
Joint Graph Learning and Signal Recovery via
Kalman Filter for Multivariate Auto-Regressive

Processes
Mahmoud Ramezani-Mayiami

Dept. of ICT, University of Agder, Grimstad, Norway
Email: mahmoud.ramezani@uia.no

Abstract—In this paper, an adaptive Kalman filter algorithm
is proposed for simultaneous graph topology learning and graph
signal recovery from noisy time series. Each time series cor-
responds to one node of the graph and underlying graph edges
express the causality among nodes. We assume that graph signals
are generated via a multivariate auto-regressive processes (MAR),
generated by an innovation noise and graph weight matrices.
Then we relate the state transition matrix of Kalman filter to
the graph weight matrices since both of them can play the role
of signal propagation and transition. Our proposed Kalman filter
for MAR processes, called KF-MAR, runs three main steps;
prediction, update, and learn. In prediction and update steps,
we fix the previously learned graph weight matrices and follow a
regular Kalman algorithm for graph signal recovery. Then in the
learning step, we use the last update of graph signal estimates and
keep track of topology changes. Simulation results show that our
proposed graph Kalman filter outperforms the available online
algorithms for graph topology inference and also it can achieve
the same performance of the batch method, when the number of
observations increase.

Index Terms—Graph signal processing, Kalman filter, Topol-
ogy inference, Multivariate auto-regressive processes, Causal data
network.

I. INTRODUCTION

The explosive growth of information and data has recently
raised challenging issues of data storage, statistical processing,
and information inferences. The emerging field of graph signal
processing (GSP) [1] initiated analysis of this huge amount of
data by utilizing a graph structure, where each nodes of the
graph can represent a component of the system and has a time
series of data. In other words, a plethora of applications such
as social networks, transportation network, wireless sensor
network, and so on, can be modeled by a graph in which
each node provides a time series of data which has some kind
of dependencies to other ones.

One desired goal is to find the underlying dependencies or
the graph topology when we are given the time series of data.
A simple method to find the dependency among nodes data
is to compute the correlation of two time series and if it is
above a threshold, the corresponding two nodes is connected
and by repeating this procedure for any pair of nodes, the
underlying graph is estimated [2]. However, the correlation
can not capture the directional and mediated dependencies.
By a mediated dependency, we mean that if x is correlated
with y and y is correlated with z, computing the correlation
leads to find a correlation between x and z, while it is not

true in the underlying real system. For solving this issue,
partial correlation may be applied instead, while it still suffers
from the problem of directionality [2]. The Granger causality
[3] model may be used to find the direction of causations,
where time series x is said to Granger-cause y, if knowing
the previous values of x can improve the prediction accuracy
of y [4]. However, the general definition of Granger causality
can not capture the temporal structure of time series and we
need a more specific model. The Multivariate Auto-Regressive
(MAR)1 model is one of the common tool to model the space
time dependencies which is also conducive to the assessment
of Granger causality. In a MAR process of order M , the
current multivariate vector is a weighted superposition of M
previous multivariate vectors, contaminated by an innovation
noise (the mathematical model is defined in (3)).

Several researches have investigated the graph topology
inference problem when the set of time series are given and
the underlying process is assumed to be MAR, e.g., [5]–[7],
or a similar one [8]. But in all of these researches, the set
of time series is assumed to be available in advance, i.e., the
proposed methods are working in batch modes. Moreover, the
role of measurement noise has not been considered and they
applied their methods for uncontaminated data.

However, in many applications, the data is generated over
time sequentially or the computational complexity for running
the algorithm in batch mode is prohibitive. Besides, data
sampling comes along with a measurement noise, imposed
by hardwares, e.g., sensors. To overcome the first problem,
i.e., the batch mode limitations, two online graph topology
inference algorithms have been proposed in [9] and [10], but
the problem of noisy data is still remained. In this paper, we
investigate an adaptive method to learn the underlying graph
topology and recover the graph signal at the same time when
we are given a set of noisy observations of MAR processes.
Although Jin et. al. [11] proposed an adaptive Kalman filter for
an auto-regressive model, it can not be applied for multivariate
processes, like graph signals.

This paper is organized as follows; Section II reviews the
basics of graph signal processing and the MAR model and
at the end, we formulate the problem. The Kalman Filter

1in the literature of multiple time series analysis, sometimes it is also
called vector auto-regressive processes (VAR).
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for MAR processes is derived in section III. Simulations and
conclusions are given in sections IV and V, respectively.

II. PROBLEM STATEMENT

Suppose G = (V, E) is a graph with the vertex set V =
{v1, . . . , vN} and the edge set E ⊂ V which captures the di-
rected dependencies among vertices. The matrix W ∈ RN×N
is a weight matrix where Wij is the weight assigned to the
edge connecting vertex j to i. A graph signal x[k] at time k
is defined as below:

x[k] : V → CN , vi 7→ xi [k ]

x[k] = (x1 [k ], x2 [k ], . . . , xN [k ])T ∈ CN ,
(1)

where C and T denote to the complex number and the matrix
transpose, respectively. A graph Linear Shift-Invariant (LSI)
filter H(.) takes the input graph signal x[k] and gives

H(x[k]) =
(
h0IN + h1W + · · ·+ hNW

WNW
)
x[k], (2)

for some filter coefficients h0, . . . hNW
and a filter order NW

and IN is the identity matrix of size N ×N .
A multivariate auto-regressive (MAR) model of order M

is a LSI graph filter that generates the signal at a time k by
the weighted combination of the previous M graph signals at
all N nodes plus an innovation noise at time k, i.e., u[k] as
follows

x[k] =
M∑
m=1

Wmx[k −m] + u[k], (3)

where matrices Wm ∈ RN×N for m = 1, . . . ,M are filter
coefficients. We can rewrite (3) as the following element-wise
expression

xn[k] =
∑

l:(n,l)∈E

M∑
m=1

w
(m)
n,l xl[k −m] + un[k], n = 1, . . . , N

(4)
where w(m)

n,l is the (n, l)’th entry of the coefficient matrix Wm.
In many applications, each time series can only be affected
by a subset of other time series, i.e., all nodes can not cause
all other nodes. If xl[k] does not cause xn[k + m] for all
m ∈ {1, . . . ,M}, it follows w(m)

n,l = 0, ∀m. Therefore Bolstad
et. al. [5], defined the Sparse MAR Time series (SMART),
considering a sparse edge set. Hereafter, we are interested in
this sparse model of MAR. The problem of graph topology
inference in batch mode is estimating Wm, m = 1, . . . ,M
when we are given the time series x[k] for all k = 1, . . . ,K

in advance. If we define wn,l ,
[
w

(1)
n,l , w

(2)
n,l , . . . , w

(M)
n,l

]T
, the

weight matrices can be estimated as follows

{Ŵm}Mm=1 = argmin
{Wm}Mm=1

K∑
k=M+1

∥∥∥∥∥x[k]−
M∑
m=1

Wmx[k −m]

∥∥∥∥∥
2

2

+ λ
N∑
n=1

N∑
l=1

1

(
‖wn,l‖1

)
,

(5)
where λ > 0 is a regularization parameter and 1(.) is an
indicator function which outputs 0 and 1 for zero and non-
zero inputs, respectively. The first term of (5) ensures data

fidelity and the `1-norm favors solutions which are sparse. By
using the indicator function, we enforce the group sparsity.
By group sparsity, we mean that if all elements of wn,l are
zero, it shows that the node l does not cause the node n for
all filter taps m and it cause a more sparse solution. However,
if there is even one non-zero edge w(m)

n,l between the node n
and the node l, it confirms that the node n is affected by the
node l. Thus, the indicator function outputs one which adds
to the cost due to an additional non zero elements in filter
weight matrices. Since (5) is non-convex, following the group
Lasso minimization [5] with some manipulations, (5) can be
rewritten as follows

{ŵn}Nn=1 = argmin
{wn}Nn=1

N∑
n=1

( K∑
k=M+1

(
xn[k]− gT [k]wn

)2
+ λ

N∑
l=1

‖wn,l‖2
)
,

(6)

where wn =
[
wT
n,1, wT

n,2, . . . ,w
T
n,N

]T
and g is defined as

follows

g[k − 1] , vec
( [

x[k − 1],x[k − 2], . . . ,x[k −M ]
]T )

, (7)

where vec(·) stacks columns of its input matrix in a column
vector. Because of separability of the cost function across wn,
the optimization problem (6) can be solved for each n as
follows

ŵn = argmin
wn

K∑
k=M+1

(
xn[k]− gT [k]wn

)2
+ λ

N∑
l=1

‖wn,l‖2 .

(8)
However, in many applications, not only we can not access

to all x[k], k = 1, . . . ,K in advance, but also we access only
to a corrupted or noisy observations f [k] = x[k]+ε[k], where
ε[k] is the observation noise at time k and it is independent
from graph signals and ε[l] for all l 6= k. Therefore, in section
III as the main idea of this paper, we are interested in jointly
recover graph signals x[k] and learn the underlying graph
topology in an online mode, when we are given f [k].

III. KALMAN FILTER FOR MAR PROCESSES

In conventional signal processing, the Kalman Filter (KF) is
mainly conceptualized by two phases: ”Predict” and ”Update”.
The predict phase manipulates the previous state estimate to
produce an estimate of the state at the current time without
using any new observation/measurement, so called the a priori
state estimate. In the update phase, the prediction is combined
with the recent observation(s) to refine the a priori estimate
and yields the a posterior estimate. We can implement this
algorithm whenever we have enough information about the
state transition matrix, which is the mapping of the previous
state to the current state. However, in this paper, the state
transition matrix, which is a block matrix including W, is
not known in advance and there is a need to ”learn” it
from measurements. Then, our proposed algorithm, called KF
for MAR processes (KF-MAR), follows three steps: predict,
update, and learn. As long as new data arrives, in the prediction
and update steps, graph filter matrices Wm are fixed and graph
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signal states are updated, while in the learning step, we keep
the updated state fixed and learn the graph filters.

The MAR model (3) can be rewritten as below

x[k] = Ws[k − 1] + u[k], (9)

where W = [W1|W2, . . . |WM ] ∈ RN×MN and the state of
graph signals at time k − 1 is given as below

s[k − 1] ,
[
x[k − 1]T ,x[k − 2]T , . . . ,x[k −M ]T

]T
. (10)

If sn1:n2 stacks the elements of s from the index n1 to the
index n2, we can rewrite (9) as follows.

s[k]1:N = Ws[k − 1] + u[k], (11)

and from (10), we have the following identity

s[k]N+1:MN = s[k − 1]1:(M−1)N . (12)

Therefore the state equation is expressed as follows

s[k] = Θs[k − 1] + η[k], (13)

where η[k] ,
[
u[k − 1]T ,u[k − 2]T , . . . ,u[k −M ]T

]T
and

Θ ,

[
[W]

[I(M−1)N ], [0(M−1)N×N ]

]
is the state transition

matrix. Since we are given a noisy version f [k] of graph
signals, the measurement vector is defined as y[k − 1] ,[
f [k − 1]T , f [k − 2]T , . . . , f [k −M ]T

]T
. Thus the measure-

ment equation is given as below2

y[k] = s[k] + ξ[k], (14)

where ξ[k] is the measurement noise at time k, defined as
follows

ξ[k − 1] ,
[
ε[k − 1]T , ε[k − 2]T , . . . , ε[k −M ]T

]T
. (15)

Here, for simplicity and without loss of generality ξ[k] is as-
sumed to be a Gaussian random process with ξ[k] ∼ N (0,Λξ)
where Λξ = σ2

ξIMN . By using (13), the state is predicted as
follows

ŝ[k|k − 1] = Θ̂[k − 1]ŝ[k − 1|k − 1]. (16)

where the notation ŝ[k|k′] denotes the estimate of s at time k
given all measurements y[k′] up to and including the one at
time k′ ≤ k. Here, we define the error by e[k] = s[k]− ŝ[k|k]
and the error covariance matrix as follows

P[k|k] = E{e[k]e[k]T }, (17)

where E{·} is the expectation operator. From (13), we have
e[k|k − 1] = Θ̂[k − 1]e[k − 1] + η[k] and by considering the
zero-correlation of e[k − 1] and η[k], the covariance matrix
prediction is as follows

P[k|k− 1] = Θ̂[k− 1]P[k− 1|k− 1]Θ̂T [k− 1] +Λη, (18)

where Λη is the covariance matrix of the innovation noise
and since we assumed that noises are independent, it can be
expressed as σ2

ηIMN

2Here, the measurement vector y[k] is used for the observations up to
time k (including the one at k), while f [k] is used for the observation at time
k.

It is possible to write a linear update for the a posterior
estimate based on the a priori estimate and new measurement
as follows

ŝ[k|k] = ŝ[k|k − 1] + G[k]
(
y[k]− ŝ[k|k − 1]

)
, (19)

where G[k] is the Kalman gain, which will be derived in the
following. Substituting (14) into (19) and its result into (17)
gives;

P[k|k] =
(
IMN −G[k]

)
P[k|k − 1]

(
IMN −G[k]

)T
+ σ2

ξG[k]G[k]T ,
(20)

Here, σ2
η and σ2

ξ are constants and can be estimated via
(13) and (14), respectively by ‖ŝ[k|k − 1]− ŝ[k − 1|k − 1]‖22
and ‖y[k]− ŝ[k|k − 1]‖22. Moreover, some methods have been
proposed to estimate Λξ and Λη in general [11] and [12].

To minimize the mean squared error, the trace of the
covariance matrix is minimized as follows

(
W[K],G[K]

)
= argmin

W,G
tr
(
P[K|K]

)
s. t. wn’s are group sparse vectors,

(21)
where tr(.) is the trace operator and group sparsity was
discussed in section II. This optimization problem is separable
for W[K] and G[K]. Taking its derivative with respect to
G[K] and setting it to zero gives

G[K] = P[K|K − 1]
(
P[K|K − 1] + σ2

ξIMN

)−1
. (22)

Then by keeping G[K] fixed and following (5) and (6), (21)
is minimized with respect to W as follows

Ŵ[K] = argmin
W

JK(W), (23)

where

JK(W) = tr
(
P[K|K]

)
+ λ′

N∑
l=1

N∑
n=1

‖wn,l‖2 , (24)

for a regularization parameter λ′. By applying the definition
of the covariance matrix (17), we have

tr
(
P[K|K]

)
=

1

K −M

K∑
k=M+1

∥∥∥∥∥x[k]−
M∑
m=1

Wmx[k −m]

∥∥∥∥∥
2

2

.

(25)
By substituting (25) into (24), we have a group Lasso batch

minimization problem similar to (6) and can be rewritten
separately as (8). However, we have to solve it in an online
mode to adapt to the Kalman algorithm. In what follows, the
gradient descent method is used to minimize the cost function
JK(wn) for n = 1, . . . , N . Since the second term of the
cost function is `1-norm of `2-norm, it is not differentiable
around 0 and thus we seek one of its subdifferentials. A point
a ∈ RN minimizes a non differentiable convex function h(a)
if and only if 0 is a subgradient of h at a [13]. Therefore, a
subgradient of the `2-norm is as below

∇sub
a ‖a‖2 =

{ a
‖a‖2

, a 6= 0

0, a = 0
, (26)

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 914



and then a valid subgradient of JK(.) is given as below

∇sub
wn
JK(wn) = Φ[K]wn − rn[K] + λ′g(wn), (27)

where g(wn) , ∇sub
wn

(∑N
l=1 ‖wn,l‖2

)
is the subgradient

of the regularization term, Φ[K] ,
∑K
k=M+1 g[k]gT [k]

is the autocorrelation matrix of states, and rn[K] ,∑K
k=M+1 xn[k]g[k] is the cross correlation. When a new

observation is available, they can be updated as follows

Φ[K] = Φ[K − 1] + g[K]gT [K], (28)

rn[K] = rn[K − 1] + xn[K]g[K]. (29)

Finally, wn is estimated by the following standard gradient
descent updates

wt
n = wt−1

n + α∇sub
wn
JK(wt−1

n ), (30)

where t denotes the gradient descent iteration index and α
is the step size which guarantees the convergence of gradient
descent recursions.

To conclude this section, once a new observation f [K]
is received, we can form y[K] and find the a posteriori
estimate of ŝ[K], so as the estimate of graph signals x̂[k]
for k = 1, . . . ,K. Then, we use the updated state estimate
to learn the graph topology. To do this, we have to solve
the optimization problem in (23) or (8) by gradient descent
iterations as the inner loop, combined with the outer loop of
block coordinate descent. Algorithm 1 summarizes all steps
for our proposed KF-MAR. The complexity of Algorithm 1 is
dominated by the matrix inversion of (22) and matrix-matrix
multiplications in (18) and (20). Since the matrices are of
size MN × MN , the worst case computational complexity
is of order O

(
M3N3

)
. This computational complexity is

independent of K, due to its online or recursive nature, and
thus KF-MAR highly outperforms the batch mode, regarding

Algorithm 1 Graph Kalman Filter for Multivariate Auto-
Regressive Processes (KF-MAR).
Input: {f [k]}Kk=1, σ

2
ξ , σ

2
η, λ,M, tmax, α

Initialize: ŵn[M−1] = 0, ŝ[M |M ] = y[M ], P[M |M−1] =
σ2
ηIMN , Γ[M − 1] = δIMN for a small δ

while f [k], k > M do
1: State vector prediction (16)
2: Covariance matrix prediction (18)
3: Compute Kalman gain (22)
4: State vector update (19)
5: Covariance matrix update (20)
6: Graph topology learning by the following loops:
for n=1:N do

for t = 1 : tmax do
a) find ∇subJk(wn) via (27)
b) update wt

n via (30)
end

end
end
Output: Graph filter wights Wm, and graph signals x̂[k]
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Fig. 1. NMSE and NMSD comparison for N = 20, M = 4, and K = 500.

the computational time. KF-MAR is also comparable with
RRLS [9] which has overall complexity of O

(
M2N3

)
while

RRLS does not recover graph signals in noisy measurements.
Moreover, in many applications, we have M � N � K
and thus both complexities of RRLS and KF-MAR can be
approximated by O

(
N3
)
.

IV. SIMULATIONS

We test our adaptive graph Kalman filter algorithm for
synthetic data, generated by MAR processes, with the follow-
ing scenario: First, an Erdős Rényi graph is generated with
N = 20 vertices and a constant edge probability for every
pair of nodes. A MAR process with order M = 4 is generated
by drawing the non-zero coefficients of Wm,m = 1, . . . ,M
from a Gaussian distribution, and then normalizing each matrix
by its largest-magnitude eigenvalue, thus ensuring a stable
MAR process. The initial graph signals x[k], k = 1, . . . ,M
are generated from a random Gaussian N (0, 1) and then for
M + 1 < k ≤ K where K = 500, the MAR is generated
via (3), with innovation noise u ∼ N (0, I). Then, the graph
signals are contaminated with measurement noise ξ[k] to
produce the measurements y[k] according to (14), where
Λξ = IMN .

Two performance measures are considered to compare
our proposed algorithm with the conventional batch one
as well as the existing online algorithm for graph-signal
topology estimation. The normalized mean squared deviation
NMSD[k] = Ek{

∑N
n=1‖ŵn[k]−wn‖22∑N

n=1‖wn‖22
} shows the accuracy of

the graph topology estimation, where Ek{·} computes the
expectation up to time k. Moreover, the normalized mean
squared error (NMSE) evaluates the graphs signal recovery
accuracy. Because of the prohibitive computational complexity
of the batch method, we run the batch method only for ten
values of k, i.e., k ∈ {50, 100, . . . , 500}. Fig. 1 shows the
averaged results of Monte Carlo simulations over 100 trials
for the three different algorithms, i.e., the batch group-Lasso
[5], the Regularized Recursive Least Square (RRLS) [9], and
our proposed Kalman Filter for MAR processes. Regarding
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the NMSE, KF-MAR highly outperforms RRLS and achieves
the same performance of the batch method, or even better
than that, after a few observations. Moreover, our proposed
algorithm has better NMSD, compared to both of the batch
method and RRLS, and it converges fast for Graph topology
estimation. The reason for this high performance is that the
KF-MAR recovers the graph signals in each iteration while
the RRLS has no signal recovery policy which forces the
signal error estimation to be accumulated and affects the graph
topology estimation in the next iteration.

V. CONCLUSION

In this paper, an algorithm for joint topology learning and
graph signal recovery from noisy measurements is proposed
for MAR (or VAR) processes. Our proposed method is based
on the adaptive Kalman Filter algorithm. The simulation re-
sults confirm the high performance of the proposed algorithm
in terms of the NMSE of graph signal recovery and the NMSD
of graph topology estimation. Since the proposed algorithm
is recursive, it adapts to new received data and keeps track
of signal-graph changes and moreover it can apply for non-
stationary processes.
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