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Abstract—We discuss in this paper models for the disparity
information needed when pairwise warping the angular views
in a light field data set formed of N views. In one scenario of
light field data compression, first a set of M reference views
is encoded and then each of the remaining views is predicted
by warping several reference views using disparity information.
The necessary disparity information in this case may be as
high as M(N-1) pairwise view disparity maps, estimated and
transmitted independently for each pair (reference, target). We
propose an estimation model which can be used in a flexible
way for any selected configuration of references and predicted
views. We study the estimation of the global model from the
matching information provided by a pairwise matching program.
The model may be defined in several ways, by considering the
vertical and horizontal matches at various views and by allowing
different model parameters for the regions from a segmentation
of the scene. The regions based model is shown to perform
better than a single region model. The performance of the model
in synthesizing the unseen color views at specified locations in
the views array is presented for several configurations of the
estimation and prediction sets.

I. INTRODUCTION

The light field images acquired by dense camera arrays
have become recently available having high image resolution
and high number of views in the array. In the standardization
project JPEG Pleno light field [1] [2] it is of interest how
the disparity information extracted from a light field dataset
could be encoded in the most efficient way and then be utilized
for synthesizing some views based on reference views. One
of the problems in compression is how to utilize the most
precise disparity models, available for pairs of views, so that
the prediction by disparity based warping will produce high
quality images.

Here we propose to extract a single overall model, expressed
in terms of the depth for the scene at each reference view, out
of which all the pairwise needed disparities can be computed.
Even for a carefully prepared dataset the overall model will
produce however only an approximate reproduction of the
pairwise disparity estimated from real data, due to optical and
geometrical imperfections when acquiring and processing the
multiview images.

For now we address the simple question of how to optimally
reconstruct the pairwise disparities obtained by a state-of-the-
art optical flow estimation method. We present an algorithm
which operates only on the input matches. It avoids the expen-

sive color warping operations to produce the color distortion
measure. The usefulness of the results will largely depend
on the precision of the optical flow routine. In here we trust
completely the matches offered by the program presented in
efficient coarse-to-fine patch match (CPM) estimation method
[7], since our optimization criterion will seek to reproduce
these matches by our proposed criterion. As better flow
estimation programs will become available, the quality of the
input data will also improve.

The estimation of light field disparity was studied for
long time, see for example [3] [4] and reference therein for
existing public literature. Also, especially for the HDCA data
considered here, there is prior work in [5] [6] proposed in the
standardization literature, which used CPM pairwise matching
information in a heuristically motivated estimation algorithm.

II. PAIRWISE MATCHING VIEWS IN LIGHT FIELD DATA

We consider a light field composed of N = K ×L angular
views, {Ak,`, k = 1, . . . ,K; ` = 1, . . . , L}, obtained by
a camera taking N pictures of the scene, with the camera
positions at coordinates (Y (k, `), X(k, `)) in a rectangular
grid, resulting in pictures which are highly redundant.

We are choosing an angular view Ak0,`0 as a reference and
any other view, say Ak,`, is taken as a target. We obtain a
list of matches between the two views, by using the CPM
method [7]. The goal is to encode the target Ak,` based on
the reference Ak0,`0 by using warping. Each angular view,
Ak,`, is a nr × nc RGB color image having at pixel location
(i, j) the vector of color Ak,`(i, j), with three components
indexed by c ∈ {1, 2, 3}, e.g., Ak,`,1 is the value of the red
component. In our experiments we use the dataset described
in [8], which is used for core experiments in JPEG Pleno light
field. Each angular view is a 4K image having nc = 3840 and
nr = 2160. The full HD case can be obtained by cropping
the central part of each 4K image to obtain a HD sub-image,
n′c = 1920 and n′r = 1080, as we did in the color view
synthesizing experiment.

The list of matches has entries of the form (i, j, i′, j′),
for the pair of views Ak0,`0 Ak,`, where the RGB color at
Ak0,`0(i, j) was found to correspond to the RGB color at
Ak,`(i

′, j′). We refer to (i, j) as a scene point being anchored
at the reference and (i′, j′) as being the same scene point
anchored at the target and denote Ψ(k0,`0),(k,`) the set of
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pixels (i, j) for which matches are found. The entries in the
list define disparities at the locations (i, j) ∈ Ψ(k0,`0),(k,`) as
follows: row displacement Dr

k0,`0,k,`
(i, j) = i′− i and column

displacements Dc
k0,`0,k,`

(i, j) = j′ − j.
The matching information provides evidence, the closest

to data, about the matches that happen between the pair of
views (Ak0,`0 , Ak,`). Hence one would be tempted to use the
list of matches, i.e., the vertical Dr

k0,`0,k,`
(i, j) and horizon-

tal Dc
k0,`0,k,`

(i, j) disparity images, to perform warping for
predicting Ak,` based on Ak0,`0 , obtaining the warped image
Wk,`:

Wk,`(i+Dr
k0,`0,k,`(i, j), j +Dc

k0,`0,k,`(i, j)) = Ak0,`0(i, j).

This will presumably offer a very good PSNR of the
predicted Ak,`, but will require encoding for each side view
the pair of disparity images Dr

k0,`0,k,`
(i, j), Dc

k0,`0,k,`
(i, j),

hence the associate bitrate will be very large for a separate
encoding of the disparities, at each side view. The remedy is
to encode jointly the disparities using the high redundancy that
exists between them.

Due to occlusions, the warped image Wk,` will not be
defined in the whole (nr × nc) grid, and hence several other
references may be used to get a complete prediction of Ak,`.

A. Correspondence between vertical and horizontal dispari-
ties

If the camera optical axis had an ideal translation from the
camera center (Yk0,`0 , Xk0,`0) to (Yk,`, Xk,`), then the pixel
displacements will be given by

i′ − i =
(Yk,`−Yk0,`0 )f

z(i,j)

j′ − j =
(Xk,`−Xk0,`0 )f

z(i,j)

(1)

where z(i, j) is the depth of the pixel with location (i, j) in
Ak0,`0 and f is a focal parameter (which will not be needed,
since it will not appear as an explicit parameter in our model).
Hence the ratios (i′ − i)/(j′ − j) should be constant for all
entries in the list for the pair of views Ak0,`0 Ak,`,

ρ(i, j) =
(i′ − i)
(j′ − j)

=
(Yk,` − Yk0,`0)

(Xk,` −Xk0,`0)
= ρ0

(k0,`0),(k,`). (2)

The image acquisition scenario in HDCA is that Yk,` −
Yk0,`0 = (k − k0)δY and Xk,` − Xk0,`0 = (` − `0)δX , with
δY and δX specific to the experiment, which results in

(Yk,` − Yk0,`0)

(Xk,` −Xk0,`0)
=

(k − k0)δY
(`− `0)δX

=
(k − k0)

(`− `0)
µ, (3)

where µ = δY /δX .
However, the exact positioning of the robot arm that carries

the camera at a desired position is not possible, and hence
the ratio (Yk,`−Yk0,`0 )

(Xk,`−Xk0,`0 ) should be estimated experimentally,

by (robustly) averaging ρ(i, j) = (i′−i)
(j′−j) form (2) over all

(i, j) ∈ Ψ(k0,`0),(k,`). We collect the distribution of ρ(i, j) for
all (i, j) ∈ Ψ(k0,`0),(k,`) and estimate the location parameter
as the median value, denoted as ρ̂M(k0,`0),(k,`). A robust esti-
mate of the scale is taken as the median absolute deviation

Fig. 1. Plot of the conversion factor between horizontal disparities and
vertical disparities at the view (2, 26). The ideal ratio would be µideal =
60mm/40mm = 1.5. The horizontal and vertical disparities are obtained
by estimating the optical flow between the center view and the view (2, 26)
with the efficient coarse-to-fine patch match (CPM) estimation method [7].

(MAD) defined as the median of the absolute differences
|ρ(i, j)−ρ̂M(k0,`0),(k,`)| over all (i, j) ∈ Ψ(k0,`0),(k,`). Assuming
a normal distribution corrupted by outliers, we estimate the
normal scale as σM = 1.4826MAD({ρ(i, j)}). The ideal
constant value µ = δY /δX is hence estimated separately
for each angular view as µ̂M(k0,`0),(k,`) = ρ̂M(k0,`0),(k,`)

(`−`0)
(k−k0) .

The experimental setup for the HDCA data that we use has
µ = 1.5.

When combining the information from the list of matches,
one should take into account the variability of ρ(i, j) = (i′−i)

(j′−j) ,
between angular views, and inside each angular view.

To obtain a first picture of how much the experimental
data deviates from the ideal scenario (equidistant sampling
and parallel translation), we take the center view as a refer-
ence, k0 = 10, `0 = 50, and we illustrate in Figure 1 the
estimated location and the estimated normal scale for one
angular view. In order to provide more robust estimates, we
excluded from each list of matches those matches for which
(i′−i)
(j′−j) 6∈ (ρ̂M − 3σM , ρ̂M + 3σM ).

III. FORMULATING THE MAXIMUM LIKELIHOOD PROBLEM

We consider one region Ω in the image, and the disparities
anchored at (k0, `0) obtained by matching between view
(k0, `0) and (k1, `1) for this region, Dc

k1,`1
(i, j) (in this section

we omit the first two subindices, k0, `0 for Dc) . We denote
z(i, j) the ideal depth of the scene point represented as the
pixel (i, j), anchored at view (k0, `0), and for simplicity of
notations, denote ψ(i, j) = f/z(i, j) where f is the camera
focal parameter and ψ(i, j) is called for short reciprocal-depth
(we have an additional f factor in the definition of reciprocal-
depth, compared to [6]). We consider the disparity model,
agreeing to (1),

Dc
k1,`1(i, j) = (Xk1,`1 −Xk0,`0)f

1

z(i, j)
+ e(i, j)

= (Xk1,`1 −Xk0,`0)ψ(i, j) + e(i, j)
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and collect all equations for the pixels belonging to the non-
occluded part of region Ω in the vector form:

x1 = r1C
x
1 + e1, (4)

where Cx1 = (Xk,`1 − Xk0,`0); we arranged the pixels
(iτ , jτ ), τ = 1, . . . , n1 from the two-dimensional region Ω1

by scanning columnwise the region Ω1, resulting in the
vectors x1 and r1 having the elements with index τ as
x1(τ) = Dc

k1,`1
(iτ , jτ ) and r1(τ) = f/z(iτ , jτ ) = ψ(iτ , jτ ),

respectively.
Proceeding in a similar way for matching to the views with

indices (k2, `2), . . . (kn, `n) we get the model
x1 = r1C

x
1 + e1

...
xn = rnC

x
n + en.

(5)

Each equation refers to a different subset of Ω, due to
different occlusions in different views; however, in general
there is significant overlap between the matched pixels sets
Ω1, . . . ,Ωn, which makes the equations in (5) to be highly
interconnected.

The system of equations is used to estimate both the
reciprocal-depth values (the set of elements Φ = {ψ(iτ , jτ )}
appearing in the vectors r1, . . . , rn) and the constants Cx =
{Cx1 , . . . , Cxn}. Assuming Gaussian distribution N(0, σ2

m) for
elements of the error vectors em, and independence for all
errors, the negative log-likelihood function is a function of
Φ, Cx and Vx = {σ2

1 , . . . , σ
2
n}

J 1
Φ,Cx,Vx =

n∑
m=1

nm∑
q=1

(
em(q)2

2σ2
m

+
1

2
log σ2

m

)
(6)

One can easily show that the variances from the set Vx at
optimality should satisfy

σ̂2
m =

∑nm
q=1 êm(q)2

nm

=

∑
(iτ ,jτ )∈Ωm

(
Dc
km,`m

(iτ , jτ )− Cxmψ(iτ , jτ )
)2

nm
(7)

The criterion to be minimized with respect to Φ, Cx remains

J 2
Φ,Cx =

n∑
m=1

(
1

2
log

∑nm
q=1(xm(q)− r̂m(q)Ĉxm)2

nm

)
. (8)

The minimization of (8) with respect to the parameters
{ψ(iτ , jτ )} and Cx1 , . . . , C

x
n will be done alternately, by first

re-estimating the set of elements {ψ(iτ , jτ )} appearing in in
r1, . . . , rn considering the current estimates of Cx1 , . . . , C

x
n ,

and then reversing the role of the current and re-estimated
parameters. We start with the stage of initial values for the
parameters Cx1 , . . . , C

x
n , which are known from the experiment

setting. For given Cx1 , . . . , C
x
n , the estimation of the element

ψ(iτ , jτ ) involves all equations where (iτ , jτ ) ∈ Ωm, leading
to

ψ(iτ , jτ ) =

∑
m|(iτ ,jτ )∈Ωm

Dckm,`m (iτ ,jτ )Cxm
nmσ2

m∑
m|(iτ ,jτ )∈Ωm

(Cxm)2

nmσ2
m

. (9)

The weighing by the noise variances is not possible at the first
iteration, where we take all these variances equal and then they
cancel from (9). Starting from the second iteration of (9), the
current estimates of noise variances computed by (7) are used.

The iteration for finding new estimates of Cx1 , . . . , C
x
n uses

the current estimates for reciprocal-depths and the current
variances from (7):

Ĉxm =

∑
(iτ ,jτ )∈Ωm

Dc
km,`m

(iτ , jτ )ψ(iτ , jτ )∑
(iτ ,jτ )∈Ωm

(ψ(iτ , jτ ))
2 (10)

Completely analogously we can treat the model for vertical
matches

Dr
k1,`1(i, j) = (Yk1,`1 − Yk0,`0)f

1

z(i, j)
+ ε(i, j)

= (Yk1,`1 − Yk0,`0)ψ(i, j) + ε(i, j)

and obtain the vector equation for one region Ωm

ym = r1C
y
m + εm (11)

and get a system of equations
y1 = r1C

y
1 + ε1

...
yn = rnC

y
n + εn

(12)

similar to (5), by considering several views,
(k1, `1), . . . , (kn, `n).

In fact the unknowns r1, . . . , rn, Cx1 , . . . , C
x
n , and

Cy1 , . . . , C
y
n of the systems (5) and (12) can be solved together,

by merging the systems (5) and 12) and solving with the same
alternate approach. We present results with this joint version
in this paper.

IV. EXPERIMENTAL RESULTS

The light field data used in the experiments is the set S2

from the HDCA data [8], from which we keep the subarray
11×33 from the vertical locations 0 : 2 : 21 and horizontal lo-
cations 2 : 3 : 98 (according to the labeling of view files). The
central view is shown in Figure 2a. We consider five reference
views Γref = {(1, 1), (11, 1), (1, 33), (11, 33), (6, 16)}.

The horizontal and vertical disparities are obtained by
estimating the optical flow between each reference view and
the rest of 362 views, with the efficient coarse-to-fine patch
match (CPM) estimation method [7].

We have estimated the reciprocal depthmaps at each refer-
ence view, using our proposed re-estimation algorithm. The
PSNR of reconstructed disparity versus the iteration stage
of the re-estimation algorithm is shown in Figure 3 in red.
The PSNR corresponds to the MSE obtained by practically
summing over all 362 views σ2

m given in (7). Convergence
is fast, practically after two iterations the estimated quantities
don’t change significantly. The resulted reciprocal depthmap
for the reference view (6, 17) is shown in Figure 2 b.
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A. Comparing the re-estimation for the whole image versus
running re-estimation separately over each region

In order to improve the performance of the re-estimation
procedure, we show that we can run the procedure separately
over the regions of a partition. We consider the simple case of
partition based on the depth values, as shown in Figure 2c. The
partition into regions is based on the estimates of reciprocal
depth obtained previously for the whole scene.

Again the convergence of the routine over each region is
very fast, the PSNR for the whole image reconstruction being
shown in blue in Figure 3 over each iteration (cumulating
the results of the three different runs). The performance of
reconstructing the initial pairwise matching data has improved.
In a compression application this will involve only additional
cost for encoding not only one set of estimated camera
coordinates, (Cx, Cy), but three of them, {(Cx(Ωp), Cy(Ωp))}.
In Figure 4 we show the locations of (Cx(Ωp), Cy(Ωp)) for
various regions and various views. The differences between
a single region and specific regions are extremely small, so
the cost of differentially encoding (Cx(Ωp), Cy(Ωp)) is very
small.

B. Synthesizing color views not available at the encoder using
re-estimated disparities

For the array of (11× 33) views we consider the following
scenario: We have available at the encoder a subset Γdesign of
views, which can be used for the estimation of the reciprocal
depth map Φ. The encoder will transmit the estimated map
Φ̂ to the decoder and also the estimated centers of the views
from the subset Γdesign. The encoder will also transmit the
color views for the reference views set Γref , which in our
case is formed of the corner and center of the array, i.e.,
Γref = {(1, 1), (11, 1), (1, 33), (11, 33), (6, 17)}. The decoder
needs to display the views on a freeview display, and will
need to decode the color lightfield views from Γref . Based on
the decoded reference views, the decoder will then synthesize
and render the views at specified camera positions, Γpredict,
in our case positions in the (11 × 33) array, where we know
the ground truth. We consider the case when Γpredict does not
contain any of the views used for design, Γdesign, so that the
estimated map Φ̂ could not gather directly informations about
disparities relevant to this set.

We consider three configurations of Γdesign: in Figure 5 are
shown the configurations SUBSET and BORDER, and the last
configuration is ORACLE, which would have access at the
encoder on all the (11× 33) views.

We use our re-estimation procedure at each of these
configurations, for each of the reference views, obtain-
ing {Φ̂ORACLEi , i ∈ Γref}, {Φ̂SUBSETi , i ∈ Γref} and
{Φ̂BORDERi , i ∈ Γref}. Each estimated map is quantized into
511 levels and is losslessly encoded. For each configuration,
the given target bitrate is used for encoding the depthmap,
and the rest of the bits are used for encoding the five RGB
references. Each view (k, `) from Γpredict is synthesized using
the five references, by warping first the closest reference to
the view (k, `), resulting in a warped image W , where not all

pixels are defined, due to occlusions. Then the second closest
reference is warped to view with position (k, `), but this time
only the resulting locations that were occluded W are filled
in. The process continues in the same way with the rest of the
references.

The PSNRY UV values, [1], for the synthesized locations
are computed and displayed in pseudocolor in Figure 6, for
all the configurations, for all views from Γpredict, and for five
bitrates. One can see first that the views closer to the central
view have a reasonable reconstruction, obtaining PSNRY UV
as high as 39 dB, but as the location of the view goes further
from the closest reference view, the PSNRY UV drops below
30 dB. One can note the almost radial distribution of the PSNR
in the view array, according to the distance between each view
and its closest neighbor, which is the array center (6, 17) for
Γpredict.

The ORACLE configuration performs better than the others,
as expected, showing that the reciprocal depth designed from
all available views has a better quality and performs better
in warping. However, for the design performed with least
number of used views, which is the configuration BORDER,
the estimated reciprocal depth map still performs well, loosing
only 1dB when compared to the performance of ORACLE
configuration.

V. CONCLUSIONS

We have introduced a re-estimation procedure for the re-
ciprocal depth, given pairwise match estimates for pairs of
views. The routine can be applied in a flexible way, and it
was shown that for a simple partition into three regions the
PSNR of reconstruction of matches is better than for a single
region. With larger partitions the PSNR performance may still
improve, at the cost of having to encode additional sets of
coordinates parameters, one set for each region.
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(a) (b) (c)

Fig. 2. (a) The central view of the lightfield S2; (b) Estimated reciprocal depthmap anchored at the central view, obtained by running the re-estimation
algorithm for the whole scene Ω; (c) Partition of the scene P = {Ω1,Ω2,Ω3} into three regions Ωp = {(i, j)|ψ(i, j) ∈ Ip} with I1 = (0; 1.27],
I2 = (1.27; 1.6], I3 = (1.6; 2.5].

Fig. 3. PSNR when reconstructing the pairwise matching points, versus the
iteration step in the re-estimation algorithm. In the case P = Ω the algorithm
is run on the whole image, considered as a single large region Ω. In case
P = {Ω1,Ω2,Ω3} the re-estimation algorithm is run three times, once for
each region Ωp, obtaining the reciprocal depthmap for that region, plus a
set of camera coordinate positions (Cx(Ωp), Cy(Ωp)) for each region. The
central view is partioned into three regions as shown Figure 2c). It can be
seen that the algorithm practically converges in two steps in both cases.

Fig. 4. Estimated positions of the ideal cameras (Cx(Ωp), Cy(Ωp)) , when
appying the re-estimation algorithm for the whole scene as a single Ω region
(red circles) and when applying the re-estimation separately for the three
regions forming the partition P = {Ω1,Ω2,Ω3}, as shown in Figure 3. Also
shown are the ideal positions, in the regular grid (green diamonds). For better
viewing only the positions for a small subset of views are shown.

(a)

(b)

Fig. 5. The array of (11 × 33) views: in gray, the views used for
reciprocal depth estimation; in white: the views for which the color image
has to be synthesized by warping the references. We assume five references:
(1,1);(11,1);(1,33);(11,33);(6,17) (a) The SUBSAMPLE configuration for es-
timating Φ; (b) the BORDER configuration for estimating Φ. The ORACLE
configuration uses all (11× 33) views for reciprocal depth estimation, Φ.

Fig. 6. The PSNRY UV performance over the color synthesized views,
under different experimental configurations and different bitrates. The location
of the (4× 9) represented blocks of synthesized views is shown in Figure 5.
The view (6, 17) is a reference and is not synthesized, so no PSNRY UV

value is given for it. (Top) Here the PSNRY UV values are represented
in pseudocolor in each of the 5 bitrates and 3 configurations; (Bottom) To
increase the legibility of (a), here the improvements are shown in pseudocolor,
where improvements are with respect to the worst performance (which is at
0.03 bpp, for the BORDER configuration). As much as 0.2 dB are gained in
SUBSAMPLE configurations, and 0.8 dB in ORACLE configuration, between
corresponding bitrates. .
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