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Abstract—Commercially available light-weight unmanned
aerial vehicles (UAVs) present a challenge for public safety, e.g.
espionage, transporting dangerous goods or devices. Therefore,
countermeasures are necessary. Usually, detection of UAVs is a
first step. Along many other modalities, acoustic detection seems
promising. Recent publications show interesting results by using
machine and deep learning methods. The acoustic detection of
UAVs appears to be particularly difficult in adverse situations,
such as in heavy wind noise or in the presence of construction
noise. In this contribution, the typical feature set is extended to
increase separation of background noise and the UAV signature
noise. The decision algorithm utilized is support vector machine
(SVM) classification. The classification is based on an extended
training dataset labeled to support binary classification. The pro-
posed method is evaluated in comparison to previously published
algorithms, on the basis of a dataset recorded from different
acoustic environments, including unknown UAV types. The results
show an improvement over existing methods, especially in terms
of false-positive detection rate. For a first step into real-time
embedded systems a recursive feature elimination method is
applied to reduce the model dimensionality. The results indicate
only a slight decreases in detection performance.

Index Terms—Drone detection, UAV, public safety, binary
classification, acoustic event detection, feature selection.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become increasingly

popular in commercial and private use contexts [1]. Applica-

tions are manyfold, such as in (semi-) automated monitoring

or photography. As amateur UAVs (often called drones) are

now commercially available with little regulations, their un-

controlled deployment may pose a considerable security risk

to the public. Past events such as smuggling drugs into prisons,

intrusion of government institutions and disturbances of airport

traffic show that drones already represent a real threat [2, 3].

The development of robust and reliable detection methods

for UAVs can therefore be considered essential for public

safety. Although systems for drone detection exist, they come

with individual limitations due to their mode of operation as

well as restrictions of deployment for a given geographical

environment. Depending on the environment, traffic or birds

can influence different types of detector heuristics. Often line-

of-sight is necessary for the detection.

This contribution focuses on acoustic drone detection meth-

ods. Acoustic sensors are very cost effective, and are also

less impaired by adverse weather conditions, in contrast to

other potential modalities such as video or thermal-based

detection [4]. Video-based detection may have problems in

darkness, and thermal-based detection is required to account

for temperature changes. In addition, UAVs emit very distinct

acoustic signatures due to their fast rotating propellers, single-

or multi-rotor UAVs have harmonic acoustic emissions, which

can be recognized very well by humans [5]. The distinction

by humans through hearing alone indicates that by means of

acoustic sensing, it is reasonable to detect UAVs as well.

However, despite their assumed suitability for drone detec-

tion, acoustic sensors are currently not used in e. g., airport

surveillance [2].

II. RELATED WORK

Usually, acoustic drone detection is formulated as a (of-

ten binary) classification task. In [6, 7], a correlation-based

approach was described. The accuracy of this approach was

found to be quite low in a real-time environment [4]. In

an effort to explore deep learning architectures for drone

classification, Jeon et al. [8] designed and compared Gaussian

mixture models (GMM), convolutional neural networks (CNN)

and recurrent neural networks (RNN) with the inputs being

either mel-spectrogram or mel-frequency cepstral components

(MFCCs), which are known to represent spectral characteris-

tics such as periodicity and coloration, and are often applied

to acoustic event detection or classification problems [9].

Promising results were reported in particular from the RNN

architecture, but also the lack of training data to fully utilize

the potential of the data-driven approaches if combined with

higher dimensional feature sets. In another recent paper, the

authors also considered similar architectures, but found a CNN

structure to be more beneficial for drone detection [3]. The

slightly artificial dataset considered was made publicly avail-

able, and contains recordings of two drones flying indoors as

well as white noise, silence and various environmental sounds

originating from the online audio database freesound.org, such

as animal noises, keyboard tipping, and crackling fire. An

approach also using cepstral features (cepstrum values instead

of coefficients) in combination with logistic regression was

published in [10], but surpassed by the authors in [11], where

a CNN-based approach on spectrogram features was utilized.

Both systems are based on 20 ms-frames. In contrast, [12] pro-

posed a support vector machine (SVM) classification method
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in which short-time features such as MFCCs and various

spectral and temporal measures are first extracted in frames of

similar lengths. From these, statistical measures like mean and

variance are computed. The reason behind this approach is to

increase the robustness of the method against acoustic events

that share similar spectral characteristics with UAV emissions,

but vary in temporal structure. Such events arguably cannot be

distinguished in short time frames but only over longer peri-

ods. A similar approach also employs MFCC feature vectors

in an SVM classification framework [4]. The superiority of

this approach over methods, such as [7], is demonstrated on

a small dataset. The authors also mention a lack of data for

large scale training of deep learning approaches.

In this work, we will compare some of these approaches,

extend one of them, and evaluate the systems based on real-

world data.

III. PROPOSED DETECTION FRAMEWORK

In order to establish features that represent both spectral

and temporal characteristics, Bernardini et al. [12] combine

block-wise features from 20 ms-frames (with an overlap of

10 ms) of audio and statistical analysis over several blocks.

Block-wise time domain features utilized in this approach are

the Short Time Energy (STE), the Temporal Centroid (TC)

and the Zero Crossing Rate (ZCR). In the spectral domain,

the Spectral Centroid, Spectral Roll-Off and 13 MFCCs are

extracted.

Over a period of 200 ms are the mean and the sample

variance of the local features are computed over 20 blocks

each. The detection is carried out using one-class SVM clas-

sification, based on the normalized mid-term statistics for each

block-wise feature, instead of using the features themselves.

The kernel function used are radial basis functions (RBF), also

known as Gaussian kernels.

A. Additional Features

Following this approach, this paper improves the perfor-

mance of drone detection by the use of additional block-wise

features in addition to the feature set used in [12]:

Block RMS: The root-mean-squared value per audio frame,

defined as

RMS =

√

√

√

√

N−1
∑

k=0

s2(k), (1)

with frame length of N and a sampled audio signal

denoted by s (used instead of STE).

Spectral Bandwidth: Using the Spectral Centroid (SC) def-

inition from [12], the Spectral Bandwidth is computed

as

SB =

√

∑

n

p(n) · (f(n)− SC)
2

(2)

for an individual audio frame, with frequency index n

(up to the Nyquist frequency), the Short Time Fourier

Transform (STFT) power p and the STFT frequency f .

Spectral Contrast: In order to represent the relative spectral

distribution, the Spectral Contrast [13] in 7 subbands was

utilized.

Spectral Flatness: The Spectral Flatness measures how tonal

or flat an audio frame’s STFT spectrum is [14].

Spectral Flux: Onsets in audio wave forms can be detected

from comparisons between two successive STFT magni-

tude blocks [15]:

SF(b) =
∑

n

R (|p(b, n)| − |p(b, n− 1)|) , (3)

where R(x) = x+|x|
2

is the half-wave rectifier function.

Skewness and Kurtosis: Aside from the feature statistics,

the time series skewness and kurtosis were included as

frame-wise features as well.

Furthermore, the skewness

κj =
m3
√

m3
2

, (4)

is added as an additional statistical measure where j is the

mid-term index and mi is the ith moment defined as

mi =
1

N

N−1
∑

k=0

(φj+k − µj)
i (5)

using feature values φ and their mean µj . The reason for using

the skewness in addition to mean and variance is to detect

skewed feature distributions, which may be a result of very

short, impulse-like acoustic events.

In the extended method, the python library librosa [16] was

used for calculating the majority of the block-wise features.

B. Fitting Procedure

The input data for the proposed method consists of feature

vectors of dimensionality 3 · 31 = 93, since three moments

for 31 features dimensions were computed. These vectors are

centered and scaled in each dimension, as a pre-processing

normalization step. Each normalized feature value is computed

as

xnormalized =
(x− µtrain)

σtrain

, (6)

where x is the original feature value, µtrain the mean of this

feature in the training dataset, and σtrain the respective sample

standard deviation.

We split the training data into 70% for the actual fitting,

and the remaining data for the validation process. Only a

subset of the data is used in individual fits, since each fit

is done in ten-fold cross-validation. The training is carried

out over a grid search of tuning parameters, with the values

for cost C = {0.25, 0.5, 1, 2, 4} and kernel scale γ =
{0.001, 0.01, 0.1, 1, 10}. The degree of the kernel polynomial

was also determined by cross-validation, resulting in a linear

kernel.
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C. Description of Dataset

The dataset was recorded in two sessions at different

places. The training data and the test data were taken from

different individual recording environments. The training ma-

terial contains five different types of drones (DJI Phantom4,

DJI Mavic, custom-build racing drone, SKY-HERO Little Spy-

der, ALIGN M690L Multi-Drone). The testing material con-

tains different types of UAVs that were not present in training

dataset recordings (Unique Taifun H520, DJI F450) as well

as recordings of a surface plane (Parrot Disco). Additionally,

the ALIGN and SKY-HERO also featured in training data

were recorded in different outdoor environments for the testing

dataset. In total, three UAV types not present in the training

data were used for testing. The total recording time of UAV

emissions amount to 1.9 h, with 68 % being accounted for by

the training data, and the rest by the test dataset.

Additionally, the same amount of non-UAV recordings

such as environmental sounds were included in the dataset.

Recordings include traffic sounds, construction noise, bird

calls, wind and engine sounds. While UAV recordings tend

to be very similar in terms of the inherit harmonic structure,

environmental noise tends to be more diverse, meaning that not

only stationary noise but also harmonic or transient sounds

may occur, which we included in the dataset. Examples

of harmonic sounds include bird calls or church bells, and

construction noise features a varying structure originating from

different kinds of tools and machinery, such as drill hammers.

Both training and testing data feature a wide range of signal-

to-noise ratios due to part of the recordings originating from

dynamic acoustic environments, ranging from farmland to

urban areas. No audio files were mixed from signal and noise,

but rather represent the acoustic situations they were recorded

in. Spectrogram representations of some recordings are shown

in Fig. 1.

IV. EXPERIMENTAL RESULTS

In order to evaluate acoustic drone detection methods, it is

necessary to estimate their detection performance on unseen

audio recordings.

A. Detection Experiment Using Unseen Recordings

The proposed method described in section III was used to

detect drones in the unseen dataset, as well as the MFCC-based

SVM approach described in [4] and the Spectrogram-based

Convolutional Neural Network proposed in [11]. The approach

described in [4] was implemented within the same training

and cross-validation framework as the proposed method. The

CNN-based method from [11] was implemented as well,

using an FFT size of N = 64 and frame length of 20 ms

for the spectrograms. The network was optimized using the

stochastic gradient descent algorithm, with a learning rate of

0.0001. Since the dataset used in the original publication was

smaller than the one considered, the training was carried out

over 5 epochs. Kernels with size 5 × 5 were utilized, and

individual spectrograms were zero-padded before convolution

in order to keep the given dimensionality as described for
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Fig. 1. Spectrograms for different environmental noise, and an UAV.

the original architecture. The implementation considered in

this experiment was implemented using the PyTorch 1.1.0

Framework [17].

The performance is evaluated in terms of their accuracy,

sensitivity and specificity, and their F1-Score. In addition, the

false positive rate, which is of high interest in this application,

is computed. Acoustic monitoring applications can require

especially low false positive rates, because regular false alarms

will encourage security staff to ignore UAV detection output.

A confusion matrix for the unseen testing dataset, as clas-

sified by the proposed method, is shown in Table I. It is

TABLE I
CONFUSION MATRIX FOR THE UNSEEN TESTING DATASET, AS

CLASSIFIED BY THE PROPOSED METHOD.

Predicted
no UAV UAV

Actual
no UAV 18021 1580

UAV 1095 14930

observed that the rate of false positive detection is very low,

leading to robust detection results. Additionally, the majority

of UAV occurrences is correctly detected. For comparison,

condensed results for the unseen testing dataset using different

methods are listed in Table II. It can be seen that the SVM-

based approaches perform better on the testing dataset than

the spectrogram-CNN, which may be due to the fact that the

testing dataset contains time-varying and transient noises with

momentary harmonic structure, such as church bells or engine

sounds. The proposed detection approach takes into account

multiple successive time frames, allowing to detect changes in

features via mid-term statistics.
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TABLE II
RESULTS OF THE DETECTION EXPERIMENT ON AN UNSEEN DATASET, IN

PERCENT.

Method Acc. F1-Score Sens. Spec. False Pos.

Spec-CNN [11] 85.68 84.76 79.78 91.56 08.44

MFCC-SVM [4] 88.36 88.85 90.36 86.63 13.37

Proposed (SVM) 92.63 93.19 90.95 94.07 05.92

In order to further investigate this assumption, the class-

specific accuracy for some subdivisions of the two classes

present in the testing dataset from the experiment were com-

puted. They are listed in Table III. The divisions were chosen

after initial testing to illustrate the varying robustness against

certain kinds of disturbances and problematic acoustic events

in this two-class problem.

TABLE III
RESULTS OF THE DETECTION EXPERIMENT FOR THE PROPOSED

METHOD, DIVIDED INTO SUBCLASSES.

Subclass Subclass accuracy Frame count

UAV (close/moderate distance) 93.53 % 10820

UAV (quiet/very distant) 78.75 % 4160

UAV + construction noise 91.96 % 1530

Environmental noise 98.35 % 17530

Heavy wind noise 83.66 % 606

Construction noise 32.45 % 530

Church bells 98.00 % 50

Bird sounds 24.50 % 400

It can be seen that for the majority of the test dataset, UAVs

can be detected from a lot of noise subclasses. Recordings

of more quiet or more distant UAVs were less likely to

be detected. From the noise subclasses, construction noise

and bird calls were confused by the proposed method very

often, resulting in false positive UAV detection. As a possible

solution to overcome this limitation, more recordings of those

could be integrated into a future training dataset. For both

subclasses, the events can potentially occur over multiple

successive time frames and exhibit harmonic structure in the

same frequency range as UAV emissions.

B. Downsizing the Model by Recursive Feature Elimination

In order for a detection model to be applicable to real-

world scenarios with limited resources, it may be required

to decrease the dimensionality of the feature space in the

classification problem. The decreased computational com-

plexity allows for cost-sensitive solutions and this allows to

deploy multiple sensor nodes within the detection perimeter.

Additionally, coverage of an event by multiple detectors may

further increase the efficiency of detection methods. For these

reasons, we reduced the number of features in the model in

order to evaluate a low-dimensional variant of the proposed

method. For this experiment, recursive feature elimination

originally described in [18] was utilized as implemented in

the caret R library [19]. The same parameters included in

training the method as described in section III-B were used.

Training accuracy for the same test procedure as before is

shown in Figure 2 for each selected reduced subset. The five-
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Fig. 2. Accuracy from cross-validated recursive feature elimination on the
training dataset, for subsets of the features used in the extended model.

dimensional model (as marked in the plot) was selected and

used to detect drone occurrences on the test dataset. Table IV

shows the results for the reduced model with the highest

accuracy in RFE. The model makes use of the first order

statistics of the fourth and eighth MFCC, as well as the spectral

contrast in the second, sixth and seventh band. These features

are particularly important for UAV fundamental and harmonic

overtone power, and detecting abrupt changes in these bands.

The results illustrate that comparatively good performance

TABLE IV
RESULTS OF THE DETECTION EXPERIMENT ON AN UNSEEN DATASET IN

PERCENT, USING A REDUCED FEATURE SPACE OF F = 5 FEATURES.

Method Acc. F1-Score Sens. Spec. False Pos.

Redux-SVM 89.26 89.98 88.54 89.88 10.11

is achievable on the testing dataset, but the reduced model

dimensionality comes with a considerable increase in false

positives. In any practical application, this trade-off between

feature dimensionality and false detection rate would need to

be addressed.

V. CONCLUSIONS

The experiment with datasets originating from different

recording environments resulted in very promising detection

performance results for the proposed method. While the de-

tection of close or moderately distant UAVs is very accurate,

for more distant or quiet UAVs the performance is slightly

impaired. For different kinds of acoustic noise or other non-

UAV sounds, the false-positive detection rate was found to
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be too high for construction noise, as well as for bird call

recordings. It is assumed that incorporating more examples of

these noise types into the training data may further increase

the classification performance. Since the length of individual

occurrences depends on the acoustic environment and UAV

velocity, higher mid-term frame lengths may result in a de-

crease in realistic environments where possible detection time

is shorter due to SNR constraints.

The experimental results show that the proposed approach

can reliably detect acoustic UAV emissions, but in a real

scenario the false-positive rate would limit the usage of the

raw classification output. Considering the recommendation of

multi-modal detection systems in [20], it may become viable

to combine multiple acoustic sensor outputs in array process-

ing schemes, or audio-visual information into the detection

process. Since some of the applications of drone detection

may feature interdiction strategies, the inclusion of a low-

complexity classification approach in a multi-object-tracking

framework as described in [21] could prove vital to ensuring

the safety of locations easily disrupted such as airports, or

public events.
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