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Abstract—Acausal signals are ubiquitous in science and engi-
neering. These processes are usually indexed by space, instead
of time. Similarly to Markov processes, reciprocal processes
(RPs) are defined in terms of conditional independence relations,
which imply a rich sparsity structure for this class of models.
In particular, the smoothing problem for Gaussian RPs can be
traced back to the problem of solving a linear system with
a cyclic block tridiagonal matrix as coefficient matrix. In this
paper we propose two factorization techniques for the solution
of the smoothing problem for Gaussian hidden reciprocal models
(HRMs). The first method relies on a clever split of the problem
in two subsystems where the matrices to be inverted are positive
definite block tridiagonal matrices. We can thus rely on the
rich literature for this kind of sparse matrices to devise an
iterative procedure for the solution of the problem. The second
approach, applies to scalar valued stationary reciprocal processes,
in which case the coefficient matrix becomes circulant tridiagonal
(and symmetric), and is based on the direct factorization of
the coefficient matrix into the product of a circulant lower
bidiagonal matrix and a circulant upper bidiagonal matrix. The
computational complexity of both algorithms scales linearly with
the length of the observation interval.

Index Terms—Markov processes, acausal models, reciprocal
processes, hidden Markov models, inference and learning, signal
processing.

I. INTRODUCTION

Acausal signals are ubiquitous in science and engineering.
These processes are usually indexed by space, instead of time.
Think for example of an image, where the intensity of a pixel
at a given location is likely to be related to all surrounding
pixels intensities or to a tracking task, where the destination
(when known) is likely to influence the future position of a
tracked target in the very same way of the path travelled so
far.

In this context, particularly promising is the class of recipro-
cal processes (RPs). RPs were first introduced by Bernstein in
1932 [1] and studied in statistics and probability notably by B.
Jamison [2]. Similarly to Markov processes, RPs are defined
in terms of conditional independence: a Rn–valued stochastic
process xk defined over the interval I = [0, N ] is said to be
reciprocal if, for any subinterval [K,L] ⊂ I, the process in the
interior of [K,L] is conditionally independent of the process
in I− [K,L] given xK and xL. The conditional independence

*This work was done while the author was with the Department of
Engineering, University of Cambridge, United Kingdom.

relations in the definition determine a rich sparsity structure for
this kind of acausal processes that makes them very attractive
for modeling of acausal signals.

In [3] it has been shown that a discrete–time Gaussian RP
admits a second–order nearest–neighbor model – the acausal
analog of autoregressive models for Markov processes – where
the driving noise is locally correlated, with noise correlation
structure specified by the model dynamics. This model recalls
state–space models for Markov processes but it is acausal and
the driving noise is not white. State–space models for discrete–
time finite state–space RPs have been recently derived in [4].

In recent years a lot of attention has been devoted to
solving the smoothing problem for finite state–space reciprocal
models (see [4] and references therein) and to the problem of
learning the model parameters of a reciprocal process (see e.g.
[5] and references therein). A double sweep solution of the
inference problem for Gaussian RPs that requires the solution
of a certain Riccati equation has been derived in [3], while a
message passing algorithm has been recently proposed in [6].

In this paper, we address the smoothing problem for Gaus-
sian hidden reciprocal models (HRMs). The problem can be
reduced to the solution of a linear system whose coefficient
matrix has a cyclic block tridiagonal structure. Two factoriza-
tion approaches are proposed. The first approach traces back
the original problem to the solution of a banded block tridiag-
onal system, for which efficient solutions have been devised
in the literature (e.g. Thomas algorithm [7]). This approach
is suitable for non-stationary as well as stationary vector-
valued Gaussian reciprocal processes and has a computational
complexity that scales linearly with the length of the ob-
served interval. The second approach only applies to stationary
scalar–valued processes. For stationary reciprocal processes,
the coefficient matrix turns out to be circulant. In this second
approach, the circulant tridiagonal coefficient matrix is directly
factorized into the product of circulant bidiagonal factors. This
approach relies on an algorithm first developed in [8] for the
solution of certain linear systems arising in numerical methods
for the solution of partial differential equations with cyclic
boundary conditions. The computational complexity of this
second approach also scales linearly with the length of the
observed interval.

The paper is organized as follows. In Section II the smooth-
ing problem for Gaussian reciprocal processes is introduced

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1127



and its relation with the solution of a cyclic block tridiagonal
linear system is highlighted. In Section III the first algorithm
for the solution of the smoothing problem for Gaussian hidden
reciprocal processes is introduced. The scalar-valued stationary
case is analyzed in Section IV where a second procedure for
the evaluation of the optimal smoother is introduced. The two
algorithms are compared on a numerical example in Section
V. Section VI concludes the paper.

Notation. Throughout the paper, matrices will be denoted
by bold face capital letters like A, vectors by bold face lower
case letters, e.g. a. Non-bold lower case like a will be used
to denote scalars. Given a sequence of column vectors {uk}
and matrices {Tk} we will use the notation

vec ({uk}) =

u0

...
uN

 , diag ({Tk}) =


T0 0 . . . 0

0 T1
. . .

...
. . . . . . . . . 0
0 . . . 0 TN

 .
II. SMOOTHING FOR GAUSSIAN HRMS AND BLOCK

CYCLIC TRIDIAGONAL SYSTEMS

Let {xk} be a zero-mean Gaussian stochastic process de-
fined over the finite interval I = [0, N ] and taking values in
Rm. {xk} is reciprocal if and only if it admits the following
representation

−M−
k xk−1+M0

kxk−M+
k xk+1 = ek , 1 ≤ k ≤ N−1 (1)

where M0
k, M+

k , M−
k are such that

M0
k = (M0

k)>, M+
k = (M−

k+1)> (2)

and the driving noise ek satisfies

E [ekx>l ] = I δkl (3)

and is locally correlated with covariance Σe

[Σe]k,l =


M0

k, for l = k

−M+
k for l = k + 1

0 otherwise .
(4)

Equations (1)–(4) specify a second–order nearest–neighbor
model for the discrete–time reciprocal process {xk} . The
model recalls standard first–order state–space models for
Markov processes but it is acausal (the system does not evolve
recursively in the direction of increasing or decreasing values
of k). Also, the driving noise ek is not white, but locally
correlated. Notice that, in order to completely specify xk

over the interval I = [0, N ], some boundary conditions must
be provided. Following [3], in this paper we consider cyclic
boundary conditions, namely we assume

x−1 = xN , xN+1 = x0 . (5)

These conditions are equivalent to extending cyclically the
model (1), (2) and the noise structure (3), (4) to the whole
interval I = [0, N ], provided that, in these identities, k − 1

and k+ 1 are defined modulo N + 1. Equation (1) with cyclic
boundary conditions (5) can be written in matrix form as

Mx = e (6)

where
x = vec ({xk}) , e = vec ({ek}) , (7)

and M is cyclic block tridiagonal and symmetric (see (2))

M=


M0

0 −M+
0 0 . . . 0 −M−

0

−M−
1 M0

1 −M+
1 0 . . . 0

. . . . . .
0 . . . 0 −M−

N−1 M0
N−1 −M+

N−1
−M+

N 0 . . . 0 −M−
N M0

N

.
(8)

We assume that the model (6) is well–posed, i.e. that it admits
a unique solution. Being Σe = M, in particular we assume
that the matrix M is positive definite. We are given the
observations:

yk = Hkxk + vk, 0 ≤ k ≤ N (9)

where vk is a white Gaussian noise uncorrelated with ek with

E [vkv>l ] = Λk δkl . (10)

We seek to compute the smoothed estimate

x̂k = E [xk | y0, . . . ,yN ]

We make the following definitions:

y = vec ({yk}) , v = vec ({vk}) , (11)
Λ = diag ({Λk}) , H = diag ({Hk}) , (12)

Equation (9) can be rewritten in matrix notation

y = Hx + v . (13)

With definitions (7), (8) and (11), (12), the maximum a
posteriori (MAP) estimate x̂ of x can be written as the solution
of the following optimization problem

minimize
x

‖y −Hx‖2Λ−1 + ‖Mx‖2M−1 (14)

where ‖a‖2M = a>M a. By setting the first derivative to zero,
one finds that x̂ must satisfy(

H>Λ−1H + M
)
x = H>Λ−1y (15)

The linear system in (15) has a very special structure being the
matrix

(
H>Λ−1H + M

)
the sum of a diagonal plus a cyclic

block tridiagonal matrix. To observe it is positive definite,
note that M is positive definite and Λ is positive definite by
assumption. Let

H>Λ−1H + M :=


A0 B0 0 . . . C0

B>0 A1 B1 . . . 0

0
. . . . . . . . .

...
B>N−2 AN−1 BN−1

C>0 . . . 0 B>N−1 AN


(16)
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with Ak,Bk,C0 ∈ Rm×m given by

Ak = M0
k + H>k Λ−1k Hk (17)

Bk = −M+
k (18)

C0 = −M−
0 (19)

and
d = vec ({dk}) (20)

with
dk = H>k Λ−1k yk . (21)

III. A SMOOTHING ALGORITHM FOR VECTOR–VALUED
GAUSSIAN HRMS

We propose the following algorithm for the solution of (15).
Let E be the (N − 1)× (N − 1) block tridiagonal symmetric
matrix

E =



A1 B1 0 . . . 0
B>1 A2 B2 . . . . . .

0
. . . . . . . . .

...
...

. . . . . . BN−2
0 . . . 0 B>N−2 AN−1

 , (22)

with matrices Ak and Bk, k = 1, . . . , N−1 defined as in (17),
(18), and let xI and dI be the (N − 1)-dimensional column
vectors

xI = vec ({x1, . . . ,xN−1}) , (23)
dI = vec ({d1, . . . ,dN−1}) , (24)

Moreover let F be the (N − 1)× 2 block matrix

F =


B>0 0
0 0
...

...
0 BN−1

 . (25)

System (15) can be decomposed as

ExI + F

[
x0

xN

]
= dI (26)

F>xI +

[
A0 C0

C>0 AN−1

] [
x0

xN

]
=

[
d0

dN

]
(27)

E is invertible, being
(
H>Λ−1H + M

)
in (16) positive

definite. Equation (26) yields

xI = E−1dI −E−1F

[
x0

xN

]
(28)

If we substitute (28) into (27) we obtain{[
A0 C0

C>0 AN

]
− F>E−1F

}[
x0

xN

]
=

[
d0

dN

]
− F>E−1dI (29)

In this way the original problem has been decomposed into
two steps. The first steps amounts to solve (29) for x0, xN .
Then xI can be computed by means of (26). Note that the
system (26) has a very special structure, being its coefficient
matrix E a banded block tridiagonal matrix. This system

can be efficiently solved via the Thomas algorithm [7], that
particularized to our problem reads as follows. Let q =

vec ({q1, . . . ,qN−1}) be the block-vector q = dI −F

[
x0

xN

]
.

Then the x̂k’s, k = 1, . . . , N − 1 can be computed via the
following iterative procedure:

1) Set G1 = A1 and r1 = q1

For k = 2 to N − 1

Solve PkGk−1 = B>k for Pk (30)
Set Gk = Ak −PkBk (31)
Set rk = qk −Pkrk−1 (32)

2) Solve GN−1xN−1 = rN−1 for xN−1

For k = N − 2 to 1

Solve Gkxk = rk −Bkxk+1 for xk (33)

Thomas algorithm for solving the banded tridiagonal system
(26) can be seen as the composition of two steps: a factor-
ization step, where the LU factors of E, say L and U, are
computed

L =


I 0 . . . 0

P2 I
...

. . . . . . 0
0 . . . PN−1 I

 U =


G1 B1 . . . 0

0 G2

...
. . . . . . BN−2

0 . . . 0 GN−1


(34)

with the Pk’s and Gk’s as in (30) and (31), plus a substi-
tution step, that involves the solution of the two resulting
block bidiagonal systems UxI = r and Lr = q, with
r = vec ({r1, . . . rN−1}). For positive definite matrices that
are well conditioned [9], the Thomas algorithm is a stable
procedure with computational complexity O(Nm3), that, for
block size m� N reduces approximately to N flops.

For what concerns the solution of (29), the products
F>E−1F and F>E−1dI need to be computed. Once again
we can take advantage of the block tridiagonal structure of the
positive definite matrix E, since closed form formulas exist for
the inverse of a block tridiagonal matrix [10]. Indeed, if we
let Γ := E−1 with block structure

Γ =

 Γ1,1 . . . Γ1,N−1
...

...
Γ>1,N−1 ΓN−1,N−1

 ,
we get

F>E−1F =

[
B0Γ1,1B

>
0 B0Γ1,N−1B

>
N−1

B>N−1Γ
>
1,N−1B

>
0 B>N−1ΓN−1,N−1BN−1

]
(35)

F>E−1dI =

[
B0

∑N−1
i=1 Γ1,idi

B>N−1
∑N−1

i=1 Γ>i,N−1di

]
(36)

so that only the first and last block-rows of E−1 are needed
to compute F>E−1F and F>E−1dI . The overall procedure
reads as follows.

Algorithm 1:
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1) Compute the first row and last row of the matrix
E−1 via Theorem 3.4 in [10].

2) Compute F>E−1F and F>E−1dI via (35) and (36).
3) Compute [x̂>0 , x̂

>
N ]> by solving (29).

4) Compute the remaining x̂k’s, k = 1, . . . , N − 1 solv-
ing the block tridiagonal system (26) via the iterative
procedure (30)–(33).

The computational complexity of the overall algorithm for
small block dimensions m is O(N) since also the computa-
tional complexity of the inversion of a block tridiagonal matrix
is linear in N [10].

IV. STATIONARY SCALAR-VALUED CASE

Let {xk}, k ∈ I be a second order stationary scalar-valued
reciprocal process. In this case (1) becomes a linear time-
invariant system with constant scalar parameters m0, m± and
the matrix M in (8) becomes a circulant tridiagonal (and
symmetric) matrix. Assuming a time invariant measurement
model (9), the matrix in (16) is also circulant,

H>Λ−1H + M=


a b 0 . . . 0 b
b a b 0 . . . 0
. . . . . .
0 . . . 0 b a b
b 0 . . . 0 b a

. (37)

In this case, an alternative factorization procedure for the
computation of the optimal smoother x̂ can be devised,
that factorizes the circulant matrix

(
H>Λ−1H + M

)
into

the product of a circulant lower bidiagonal matrix and a
circulant upper bidiagonal matrix. This procedure was orig-
inally introduced in [8] in the context of numerical methods
for the solution of certain partial differential equations with
cyclic boundary conditions. In particular it can be shown
that if

(
H>Λ−1H + M

)
is positive definite and diagonally

dominant it admits a real factorization of the type(
H>Λ−1H + M

)
= αLCL>C (38)

where LC has the form

LC =



1 0 0 . . . `

` 1 0
...

...
. . . . . . . . . 0

...
. . . 1 0

0 . . . . . . ` 1


(39)

with |`| < 1. We call a matrix like Lc a circulant lower
bidiagonal matrix. In particular one gets

α =
1

2

[
a+

√
a2 − 4b2

]
(40)

` = b/α (41)

With the factorization (38)–(41) in hand, system (H>Λ−1H+
M)x = d can be solved by considering the two systems

LCh = α−1d (42)

and
L>Cx = h (43)

whose coefficient matrix is a circulant lower (respectively,
upper) bidiagonal matrix. By letting

LT =



1 0 0 . . . 0

` 1 0
...

...
. . . . . . . . . 0

...
. . . 1 0

0 . . . . . . ` 1


(44)

LC can be decomposed as

LC = LT + ` e1eN (45)

where ei denotes a vector whose components are all zeros
except a one in position i. By using the Sherman–Morrison
formula, systems (42) and (43) can be transformed into the
following lower bidiagonal and upper bidiagonal Toeplitz
systems

LTh =
1

α

d−

ζ N∑
j=1

dj(−`)N−j
 e1

 (46)

L>T x = h−

ζ N∑
j=1

hj(−`)j−1
 eN (47)

where

ζ =
`

1− (−`)N
(48)

and hj and dj denote the j-th component of the vector h and
d, respectively. The overall procedure reads as follows.

Algorithm 2:
1) Compute α and ` via (40), (41)
2) Compute ζ via (48)
3) Compute x̂ by solving (46) and (47).

The procedure is stable since |`| < 1. The algorithm solves
equation (15) in O(5N) flops.

V. NUMERICAL EXAMPLES

The two proposed algorithms for the computation of the
optimal smoother for a Gaussian reciprocal process have
been implemented in Matlab. In this Section we compare
Algorithm 1 and 2 on a scalar valued instance of the problem
in the stationary case and then comment on the computational
complexity/execution time of the two proposed algorithms.
Let

(
H>Λ−1H + M

)
in (16) and d in (20), (21) be given

by

(
H>Λ−1H + M

)
=


5 2 0 0 2
2 5 2 0 0
0 2 5 2 0
0 0 2 5 2
2 0 0 2 5

 , d =


6
1
4
9
3

 (49)
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For what concerns Algorithm 1, the matrices E and F in (22),
(25) are given by

E =

5 2 0
2 5 2
0 2 5

 , F =

2 0
0 0
0 2

 .
The terms in (35) and (36) are

F>E−1F =

[
0.99 0.19
0.19 0.99

]
, −F>E−1dI =

[
−0.4
−3.6

]
To compute the optimal smoother x̂ one needs to solve the
two-dimensional system[

4.0118 1.8118
1.8118 4.0118

] [
x0
x4

]
=

[
5.6
−0.6

]
(50)

for [x0, x4], yielding [x̂0, x̂4] = [1.8384,−0.9798]. The re-
maining x̂k’s, k = 1, 2, 3 are obtained by solving the symmet-
ric tridiagonal system (for large N , via the Thomas algorithm)5 2 0

2 5 2
0 2 5

x1x2
x3

 =

−2.6768
4

10.9596

 ,
with associated L and U factors given by

L =

 1 0 0
0.4 1 0
0 0.4762 1

 , U =

5 2 0
0 4.2 2
0 0 4.0476

 .
yielding x̂>I = [−0.6162, 0.2020, 2.1111] .

For what concerns Algorithm 2, the matrix(
H>Λ−1H + M

)
in (49) is directly factorized into the

product of a circulant lower bidiagonal matrix and a circulant
upper bidiagonal matrix,

(
H>Λ−1H + M

)
= αLCL>C

with α = 4 and off diagonal element ` = 0.5. Via the
Shermann–Morrison formula the resulting circulant lower
(respectively, upper) bidiagonal systems are transformed
into two lower (respectively, upper) non-circulant bidiagonal
systems, that can be solved via forward (respectively,
backward) substitution. In the case of the example, ζ = 0.48,
and (46) becomes

1 0 0 0 0
0.5 1 0 0 0
0 0.5 1 0 0
0 0 0.5 1 0
0 0 0 0.5 1



h0
h1
h2
h3
h4

 =


1.5303
0.25

1112.25
0.75


yielding h> = [1.5303,−0.5152, 1.2576, 1.6212,−0.0606].
The optimal smooother can then be computed by solving
equation (47)

1 0.5 0 0 0
0 1 0.5 0 0
0 0 1 0.5 0
0 0 0 1 0.5
0 0 0 0 1



x0
x1
x2
x3
x4

 =


1.5303
−0.5151
1.2576
1.6212
−0.9798


yielding to the same x̂ derived via Algorithm 1.

The computational times required by the Matlab imple-

mentation of the two algorithms have also been compared.
What we observe is that, besides both the algorithms having a
computational complexity that scales linearly with the length
of the observed interval N , Algorithm 2 is generally faster than
Algorithm 1. For N = 500, the computed average execution
time observed for Algorithm 1 was t̄1 = 0.059121 s while the
average execution time for Algorithm 2 was t̄2 = 0.027039 s.
This is probably due to the fact that Algorithm 2 implemen-
tation is free from for cycles, that cannot be avoided in the
implementation of Algorithm 1. On the other hand, Algorithm
1 enjoys a wider range of applicability, being suitable for
generic cyclic block tridiagonal systems (non stationary, vector
valued reciprocal processes).

VI. CONCLUSIONS

This paper deals with the smoothing problem for Gaussian
hidden reciprocal processes. The problem can be reduced
to the solution of a linear system, whose coefficient matrix
has a cyclic block tridiagonal structure. Two factorization
approaches have been proposed. The first method applies
to general vector valued non-stationary RPs and recast the
computation of the optimal smoother as the problem of solving
a block tridiagonal system for which efficient algorithms based
on the factorization of block tridiagonal matrices have been
devised in the literature. The second method applies to scalar
valued stationary RPs. In this case the coefficient matrix of
the system that needs to be solved for the computation of
the optimal smoother becomes circulant tridiagonal, and can
be directly factorized into the product of circulant bidiagonal
matrices. Both algorithms have computational complexity that
scales linearly with the length of the observation interval.
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