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Abstract—During traditional road surveys, inspectors capture 
images of pavement surface using cameras that produce 2D 
images, which can then be automatically processed to get a road 
surface condition assessment. This paper proposes a novel crack 
detection system that uses a light field imaging sensor, notably 
the Lytro Illum camera, instead of a conventional 2D camera, to 
capture road surface light field images. Light field images 
capture the light rays originating from different directions, thus 
providing a richer representation of the observed scene. The 
proposed system explores the disparity information, which can 
be computed from the light field, to obtain information about 
cracks observable in the pavement images. A simple processing 
system is considered, to show the potential use of this type of 
sensors for crack detection. Encouraging experimental crack 
detection results are presented based on a set of road pavement 
light field images captured over different pavement surface 
textures. A performance comparison with a state-of-the-art 2D 
image crack detection system is included, confirming the 
potential of using this type of sensors. 
 

Keywords—Light field imaging, road crack detection, image 
processing. 

I. INTRODUCTION 
Due to their constant usage, road pavement surfaces exhibit 
distresses and periodical road surveys are scheduled, to collect 
data about pavement condition that support the decision for 
the type and scheduling of appropriate maintenance activities. 
During road surveys, inspectors usually collect pavement 
surface images using 2D cameras, which can be automatically 
processed to detect distresses, with cracks being the most 
commonly found pavement surface defects. 
Road crack detection methods, that mainly process 
conventional 2D images, can be grouped into the following 
categories in terms of the image characteristics: (i) 
photometric; (ii) geometric; (iii) a combination of both [1]. 
For instance, techniques based on wavelets [2] or 
autocorrelation filtering [3] explore some of the photometric 
or geometric characteristics of road surface images, while 
other model analysis strategies [4] use the combination of both 
characteristics. More recent methods typically employ 
conventional machine learning techniques [5] [6]. 
As an alternative to conventional 2D cameras, light field 
cameras are emerging as powerful imaging sensors, capturing 
not only the average light intensity at a pixel, but rather the 

contributions of light rays emanating from different directions 
that reach the camera sensor. The resulting images are thus 
richer and open new possibilities for image processing and 
analysis [7]. 
This paper proposes a new crack detection strategy, by 
exploring light field images captured with a Lytro Illum, to 
improve and complement the automatic detection of cracks in 
images of road pavement surface, notably by exploring the 
disparity between the different viewpoints available from the 
captured imagery. Obtained results favorably compare with 
those achieved by the analysis of conventional 2D images.	
This paper is organized as follows. Section II introduces light 
field imaging and section III describes the proposed automatic 
crack detection system. Experimental results are presented in 
section IV, including the comparison with a system that 
processes conventional 2D images. Section V presents 
conclusions and discusses some hints for future work. 

II. LIGHT FIELD IMAGING 
Light field imaging allows capturing high-dimensional data 
sets, including information about light rays coming from 
different directions, thus providing richer scene 
representations than conventional 2D images.  
The plenoptic function has been introduced in 1991 by 
Adelson and Berger, to describe the information carried by 
light rays at every point in 3D space [8]. A light ray of 
wavelength λ will reach a point (𝑥, 𝑦, 𝑧) in space, travelling 
from a direction described by an azimuth / orientation 
pair 	(Ɵ, 𝛷) , at a given instant t. The resulting plenoptic 
function is therefore a 7D function of 𝑥, 𝑦, 𝑧, Ɵ, 𝜙, λ, 𝑡 , as 
illustrated in Figure 1 (left). 
Since the processing of this 7D function is computationally 
heavy, some simplifications can be considered to reduce its 
dimensionality. Of particular interest is the 4D light field 
parametrization of the plenoptic function. The light rays can 
then be described as emanating from a point (u,v) on a U-V 
plane, closer to the observed scene, to a point (s,t) in a S-T 
plane, closer to the camera, at a given time instant and with 
each ray keeping its RGB radiance. This leads to a static 4D 
light field representation L(u,v,s,t), as illustrated in Figure 1 
(right). 
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Figure 1 – Visual representation of the plenoptic function [9] (left) 

and the representation of the two-plane parametrization [10](right). 

This paper considers a light field acquired by a lenslet camera, 
which includes an array of microlenses, each one playing the 
role of a small camera and allowing the acquisition of a micro-
image that corresponds to a portion of the available visual 
information. From these micro-images it is possible to 
reconstruct 2D sub-aperture images, corresponding to 
different viewpoints of the scene, thus forming a multi-view 
array (of 2D images) that can be explored for the detection of 
cracks in road pavement surfaces. 

III. PROPOSED SYSTEM 
The architecture of the proposed road pavement surface crack 
detection system using a light field camera (here designated 
by the Light Field Crack Detection system – LFCD) is 
presented in Figure 2. 
 

 
Figure 2 – Proposed LFCD system architecture. 

Since the light field (LF) camera captures light rays travelling 
in different directions, a richer visual scene representation is 
obtained, which provides additional cues, useful for the 
automatic detection of cracks in images of pavement surface. 
More specifically, the proposed LFCD system allows 
recovering a multi-view array of 2D sub-aperture images, 
from which the disparity can be exploited for improving crack 
detection. The main components of the proposed system are 
described in the following. 

A. Light Field Decoding and Pre-Processing 
After the acquisition of a light field image, it can be decoded 
from the Bayer pattern into a 15´15 array of 2D sub-aperture 
RGB images 𝑀 𝑖, 𝑗 , for instance using the Matlab Light Field 
Toolbox v 0.4 [11]. Each of the resulting 2D images has a 
dimension of 435´625 pixels and it represents a slightly 
different viewpoint of a scene. An example of a recovered 2D 
sub-aperture pavement surface image is shown in Figure 3. 
The subsequent pre-processing converts each 2D RGB image 
to gray scale, as the color information is not particularly useful 
in the crack detection problem. Additionally, since cracks are 
composed of darker pixels, those pixels with intensity values 
higher than a predefined threshold th see their value replaced 
by the th value, thus leading to a reduction of image intensities 

variance. For the road images dataset considered in this paper, 
th was empirically set to 50, after exhaustive testing. 
 

 
Figure 3 – Example of a sub-aperture image, in this case the central 
sub-aperture image	𝑀 8, 8 , whose position in the multi-view array 

is depicted in blue in Figure 4. 

B. Computation of Disparity 
To explore the disparity captured by the LF images, a 
selection of 2D sub-aperture images is considered, and the 
disparity between image pairs, at symmetrical positions 
regarding the central sub-aperture image, is computed. 
Figure 4 illustrates how the horizontal (𝑑𝑖𝑚ℎ) and vertical 
(𝑑𝑖𝑚𝑣) disparity images are computed, namely by subtracting 
the multi-view array images of column 3 with those of column 
13, represented in green in Figure 4. The individual 
differences are added up according to equation (1). A similar 
procedure is applied to the two sets of sub-aperture images 
represented in red in Figure 4, according to equation (2). The 
obtained disparity images highlight the positions where road 
cracks are more likely to be found, making them more salient 
and easier to detect. 
 

𝑑𝑖𝑚ℎ = 	 𝑀	 𝑖, 3 	 − 𝑀 𝑖, 139:
;<:   (1) 

𝑑𝑖𝑚𝑣 = 	 𝑀	 3, 𝑗 	 − 𝑀 13, 𝑗9:
=<:   (2) 

 
Figure 4 – Illustration of sub-aperture image selection for the 

computation of disparity images. 

C. Preliminary Crack Detection 
In the preliminary crack detection module, a simple and fast 
algorithm is applied to enhance the visibility of crack areas in 
images. For this purpose, an edge detector is applied to the 
horizontal and vertical disparity images, 𝑑𝑖𝑚ℎ  and 𝑑𝑖𝑚𝑣 
respectively, and the results are added to include the edges 
found in both orientations. Along with edge information due 
to presence of road cracks, also other small pavement 
irregularities (typically corresponding to false detections) are 
enhanced and appear as undesired detection results in the edge 
image. To reduce this effect, a 5´5 median filter is applied. A 
sample result is illustrated in Figure 5. 
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Figure 5 – Example of a preliminary crack detection result. 

D. Post Processing 
The goal of the post-processing module is to reduce possible 
false detections resulting from the preliminary crack detection, 
by applying a region filter, which identifies image areas more 
likely to correspond to cracks. After that, a connected 
component analysis is performed, aiming the reduction of 
those possible false detections, as represented in the block 
diagram of Figure 6.  
 

 
Figure 6 – Detail of the post-processing module. 

The region filter considers a set of small circular regions with 
16 pixel diameter (empirically chosen after exhaustive 
testing), covering the edge image in such a way to ensure a 
25% overlap with neighbors. It then assigns label ‘1’ to circles 
with more than 50% of edge pixels, and label ‘0’ otherwise. 
The overlapping is useful to maintain the continuity of 
existing crack regions. 
Connected components are identified in the region filter 
output image, and very short connected components are 
excluded as they are very likely to correspond to false crack 
detections.  
These identified connected components form a mask that 
covers the areas where relevant cracks are located, as 
illustrated in Figure 7 (a). That mask can then be used to 
exclude false crack detections obtained in the preliminary 
crack detection, leading to better detection results at pixel 
level, as illustrated in Figure 7 (b). 
 

 
(a) 

 
(b) 

Figure 7 – Region filter: (a) mask used to select crack areas, (b) 
pixel-based crack detection results after applying the mask. 

To further improve the crack detection, a morphological 
closing filtering is applied, to remove small holes.  

Then, candidate crack regions are found by grouping crack 
pixels using a region linking algorithm [12]. Relevant 
connected components are identified by fulfilling a set of three 
geometric requirements: (i) more than 70% of eccentricity for 
an ellipse fitted to it; (ii) ellipse major axis longer than 15 
pixels; (iii) width of at least 1 mm. The remaining connected 
components (the non-relevant candidates) are considered for 
removal, unless they are spatially linked to relevant 
components, in which case the region linking algorithm keeps 
them labeled as cracks, thus improving the crack detection 
result. An example of the region linking module output is 
shown in Figure 8. 
 

 
Figure 8 – Region linking results for the image of Figure 7 (b). 

IV. EXPERIMENTAL EVALUATION 
This section presents the strategy used to evaluate the LFCD 
system performance on detecting cracks, starting by briefly 
introducing a benchmarking system that explores the usage of 
2D images. After that, a description of the dataset used, as 
well as the metrics considered to perform the evaluation 
procedure, are presented. 

A. 2D Benchmark Crack Detection – The CrackIT System  
As a benchmark for comparing the performance of the 
proposed LFCD system, an existing 2D crack detection 
system, known as CrackIT, which fully incorporates the 
methodology described in [12], was considered. This system 
was selected as it is a good representative of the state-of-the-
art, and it has an implementation that is publicly available at 
http://amalia.img.lx.it.pt/CrackIT/ [13]. 
The architecture of the considered benchmarking solution is 
illustrated in Figure 9, and briefly described in the following. 
 

 
 

Figure 9 – CrackIT system architecture. 

The CrackIT system uses a 2D pavement surface image as 
input and the processing starts by assigning a ‘crack’ or ‘non-
crack’ label to each non-overlapping image block, based on 
the mean and standard deviation of pixel intensity values in 
each block – the pre-labelling, as detailed in [5]. After that, an 
anisotropic diffusion filter [12] is applied to deal with random 
textures present in pavement surface images, followed by an 
image intensity normalization technique to reduce the non-
uniform background illumination, with these two aspects 
being typically observed in images captured by traditional 2D 
cameras. Then, a segmentation by thresholding [12] is applied 
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to obtain the initial crack detection result. As a last step, the 
same region linking procedure mentioned in section III-D is 
applied to obtain the final crack detection result.  

B. Evaluation Dataset 
As mentioned before, the Lytro Illum lenslet light field camera 
has been used to acquire the image dataset considered in this 
work. The acquisition setup considered the camera positioned 
at 1 meter from the pavement surface, with its optical axis 
perpendicular to the road pavement surface. All the images 
were collected during a manual survey. The dataset for testing 
is composed of 13 light field images, captured from 
pavements with different surface texture characteristics. For 
each image, a multi-view array was computed and each of the 
recovered 2D sub-aperture images presented a spatial 
resolution of 1 mm2 per pixel.  
To be able to compare the proposed system against the 2D 
benchmarking, the 2D central sub-aperture image 
(corresponding to the blue square in Figure 4) is used as input 
to the CrackIT system, as it corresponds to what a traditional 
2D camera would capture. 

C. Evaluation Metrics 
To evaluate the crack detection results, a block-based ground 
truth was created by an expert, who manually labeled each 
25´25 pixel block of each image, with the help of a graphical 
user interface developed for that purpose, as containing cracks 
or not. 
Since for some blocks only a very small number of crack 
pixels were included, the expert sometimes labeled those 
blocks as not containing cracks. As a consequence, and in 
order to have a fair evaluation of the automatic results 
produced by the algorithms, the block-based evaluation done 
in this paper assumes that a block will only be classified as 
containing a crack if the number of detected crack pixels in 
that block is at least 4% of the block size (25 pixels). 
While comparing the detected crack blocks with the ground 
truth, the following block-based evaluation metrics were taken 
in to account: 

• True Positives (TP) – Blocks that belong to cracks; 
• False Positives (FP) – Blocks falsely detected as 

containing cracks; 
• False Negatives (FN) – Missed blocks that belong to 

cracks.  
This evaluation is summarized using the well-known metrics: 
recall (𝑟𝑒), precision (𝑝𝑟) and f-measure (𝐹𝑚), according to 
the following equations: 
 

𝑟𝑒 = 	 BC
BC	D	EF

  (3) 

 

𝑝𝑟 = 	 BC
BC	D	EC

  (4) 

 

𝐹𝑚 = 	 G	×	BC
G	×	BC DEFDEC

  (5) 

V. EXPERIMENTAL RESULTS 
The evaluation of the proposed LFCD system is presented in 
the following, in comparison with the 2D system considered 
for benchmarking, the CrackIT system [5]. 
Table 1 and Figure 10 summarize the results achieved using 
the considered performance metrics for all the test images. 
From these results it is possible to observe that the usage of 
light field imaging, even when only applying simple image 
processing techniques, seems to provide a better crack 
detection result than using the more conventional 2D crack 
detection system CrackIT – the Fm metric results increase, in 
average, from 79% to 85%. Additionally, when doing a visual 
evaluation of the results (a subjective analysis), by looking at 
the identified cracks, it seems that by exploring the light field 
disparity information, it was possible to obtain a better 
definition of the cracks present in the pavement surface test 
images, as can be seen by the quality of the results shown in 
Figure 11.   

Table 1 – Precision, recall and Fm results for the LFCD and 
CrackIT systems. 

Image re 
(LFCD) 

re 
(CrackIT) 

pr 
(LFCD) 

pr 
(CrackIT) 

Fm 
(LFCD) 

Fm 
(CrackIT) 

1 100% 98% 100% 100% 100% 99% 
2 100% 100% 100% 100% 100% 100% 
3 93% 100% 97% 73% 95% 85% 
4 86% 86% 93% 42% 89% 56% 
5 95% 100% 75% 73% 84% 85% 
6 96% 96% 74% 61% 84% 74% 
7 91% 69% 77% 94% 83% 80% 
8 75% 90% 94% 47% 83% 62% 
9 71% 97% 91% 90% 80% 93% 

10 70% 100% 93% 69% 80% 82% 
11 82% 90% 74% 67% 78% 77% 
12 81% 72% 72% 80% 77% 76% 
13 80% 76% 61% 46% 69% 58% 

Average 85% 90% 85% 72% 85% 79% 
 

 
Figure 10 – Comparison of LFCD and CrackIT performance using 

the f-measure. 

Figure 11 shows block detection sample results obtained from 
the proposed LFCD and the CrackIT systems, where blocks 
marked in green represent the ones correctly classified as 
containing cracks, the yellow ones denote those blocks 
detected by the systems but not manually classified as cracks, 
and the red ones correspond to blocks manually classified as 
cracks but not detected by the systems.  
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(a) 

 
(b) 

Figure 11 – Block detection results for image 4 of the dataset: (a) 
proposed light field system,	𝑟𝑒 = 	86%, 𝑝𝑟 = 93%, 𝐹𝑚 = 89%. (b) 

CrackIT system, 𝑟𝑒 = 	86%, 𝑝𝑟 = 46%, 𝐹𝑚 = 56%. 

For the sample result presented in Figure 11, the proposed 
LFCD system showed a greater capacity to deal with the 
effects of the pavement surface texture, discarding most of the 
false positive detections presented in the CrackIT results, 
while detecting most of the blocks containing cracks, hence 
achieving a higher value of the precision metric. In fact, the 
LFCD system seems to be more robust to deal with the 
different pavement surface textures found in images, as shown 
by the smaller variations of the Fm metric in Figure 10 thus 
outperforming the CrackIT system in this respect. By looking 
at the precision metric results listed in Table 1, the LFCD 
system seems to perform significantly better for the entire 
dataset, meaning that the proposed system produces less false 
positives.  
Looking at the recall metric the behavior of the two systems, it 
is more similar, with both systems being able to capture the 
more relevant crack information observable from the images.  
Overall, the Fm metric (see Table 1 and Figure 10) shows the 
advantage of the proposed LFCD system. 
 
As an alternative to the consideration of disparity information, 
as used by LFCD, one might consider computing a depth 
image of the pavement, computed using the light field 
information. However, the initial experiments using the Lytro 
software suit to create a depth map, did not provide very 
helpful information for crack detection. 
 

VI. CONCLUSIONS 
This paper presented a novel crack detection system, 
exploring for the first time a light field imaging sensor. 
Although the crack detection system presented has room for 
improvements, it allowed to show that exploring the disparity 
information available from the light fields can bring benefits 
for crack detection. In the experiment, it was noted that this 
disparity information is more abundant in the regions close to 
the center of each processed image. 
The proposed LFCD system performed well when compared 
to the 2D-based CrackIT system, considered for benchmarking 
purposes. The experimental work has shown that the 
additional information available in light field images can be 
favorably explored for crack detection.  

Future work involves considering a more sophisticated image 
processing solution, as well as the acquisition of a larger 
image dataset for testing. 
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