
Explaining Black-box Android Malware Detection

Marco Melis∗, Davide Maiorca∗, Battista Biggio∗†, Giorgio Giacinto∗† and Fabio Roli∗†
∗DIEE, University of Cagliari, Piazza d’Armi, 09123, Cagliari

{marco.melis,davide.maiorca,battista.biggio,giacinto,roli}@diee.unica.it
† Pluribus One, Italy

Abstract—Machine-learning models have been recently used
for detecting malicious Android applications, reporting impres-
sive performances on benchmark datasets, even when trained
only on features statically extracted from the application, such as
system calls and permissions. However, recent findings have high-
lighted the fragility of such in-vitro evaluations with benchmark
datasets, showing that very few changes to the content of Android
malware may suffice to evade detection. How can we thus trust
that a malware detector performing well on benchmark data will
continue to do so when deployed in an operating environment? To
mitigate this issue, the most popular Android malware detectors
use linear, explainable machine-learning models to easily identify
the most influential features contributing to each decision. In this
work, we generalize this approach to any black-box machine-
learning model, by leveraging a gradient-based approach to
identify the most influential local features. This enables using
nonlinear models to potentially increase accuracy without sacri-
ficing interpretability of decisions. Our approach also highlights
the global characteristics learned by the model to discriminate
between benign and malware applications. Finally, as shown by
our empirical analysis on a popular Android malware detection
task, it also helps identifying potential vulnerabilities of linear
and nonlinear models against adversarial manipulations.

I. INTRODUCTION

With more than 400 millions of malicious applications

discovered in the wild, Android malware constitutes one of the

major threats in mobile security. Among the various detection

strategies proposed by companies and academic researchers,

those based on machine learning have shown the most promis-

ing results, due to their flexibility against malware variants and

obfuscation attempts [1], [7]. Despite the impressive perfor-

mances reported by such approaches on benchmark datasets,

the problem of Android malware detection in the wild is still

far from being solved. The validity of such optimistic, in-vitro

evaluations has been indeed questioned from recent adversarial

analyses showing that only few changes to the content of a

malicious Android application may suffice to evade detection

by a learning-based detector [6], [8]. Besides this fragility to

well-crafted evasion attacks (a.k.a. adversarial examples) [4],

[5], [10], [18], Sommer and Paxson [16] have more gener-

ally questioned the suitability of black-box machine-learning

approaches to computer security. In particular, how can we

thus trust the predictions of a machine-learning model in vivo,

i.e., when it is deployed in an operating environment, to take

subsequent reliable actions? How can we understand whether

we are selecting a proper model before deployment? How

about its security properties against adversarial attacks?
To partially address these issues, Android malware detectors

often restrict themselves to the use of linear, explainable

machine-learning models that allow one to easily identify

the most influential features contributing to each decision

(Sect. II) [1], [2]. More generally, intepretability of machine-

learning models has recently become a relevant research

direction to more thoroughly address and mitigate the afore-

mentioned issues, especially in the case of nonlinear black-
box machine-learning algorithms [3], [9], [12]–[14]. Some ap-

proaches aim to explain local predictions (i.e., on each specific

sample) by identifying the most influential features [3], [14]

or prototypes from training data [12]. Others have proposed

techniques and methodologies towards providing global ex-
planations about the salient characteristics learned by a given

machine-learning algorithm [9], [13].

In this work, we generalize current explainable Android

malware detection approaches to any black-box machine-

learning model, by leveraging a gradient-based approach to

identify the most influential local features (Sect. III). For

non-differentiable learning algorithms, like decision trees,

we extract gradient information by learning a differentiable

approximation. Notably, this idea has originally been ex-

ploited to construct gradient-based evasion attacks against

non-differentiable learners, and evaluate their transferability,

i.e., the probability that an attack crafted against a learning

algorithm succeeds against a different one [4], [10], [15]. Ac-

cordingly, our approach provides interpretable decisions even

for Android malware detectors exploiting nonlinear learning

algorithms to potentially increase detection accuracy. More-

over, by averaging the local relevant features across different

classes of samples, our approach allows also highlighting the

global characteristics learned by a given model to identify

benign applications and different classes of Android malware.

We perform our experimental analysis with a popular An-

droid malware detector named Drebin [1] (Sect. IV). It extracts

information the Android application through static analysis,

and provides interpretable decisions by leveraging a linear

classification algorithm. To test the validity of our approach,

we show how to retain the interpretability of Drebin on non-

linear algorithms, including Support Vector Machines (SVMs)

and Random Forests (RFs). Interestingly, we also show that the

interpretations provided by our approach can help identifying

potential vulnerabilities of both linear and nonlinear Android

malware detectors against adversarial manipulations.

We conclude the paper by discussing contributions and

limitations of this work, and future research directions towards

developing more robust malware detectors (Sect. V).

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 529

II. ANDROID MALWARE DETECTION

In this section, we provide some background on how An-

droid applications are structured, and then discuss Drebin [1],

the malware detector used in our analysis.

A. Android Background

Android applications are apk files, i.e., zipped archives

that must contain two files: the Android manifest and the

classes.dex. Additional xml and resource files are respectively

used to define the application layout and to provide multimedia

contents. As Drebin only analyzes the Android manifest
and classes.dex files, we briefly describe them below.

Android Manifest. The manifest file holds information

about how the application is organized in terms of its compo-
nents, i.e., parts of code that perform specific actions; e.g.,

one component might be associated to a screen visualized

by the user (activity) or to the execution of audio in the

background (services). It is also possible to perform actions on

the occurrence of a specific event (receivers). The actions of

each component are further specified through filtered intents;

e.g., when a component sends data to other applications, or

is invoked by a browser. Special types of intent filters (e.g.,

LAUNCHER) can specify that a certain component is executed

as soon as the application is opened. The manifest also

contains the list of hardware components and permissions
requested by the application to work (e.g., Internet access).

Dalvik Bytecode (dexcode). The classes.dex file embeds the

compiled source code of an application, including all the user-

implemented methods and classes. Classes.dex may contain

specific API calls that can access sensitive resources such as

personal contacts (suspicious calls). Additionally, it contains

all system-related, restricted API calls whose functionality

require permissions (e.g., using the Internet). Finally, this file

can contain references to network addresses that might be

contacted by the application.

B. Drebin

Drebin performs a lightweight static analysis of Android

applications. The extracted features are used to embed benign

and malware apps into a high-dimensional vector space, train

a machine-learning model, and then perform classification of

never-before-seen apps. An overview of the system architec-

ture is given in Fig. 1, and discussed more in detail below.

Feature extraction. First, Drebin statically analyzes a set of

available Android applications to construct a suitable feature

space. All features extracted by Drebin are presented as strings
and organized in 8 different feature sets, as listed in Table I.

Android applications are then mapped onto the feature space

as follows. Let us assume that an app is represented as an

TABLE I
OVERVIEW OF FEATURE SETS.

manifest dexcode

S1 Hardware components S5 Restricted API calls
S2 Requested permissions S6 Used permission
S3 Application components S7 Suspicious API calls
S4 Filtered intents S8 Network addresses

object z ∈ Z , being Z the abstract space of all apk files. We

then denote with Φ : Z �→ X a function that maps an apk file

z to a d-dimensional feature vector x = (x1, . . . , xd)� ∈ X =
{0, 1}d, where each feature is set to 1 (0) if the corresponding

string is present (absent) in the apk file z. An application

encoded in feature space may thus look like the following:

x = Φ(z) �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
0
1
· · ·
1
0
· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

· · · }
S2

permission::SEND_SMS
permission::READ_SMS
· · · }

S5
api_call::getDeviceId
api_call::getSubscriberId
· · ·

Learning and Classification. Drebin uses a linear SVM to

perform detection. It can be expressed in terms of a linear

function f : X �→ R, i.e., f(x) = w�x + b, where w ∈
R

d denotes the vector of feature weights, and b ∈ R is the

so-called bias. These parameters, optimized during training,

identify a hyperplane that separates the two classes in feature

space. During classification, unseen apps are then classified as

malware if f(x) ≥ 0, and as benign otherwise.

Explanation. Drebin explains its decisions by reporting, for

any given application, the most influential features, i.e., the

features that are present in the given application and are

assigned the highest absolute weights by the classifier. For

instance, in Fig. 1, it is easy to see, from its most influential

features, that a malware sample is correctly identified by

Drebin as it connects to a suspicious URL and uses SMS as

a side channel for communication. As we aim to extend this

approach to nonlinear models, in this work we also consider

an SVM with the Radial Basis Function (RBF) kernel and a

random forest to learn nonlinear functions f(x).

III. INTERPRETING DECISIONS OF LEARNING-BASED

BLACK-BOX ANDROID MALWARE DETECTORS

We discuss here our idea to generalize the explainable

decisions of Drebin and other locally-explainable Android

malware detectors [1], [2] to any black-box (i.e., nonlinear)

machine-learning algorithm. In addition, we also propose a

method to explain the global characteristics influencing the

decisions of the learning-based malware detector at hand.

Local explanations. Previous work has highlighted that gra-

dients and, more generally, linear approximations computed

around the input point x convey useful information for ex-

plaining the local predictions provided by a learning algo-

rithm [3], [14]. The underlying idea is to identify as most
influential those features associated to the highest (absolute)

values of the local gradient ∇f(x), being f the confidence

associated to the predicted class. However, in the case of

sparse data, as for Android malware, these approaches tend

to identify a high number of influential features which are not
present in the given application, thus making the correspond-

ing predictions difficult to interpret. For this reason, in this

work we consider a slightly different approach, inspired from

the notion of directional derivative. In particular, we project

the gradient ∇f(x) onto x to obtain a feature-relevance vector

ν = ∇f(x) · x ∈ R
d, where · denotes the element-wise

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 530

φ(z)
z x

f (x)

Fig. 1. A schematic representation of Drebin, adapted from [8]. First, applications are represented as binary vectors in a d-dimensional feature space. A linear
classifier is then trained on an available set of malware and benign applications, assigning a weight to each feature. During classification, unseen applications
are scored by the classifier by summing up the weights of the present features: if f(x) ≥ 0, they are classified as malware. Drebin also explain each decision
by reporting the most suspicious (or benign) features present in the app, along with the weight assigned to them by the linear classifier [1].

Fig. 2. Average ROC curves for the given classifiers on the Drebin data.

product. We then normalize ν to have a unary �1 norm, i.e.,

r = ν/‖ν‖1, to ensure that only non-null features in x are

identified as relevant for the decision. Finally, the absolute

values of r can be ranked in descending order to identify the

most influential local features.

Global explanations. In contrast to other locally-explainable

malware detectors [1], [2], we also provide a global analysis of

the interpretability of the considered machine-learning models,

aimed to identify the most influential features, on average,

which characterize benign and malware samples. Our idea

is simply to average the relevance vectors r over different

samples, e.g., separately for benign and malware data. Then, as

in the local case, the absolute values of the average relevance

vector r̄ can be ranked in descending order to identify the

most influential global features.

Non-differentiable models. Our approach works under the

assumption that f(x) is differentiable and that its gradient

∇f(x) is sufficiently smooth to provide meaningful informa-

tion at each point. When f(x) is not differentiable (e.g., for de-

cision trees and random forests), or its gradient vanishes (e.g.,

if f(x) becomes constant in large regions of the input space),

we compute approximate feature-relevance vectors by means

of surrogate models. The idea is to train a differentiable ap-

proximation f̂(x) of the target function f(x), similar to what

has been done in [3] for interpretability of non-differentiable

models, and in [4], [15] to craft gradient-based evasion attacks

against non-differentiable learning algorithms. For instance, to

reliably estimate a non-differentiable algorithm f(x) (e.g., a

random forest), one can train a nonlinear SVM on a training

set relabeled with the predictions provided by f(x) [15].

IV. EXPERIMENTAL ANALYSIS

In this section, we use our approach to provide local

and global explanations for linear and nonlinear (including

non-differentiable) classifiers trained on the features used by

Drebin. As we will see, this will also reveal some insights on

their security against adversarial manipulations [6], [8].

Datasets. We use here the Drebin data [1], consisting of

121, 329 benign applications and 5, 615 malicious samples,

labeled with VirusTotal. A sample is labeled as malicious if

it is detected by at least five anti-virus scanners, whereas it is

labeled as benign if no scanner flagged it as malware.

Training-test splits. We average our results on 5 runs. In each

run, we randomly select 60,000 apps from the Drebin data to

train the learning algorithms, and use the rest for testing.

Classifiers. We compare the standard Drebin implementation

based on a linear SVM (SVM) against an SVM with the

RBF kernel (SVM-RBF) and a (non-differentiable) Random

Forest (RF). As discussed in Sect. III, a surrogate model is

needed to interpret the RF; to this end, we train an SVM

with the RBF kernel on the training set relabeled by the RF

(yielding an approximation with accuracy higher than 99% on

average on the relabeled testing sets). The Receiver Operating

Characteristic (ROC) curve for each classifier, averaged over

the 5 repetitions, is reported in Fig. 2.

Parameter setting. We optimize the parameters of each

classifier through a 3-fold cross-validation procedure. In par-

ticular, we optimize C ∈ {10−2, 10−1, . . . , 102} for both

linear and non-linear SVMs, the kernel parameter γ ∈
{10−4, 10−3, . . . , 102} for the SVM-RBF, and the number of

estimators n ∈ {5, 10, . . . , 30} for the RF.

A. Local Explanations
Table II reports the top-10 influential features, sorted by

their (absolute) relevance values, for three distinct samples

classified by the linear SVM and the RF classifier, along

with their probability of being present in each class. Notably,

relevant features can also be rare. This means that a feature

is deemed relevant even if it characterizes well only a small

subset of samples in a given class (e.g., a malware family).

Case 1. The first example is a benign application misclassified

by the SVM with a score of −0.17, and correctly classified

by the RF (probability 0.77% and surrogate score of +0.10).

By observing the features through their relevance scores, it is

evident that the RF is able to correctly classify this sample as

benign as several features are assigned a negative relevance

score, while almost all of them are considered as malicious

(positive score) by the SVM. In both cases the use of SMS

messages for communication is retained suspicious; however,

for the RF this is not a sufficient evidence of maliciousness.

Case 2. The second example is a malware sample of the

SmsWatcher family, which is correctly classified by the

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 531

TABLE II
TOP-10 INFLUENTIAL FEATURES FOR SVM (TOP ROW) AND RF (BOTTOM ROW) ON (i) A BENIGN SAMPLE (FIRST COLUMN), (ii) A MALWARE SAMPLE

OF THE SMSWATCHER FAMILY (SECOND COLUMN), AND (iii) A MALWARE SAMPLE OF THE PLANKTON FAMILY (THIRD COLUMN). THE PROBABILITY OF

EACH FEATURE BEING PRESENT IN BENING (pB) AND MALWARE (pM) IS ALSO REPORTED.

Set Feature Name r (%) pB (%) pM (%)

S2 SEND SMS 26.89 3.19 53.89
S4 LAUNCHER -15.40 96.42 93.56
S6 SEND SMS 9.42 3.11 44.76
S2 GET ACCOUNTS 8.61 2.57 8.06
S8 code.google.com 6.38 1.10 1.73
S7 Ljava/io/IOException;->printStackTrace 6.09 49.82 66.85
S2 READ CONTACTS -4.61 7.25 23.75
S2 INTERNET 4.30 83.29 96.26
S8 ajax.googleapis.com -3.19 0.76 0.54
S4 android.intent.action.MAIN 2.91 97.52 95.88

Set Feature Name r (%) pB (%) pM (%)

S2 SEND SMS 10.94 3.19 53.89
S3 com.rjblackbox.swl.SMSActivity 9.72 0.00 0.04
S3 com.rjblackbox.swl.SMSForwarder 9.72 0.00 0.04
S3 com.rjblackbox.swl.SettingsActivity 9.72 0.00 0.04
S4 android.provider.Telephony.SMS RECEIVED 8.13 1.09 20.08
S4 LAUNCHER -6.26 96.42 93.56
S2 RECEIVE SMS -4.82 2.43 38.36
S6 SEND SMS 3.83 3.11 44.76
S7 Lorg/apache/http/client/methods/HttpPost 3.52 29.95 51.89
S7 android/telephony/SmsMessage;->createFromPdu -3.51 1.44 16.19

Set Feature Name r (%) pB (%) pM (%)

S7 TelephonyManager;->getNetworkOperator 3.00 6.01 46.57
S4 LAUNCHER -2.50 96.42 93.56
S7 TelephonyManager;->getNetworkOperatorName -2.46 5.08 28.99
S6 ACCESS NETWORK STATE -2.32 47.92 56.40
S7 android/net/Uri;->fromFile 2.13 16.81 43.10
S2 INSTALL SHORTCUT (launcher) 2.04 1.51 26.37
S2 READ HISTORY BOOKMARKS (browser) 1.73 0.52 17.89
S5 LocationManager;->isProviderEnabled -1.70 12.53 17.12
S7 com.apperhand.device.android.AndroidSDKProvider 1.70 0.00 10.95
S7 java/lang/reflect/Method;->getReturnType -1.52 5.97 12.22

Set Feature Name r (%) pB (%) pM (%)

S2 SEND SMS 25.82 3.19 53.89
S4 LAUNCHER -18.49 96.42 93.56
S2 READ CONTACTS -10.24 7.25 23.75
S7 Ljava/io/IOException;->printStackTrace 7.90 49.82 66.85
S5 android/telephony/SmsManager;->sendTextMessage 7.75 1.77 34.73
S7 android/telephony/SmsManager;->sendTextMessage 7.65 1.77 34.73
S6 INTERNET -4.43 77.74 85.43
S8 ajax.googleapis.com -2.88 0.76 0.54
S5 android/telephony/SmsManager;->getDefault 1.77 2.01 37.63
S7 android/telephony/SmsManager;->getDefault 1.66 2.01 37.63

Set Feature Name r (%) pB (%) pM (%)

S2 SEND SMS 14.04 3.19 53.89
S4 LAUNCHER -13.65 96.42 93.56
S4 SMS RECEIVED 8.39 1.09 20.08
S2 RECEIVE SMS -8.02 2.43 38.36
S7 android/net/Uri;->withAppendedPath -6.96 9.24 16.96
S5 LocationManager;->getLastKnownLocation -6.45 27.09 31.65
S7 Lorg/apache/http/client/methods/HttpPost 4.80 29.95 51.89
S7 android/net/Uri;->encode -4.64 9.52 8.17
S7 getPackageInfo -3.74 53.80 49.50
S2 READ CONTACTS -3.57 7.25 23.75

Set Feature Name r (%) pB (%) pM (%)

S4 LAUNCHER -2.75 96.42 93.56
S2 INSTALL SHORTCUT (launcher) 2.19 1.51 26.37
S2 ACCESS WIFI STATE 1.81 10.59 43.10
S7 TelephonyManager;->getNetworkOperator 1.74 6.01 46.57
S5 Contacts$People;->createPersonInMyContactsGroup -1.64 3.53 0.89
S6 READ CONTACTS -1.55 12.89 7.79
S4 BOOT COMPLETED 1.51 6.73 66.08
S2 WRITE SETTINGS -1.49 3.67 12.34
S5 LocationManager;->isProviderEnabled -1.48 12.53 17.12
S7 android/net/Uri;->encode -1.44 9.52 8.17

TABLE III
TOP 15 MALWARE FAMILIES IN THE TEST SET.

Family # Family # Family # Family # Family #

FakeInstaller 901 Opfake 591 Iconosys 149 Adrd 88 LinuxLotoor 69
DroidKungFu 640 GingerMaster 332 Kmin 144 Geinimi 88 MobileTx 68
Plankton 609 BaseBridge 318 FakeDoc 128 DroidDream 81 GoldDream 67

SVM (score +0.99), but not by the RF model (probability

0.3% and surrogate score of −1.43), for a reason similar to

the previous case: permissions (S2) and API calls (S7) related

to SMS usage are not a sufficient evidence of maliciousness

for the RF. Indeed, this classifier does not even identify as

suspicious the application components (S3) related to SMS

usage, which instead constitute a signature for this malware

family, as correctly learned by the linear SVM model.

Case 3. The last case is a malware sample of the Plankton
family, correctly classified by both models (SVM score +2.75;

RF probability 0.9% and surrogate score +1.32), as they

correctly identified the behavioral patterns of this family

associated to HTTP communication and actions.

B. Global Explanations

We performed a global analysis of the models learned by

each algorithm by averaging the local relevance vectors r over

different classes of samples: benign, malware, and the top-

15 malware families with the largest number of samples in

the Drebin data (Table III). This gives us a global (mean)

relevance vector r̄ for each class. Then, for each class of

samples, we report a compact and a fine-grained analysis of

the global feature-relevance values r̄. In the compact analysis,

we further average the global relevance r̄ over each feature set
S1, . . . , S8 (Table I). In the fine-grained analysis, we simply

report the global relevance score r̄ for the top 44 features

(selected by aggregating the top 5 features with the highest

average relevance score for each class of samples).

The results are shown in Fig. 3. The compact analysis high-

lights the importance of permissions (S2) and suspicious API

calls (S7 group) in identifying malware. This is reasonable,

as the majority of malware samples require permissions to

perform specific actions, like stealing contacts and opening

SMS and other side communication channels. The fine-grained

analysis provides a more detailed characterization of the afore-

mentioned behavior, highlighting how each classifier learns

a specific behavioral signature for each class of samples. In

particular, malware families are characterized by their com-

munication channels (e.g., SMS and HTTP), by the amount

of stolen information and accessed resources, and by specific

application components or URLs (S3 and S8).

Finally, note that all classifiers tend to assign high relevance

to a very small set of features in each decision, both at a local

and at a global scale. Given that manipulating the content

of Android malware can be relatively easy, especially due to

the possibility of injecting dead code, this behavior highlights

the potential vulnerability of such classifiers. In fact, if the

decisions of a classifier rely on few features, it is intuitive that

detection can be easily evaded by manipulating only few of

them, as also confirmed in previous work [6], [8]. Conversely,

if a model distributes relevance more evenly among features,

evasion may be more difficult (i.e., require manipulating a

higher number of features, which may not be always feasible).

More robust learning algorithms for these tasks have been

proposed based exactly on this rationale, which has also a

theoretically-sound interpretation [8].

Another interesting point regards the transferability of eva-

sion attacks across different models, i.e., the fact that an attack

crafted against a specific classifier may still be successful with

high probability against a different one. From our analysis,

it is clear that in this case this property depends more on

the available training data rather than on the specific learning

algorithm: the three considered classifiers learn very similar

patterns of feature relevances, as clearly highlighted in Fig. 3,

which simply means that they can be evaded with very similar

modifications to the input sample.

V. CONTRIBUTIONS, LIMITATIONS AND FUTURE WORK

In this paper, we provided a general approach to achieve

explainable malware detection on Android, applicable to any

black-box machine-learning model. Our explainable approach

can help analysts to understand possible vulnerabilities of

learning algorithms to well-crafted evasion attacks along with

their transferability properties, besides providing a local and

global understanding of how a machine-learning model makes

its decisions. We plan to analyze also different strategies

to provide global explanations. In fact, averaging can po-

tentially soften the contribution of features that are highly

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 532

Fig. 3. Mean relevance scores computed w.r.t. benign, malware and the top-15 malware families (Tab. III) for SVM (left), SVM-RBF (middle) and RF (right).
The compact representation (top) reports the mean relevances for the feature sets S1, . . . , S8 (Tab. I). The fine-grained representation (bottom) reports the
mean relevances for the top 44 features with the highest average value per family. Positive (negative) relevances denote malicious (benign) behavior.

relevant only for few samples. Another interesting issue is

how to choose the surrogate model to provide explanations

for non-differentiable models. Some theoretical results show

that, under certain assumptions, some learning algorithms can

provide similar decision functions; e.g., nonlinear SVMs may

reliably approximate random forests [19]. Nevertheless, it is

still required to investigate how different surrogate models

impact the explanations provided by our approach. These are

all relevant issues towards the development of interpretable

models, as required by the novel European General Data

Protection Regulation (GDPR) [11]. The right of explanation
stated by GDPR imposes to develop models that are transpar-

ent with respect to their decisions. We believe that this work

is a first step towards this direction.

ACKNOWLEDGMENTS

This work was partly supported by the EU H2020 project

ALOHA, under the European Union’s Horizon 2020 research

and innovation programme (grant no. 780788), and by the PIS-
DAS project, funded by the Sardinian Regional Administration

(CUP E27H14003150007).

REFERENCES

[1] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck. Drebin:
Efficient and explainable detection of android malware in your pocket.
In Proc. 21st NDSS. The Internet Society, 2014.

[2] M. Backes and M. Nauman. LUNA: quantifying and leveraging
uncertainty in android malware analysis through Bayesian machine
learning. In EuroS&P, pp. 204–217. IEEE, 2017.

[3] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen,
and K.-R. Müller. How to explain individual classification decisions. J.
Mach. Learn. Res., 11:1803–1831, 2010.

[4] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli. Evasion attacks against machine learning at
test time. In ECML, vol. 8190, LNCS, pp. 387–402. Springer, 2013.

[5] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. ArXiv, 2018.

[6] A. Calleja, A. Martin, H. D. Menendez, J. Tapiador, and D. Clark.
Picking on the family: Disrupting android malware triage by forcing
misclassification. Expert Systems with Applications, 95:113 – 126, 2018.

[7] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu. Stormdroid: A
streaminglized machine learning-based system for detecting Android
malware. In ASIA CCS, pp. 377–388, 2016. ACM.

[8] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli. Yes, machine learning can be
more secure! A case study on Android malware detection. IEEE Trans.
Dependable and Secure Computing, In press.

[9] F. Doshi-Velez and B. Kim. Towards A Rigorous Science of Inter-
pretable Machine Learning. ArXiv, 2017.

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. In ICLR, 2015.

[11] B. Goodman and S. Flaxman. European Union regulations on algorith-
mic decision-making and a “right to explanation”. ArXiv, 2016.

[12] P. W. Koh and P. Liang. Understanding black-box predictions via
influence functions. In ICML, 2017.

[13] Z. C. Lipton. The mythos of model interpretability. In ICML Workshop
on Human Interpretability in Machine Learning, pp. 96–100, 2016.

[14] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In KDD, pp. 1135–1144,
2016. ACM.

[15] P. Russu, A. Demontis, B. Biggio, G. Fumera, and F. Roli. Secure kernel
machines against evasion attacks. In AISec, pp. 59–69, 2016. ACM.

[16] R. Sommer and V. Paxson. Outside the closed world: On using machine
learning for network intrusion detection. In IEEE Symp. Security and
Privacy, pp. 305–316, 2010. IEEE CS.

[17] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. In ICLR, 2014.

[18] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. In ICLR, 2014.

[19] L. Breiman. Some infinity theory for predictor ensembles. Technical
Report 579, Statistics Dept. UCB, 2000.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 533

