessment [6]. In [7], glottal parameters, ex-
tracted from the voice source signal using quasi-closed phase

glottal inverse filtering method, are explored for dysarthric
speech classification into healthy or dysarthric. Intelligibility
assessment from i-vectors is done in [8], using a v-support
vector regression (vSVR) predictor. A non-linguistic method
of severity assessment is proposed in [1] using audio descrip-
tors and artificial neural network (ANN). In [9], perceptually
enhanced single frequency filtering based cepstral coefficients
(PE-SFCC) are proposed for intelligibility assessment, and i-
vectors with probabilistic linear discriminant analysis (PLDA)
scoring mechanism is used for classification. Deep learning
models like DNN, CNN, time delay neural network (TDNN),
and LSTM are explored for dysarthric ASR on TORGO
database in [10].

Due to their capacity to capture “global” spectral envelope
properties, MFCCs are employed in numerous perceptually
motivated audio classification tasks and speech recognition
systems, in addition to their widespread use in automatic
monophonic or polyphonic timbre recognition [11]. MFCCs
are encoded using a deep belief network (DBN), and em-
ployed for dysarthia severity classification using a multilayer
perceptron (MLP) in [12]. DBN features have only a marginal
improvement over MFCC based system. This motivated us
to use the basic MFCC features alone to investigate the
performance of various deep learning models for dysarthric
severity classification.

The rest of the paper is organized as follows. A brief
overview of the system and classification frameworks is
described in Section II. Performance evaluation is done in
Section III, followed by the analysis of results in Section IV.
Finally the paper is concluded in Section V.

II. SYSTEM DESCRIPTION

In feature extraction phase, MFCCs are computed frame-
wise. Three deep learning strategies, namely DNN, CNN and
LSTM are employed in classification phase and their perfor-
mance is compared with a baseline SVM-based classifier. The
detailed description is given in the following subsections.

A. Feature Extraction

Speech intelligibility is an indicator of dysarthria severity
[13], which is influenced by the vocal muscular coordination.
MFCCs have the capability to capture the irregular vocal
fold movements or the lack of vocal-fold closure due to
mass/tissue changes [14]. 13-dimensional MFCCs and their
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first two derivatives (a total of 39 features) are computed
framewise for DNN and SVM models with frame-length of 25
ms and frame-shift of 5 ms. The derivatives are not used for
CNN and LSTM models to avoid redundancy, as the networks
are capable of learning the temporal information.

B. Classification Phase

As a baseline, an SVM classifier with a linear kernel
is initially experimented with MFCCs. Later, deep learning
methodologies, namely DNN, CNN and LSTM are imple-
mented in successive phases. In addition to learning the
nonlinear mapping between the inputs and outputs, DNN is
also capable of understanding the underlying data structure.
Hence, it can effectively handle the different variabilities in a
speech signal. CNN uses alternating convolution and pooling
layers instead of stacked dense layers to give the advantage
of local information extraction and spatial invariance. In the
front-end, each speech frame is represented by MFFCs, which
when stacked up gives the 2D feature map for the convolution
layers to act upon [15, 16]. Finally LSTM-based recurrent
neural network (RNN) is implemented, as it can capture long-
range temporal dependencies by overcoming the vanishing
gradient problem in conventional RNNs.

TABLE I: Class-wise patient description

Severity UA-Speech TORGO
VERY LOW F05, MO8, M09, M10, M14 F03, F04, M03

LOW F04, MO5, M11 F01,M05
MEDIUM F02, M07, M16 M01, M02, M04

HIGH F03, MO1, M04, M12 -

III. PERFORMANCE EVALUATION

A. Dataset

The proposed technique is validated using two different
dysarthric databases, namely (a) Universal Access dysarthric
speech (UA-Speech) Corpus [17] and (b) TORGO database
[18]. UA-Speech corpus comprises data from 13 control speak-
ers and 19 dysarthric speakers. There are 765 word-utterances
per speaker, corresponding to 300 distinct uncommon words
and 3 repetitions of the 10 digits, 19 computer commands,
26 international radio alphabets and 100 common words.
While using this database, the uncommon words are used for
testing and the rest for training, which accounts for 300 and
465 utterances per speaker respectively. Only the data of 15
patients are available and thus a total of 6975 training files and
4500 test files are used in this work. Testing with uncommon
words ensures that the network is evaluated on unseen words.
The severity levels are very low, low, medium and high.

The TORGO database consists of aligned acoustics and
measured 3D articulatory features from speakers with either
cerebral palsy (CP) or amyotrophic lateral sclerosis (ALS). It
has dysarthric utterances of 8 speakers (3 females and 5 males)
and utterances of 7 non-dysarthric/healthy speakers (3 females
and 4 males). The utterances are categorised as (1) non-words,

TABLE II: CNN (upper pane) and LSTM (bottom pane)
architectures used in the experiment

Output size Description
(13,180) 2D MFCC

(12, 179, 16) 2*2 Convolution, 16 filters,Batch Normalization
(11, 178, 32) 2*2 Convolution, 32 filters,Batch Normalization
(10, 177, 64) 2*2 Convolution, 64 filters, batch normalization
(10, 177, 64) 2*2 Convolution, 64 filters, batch normalization
(9, 176, 128) 2*2 Convolution, 128 filters, batch normalization
(8, 175, 256) 2*2 Convolution, 256 filters,batch normalization
(4, 87, 256) 2*2 MaxPooling, Dropout(0.2), Followed by Flattened

128 Dense layer,batch normalization,Dropout(0.2)
64 Dense layer,batch normalization,Dropout(0.2)
4 Softmax

Output size Description
(13,180) 2D MFCC
(13, 102) LSTM, 102 hidden units
(13, 600) LSTM, 600 hidden units

200 LSTM, 200 hidden units
200 Dropout(0.2)
4 Softmax

(2) short words such as digits, international radio alphabets,
(3) restricted sentences and (4) unrestricted sentences. In this
work, only words are used and there are 2227 such utterances
in total. The severity levels are very low, low and medium.
In the performance evaluation, 60% of the data is used for
training the network, 20% for validation and another 20% for
testing. The description of databases is given in Table 1.

B. Experimental Framework

Implementation of the DNN models are done by stacking n
dense layers, with the number of neurons growing with model
depth, in powers of 2. Model with n=1 had a single dense
layer of 16 units, n=2 had a dense layer of 16 units followed
by one with 32 units and so on. The dense layers are followed
by a layer with dropout of 0.25.

CNN models are implemented with n stacked up 2D
convolutional layers of 2*2 kernel size and ReLU activation
function, each followed by a batch-normalisation layer. 2D
max-pooling layer with pooling size of 2*2 is used in all
models, followed by a dropout layer with dropout of 0.2.
The flattened result of this is passed to the dense layers
with number of units decreasing in powers of 2 with n.
13 dimensional MFCC features are arranged as 2-D feature
maps, distributed along both frequency (using the frequency
band index) and time (using the frame number). The frame
number of 2D feature map is set to the frame number of the
longest-uttered word with zero padding if needed. The detailed
description on CNN configuration is given in Table II.

The LSTM-RNN models are implemented with 3 stacked
LSTM layers, followed by a dropout layer and the output dense
layer. The configuration is given in Table II. The number of
hidden units (Nh) in the first LSTM layer is given by :

Nh =
Ns

α(Ni +No)
(1)

where, Ns is the number of training samples used, Ni, the
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Fig. 1: Class-wise accuracies for different models

Fig. 2: (a) Variation of the classification accuracy with number of
layers for DNN and CNN (b) (a) Variation of the classification
accuracy with parameter α for LSTM

number of input neurons, No, the number of output units and
a scaling factor, α, lying between 2 and 10. Tuning is done
for different values of Nh by varying α.

IV. RESULTS AND ANALYSIS

Severity classification is carried out using the experimental
setup described in Section III. All the experiments are per-
formed with batch size of 32 and learning rate of 0.001 for 120
epochs, after hyperparameter tuning. The overall results are
shown in Table III. It is observed that there is an improvement
of 14% and 10% for the best performing CNN models over the

TABLE III: Overall classification accuracy

SVM DNN CNN LSTM
TORGO 82.73 95.06 96.18 85.87

UA-Speech 82.91 93.55 93.24 75.08

baseline SVM system. As per the experiments reported in [10],
DNN performed the best, as compared to CNN and LSTM
for impaired speech. In our experiments, the performance of
CNN is at par with that of DNN for UA-Speech, with a clear
margin over LSTM. For TORGO database, a slight mileage in
the performance is observed for CNN over DNN.

TABLE IV: Confusion matrix of SVM and CNN for TORGO

SVM Very Low low Medium
Very Low 177 3 6

Low 11 61 25

Medium 16 16 131

CNN Very Low low Medium
Very Low 184 0 2

Low 2 87 8

Medium 2 4 157

CNNs have been demonstrated effective in extracting useful
features in spectral, temporal and spectro-temporal domains.
This experimental results validate the claim that DNN and
CNN-based acoustic models help to better discriminate be-
tween phonemes for the high and mid speech intelligibility
groups in speech recognition [19]. From literature, it is seen
that, in the context of dysarthic speech recognition, LSTM-
RNN performs better than DNN for mildly affected dysarthric
speakers, while giving worst performance for severely affected
patients [10]. The confusion matrices for baseline SVM model
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Fig. 3: t-SNE plot with output vectors produced by the snippets from various classes from the last dense layer for DNN, CNN and LSTM
for TORGO (Upper pane) and UA Speech (Lower pane)

and best performing CNN model for TORGO and UA-Speech
database are shown in Table IV and Table V, respectively. It
is evident that many mis-classification errors among classes
are reduced considerably by the CNN models. The class-wise
accuracy measure is given in the bar plot shown in Fig. 1.
As expected, the classification accuracy for less severe (very
low and low) is high on the corpus for DNN and CNN, and
both ensure minimum 80% accuracy for all classes. It is worth
noting that the overall classification accuracy outperforms the
accuracy cited in many recent works [9, 7] for these dysarthric
speech corpora.

TABLE V: Confusion matrix of SVM and CNN for
UA-Speech

SVM Very Low Low Medium High
Very Low 1368 10 45 77

Low 91 731 52 26

Medium 114 15 683 88

High 101 30 120 949

CNN Very Low Low Medium High
Very Low 1317 42 128 13

Low 0 894 4 2

Medium 5 34 852 9

High 33 11 23 1133

DNN is tuned with different number of stacked dense layers
(n) and the results are plotted in Fig. 2(a). For n=4, the
network showed its best performance for both the databases,
giving 95.06% for TORGO and 93.55% for UA-Speech.
As the number of layers increased beyond four, the overall
classification accuracy decreased. A possible cause for this is
that, the network becomes overfit to the training set and the
network fails to make right decision on the new unseen data. In
CNN, tuning is done with respect to n, and n=5 gave the best

result (93.24%) in case of UA-Speech and for TORGO model
with n=6 performed best (96.18%), as seen in Fig. 2(a). This is
due to the fact that, as n increases, the model grows in depth,
and the upper layers find efficient feature representations that
are invariant to small perturbations leading to better model
generalization. The accuracy of the LSTM system is also
evaluated for various α, as given in equation 1. The variation
of classification accuracy with α is plotted in Fig. 2(b). As seen
in Fig. 2(b), α = 4 gave the best classification accuracy with
85.87% and 75.08% for TORGO and UA-Speech, respectively.

Fig. 3 visualizes the output vectors produced by the snippets
from various classes for the last dense layer of the trained
network using t-SNE. Note that, there is a good clustering (as
represented with colour) and a general separation of different
classes for CNN compared to DNN and LSTM. We used
precision, recall and F1 measures as the performance metrics
for various frameworks and these are given in the Table VI
and VII. Average F1 measures of 0.95 and 0.96 are obtained
for TORGO database by DNN and CNN, respectively, and F1
measure of 0.93 is reported for UA-Speech by both CNN and
DNN. Although UA-Speech database had almost five times
more data than TORGO, there is a reduction in accuracy due
to the fact that the test set had words all different from those in
the training set. This again justifies the performance of LSTM
in UA-Speech data classification, being worse than the SVM
base-model. The temporal information learned by the LSTM
model from the common words are not sufficient enough in
identifying the severity level, when it dealt with uncommon
words. The performance of LSTM is re-investigated by using
a mixed-up data, and an accuracy of 88.59% is obtained, with
an average F1 score of 0.88.

To the best of our knowledge, the current study is the
first detailed investigation on the various deep learning mod-
els for dysarthria severity classification. In [1], an average
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TABLE VI: Precision (P), recall (R), and F1 measure for TORGO

SVM DNN CNN LSTM

Severity P R F1 P R F1 P R F1 P R F1

Very Low 0.87 0.95 0.91 0.97 0.97 0.97 0.98 0.99 0.98 0.92 0.92 0.92
Low 0.76 0.63 0.69 0.91 0.94 0.92 0.96 0.90 0.95 0.73 0.74 0.73

Medium 0.81 0.80 0.81 0.96 0.94 0.95 0.94 0.96 0.95 0.86 0.85 0.86

TABLE VII: Precision (P), recall (R), and F1 measure for UA-Speech

SVM DNN CNN LSTM

Severity P R F1 P R F1 P R F1 P R F1

Very Low 0.82 0.91 0.86 0.92 0.96 0.94 0.97 0.88 0.92 0.88 0.64 0.74
Low 0.93 0.81 0.87 0.95 0.94 0.94 0.91 0.99 0.95 0.65 0.75 0.70

Medium 0.76 0.76 0.76 0.95 0.91 0.93 0.85 0.95 0.89 0.70 0.80 0.78
High 0.83 0.79 0.81 0.94 0.93 0.94 0.98 0.94 0.96 0.72 0.85 0.78

classification accuracy of more than 95% is reported using
audio descriptors. However, it is noted that the work is done
on a subset of both datasets. Our results for both DNN
and CNN models using MFCCs outperform those obtained
using i-vectors for UA-Speech [9]. Thus, it is reasonable to
conclude that proper choice of classification framework can
ensure better performance even with baseline MFCC features
as compared to other recent proposed features.

V. CONCLUSION

Objective assessment of dysarthria severity can aid clinical
diagnostics and dysarthric speech recognition systems. This
paper describes a comparative study on dysarthria severity
level classification using different deep learning techniques,
namely DNN, CNN and LSTM. MFCCs are used as fea-
tures and analysis has been done with respect to SVM-based
classifier for UA-Speech and TORGO datasets. The results
indicate that both CNN and DNN outperform LSTM based
systems, and proves to be far better than conventionally used
SVM-based classifier. Also, the efficiency of MFCC features in
discriminating the different intelligibility levels promises fast
and reliable implementation of an automatic dysarthria severity
classification system. As future work, the recent state-of-the
art features such as x-vectors and i-vectors can be explored.
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