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Abstract—A recent trend in research is to leverage on advanced
simulation frameworks for the implementation and validation of
video surveillance and ambient intelligence algorithms. However,
in order to guarantee a seamless transferability between the
virtual and real worlds, the simulator is required to represent the
real-world target scenario in the best way possible. This includes
on the one hand the appearance of the scene and the motion of
objects, and, on the other hand, it should be accurate with respect
to the sensing equipment that will be used in the acquisition
phase. This paper focuses on the latter problem related to camera
modeling and control, discussing how noise and distortions can be
handled, and implementing an engine for camera motion control
in terms of pan, tilt, and zoom, with particular attention to the
video surveillance scenario.

Index Terms—Camera model, PTZ, video surveillance

I. INTRODUCTION

Video surveillance has been a matter of study for the past
three decades, and researchers have investigated many differ-
ent facets of the subject, ranging from simple motion detection
and segmentation algorithm [1], [2], to object tracking [3],
person re-identification [4], and analysis of complex crowded
scenes [5]. Although most video surveillance networks rely
on the use of ordinary static cameras, there is an increasing
trend in updating the existing infrastructures with smart coop-
erative networks of cameras. In such a scenario cameras are
required to share relevant information over the network, in
order to improve the tracking of objects and provide the best
possible coverage [6]. To guarantee flexibility and dynamic
reconfiguration of the camera network, a viable option is to
adopt PTZ (Pan-Tilt and Zoom) cameras, which allow to track
and focus on specific objects of interest in the scene thanks
to the possibility of dynamically repositioning the sensor [7].

However, researchers in this domain keep facing two com-
mon problems: (i) the lack of labeled data, especially for
those rare events, i.e., anomalies, that should be detected
by the monitoring infrastructure, and (ii) the incapability
of reproducing the same type of event when dealing with
reconfigurable camera networks. One possible solution to
tackle such limitations is to deploy virtual environments and
simulation frameworks. Virtualization has been subject of
research in the camera networks community [8], [9] and crowd
analysis [5].

Most papers in the state of the art adopting simulation,
have focused on the deployment and assessment of different

network configurations to guarantee a good coverage of the
scene thus improving the chances of detecting critical events.
However, there is no sufficient literature that demonstrated
the transferability of the lessons learned from the simulated
environment into the real world. In fact, it is to be noted
that when a sequence is recorded using a virtual framework,
we must also capture the peculiarities of the specific sensor
used for the acquisition. Besides the actual modeling of the
simulated environment, also the camera modeling has to be
representative of the real equipment, being able to model mul-
tiple features, as for example the noise sources and distortions
of real cameras and lenses.

In the computer vision field, advanced graphical simulation
frameworks are being exploited to perform data augmentation
[10]. To our knowledge, the rendering and visual appearance of
the scenes has been studied and developed rather thoroughly,
while the peculiarities of the virtual recording system have
not been deeply investigated. Camera models implemented in
modern computer graphics engines aim at producing contents
which enhance user quality of experience [11], rather than
producing realistic (noisy) images.

To correctly model a camera network in a virtual environ-
ment we need to deal with the camera intrinsic and extrinsic
parameters. We also need to model different kinds of noise
sources and distortions, which are typical of real cameras.

Extending the model to include PTZ cameras, also requires
to model the camera motion, which significantly impacts the
types of algorithms that can be used for the analysis, in terms
of object detection and tracking, since common background
subtraction techniques would be impaired by the apparent
motion of the background.

In this paper we present a framework for modeling a
set parameters and distortions related to lenses and camera
sensors. We then focus on the specific case of a PTZ camera,
showing how to deal with the challenges posed by the camera
motion. Eventually, we present a use case scenario for the
developed camera model, deployed in a simulated camera
network.

II. CAMERA MODEL DESCRIPTION

As mentioned above, modeling an acquisition system re-
quires taking into account two main components, namely the
lens and the image sensor. In the real world, these elements are
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sources of noise and distortion, making the acquisition process
significantly different from the theoretical ideal model. In this
section we propose a virtual camera model able to deal with
the noise and distortions existing in real devices, and also
handling the needs in terms of camera motion and control.

A. Lenses
In optics, a lens is a refractive device, which either focuses

or disperses light beams. In order to capture an image, an
ideal lens focuses all the captured light on a single point and
is characterized by a certain numbers of parameters, as:

• focal length
• field of view (FOV)
• depth of field
• aperture
In our simulation framework we focus on modeling the

following distortions:
• chromatic aberration
• radial distortion
1) Focal length and Field of View: The focal length of a

lens is a measure of how the incoming light is either diverted
or converged. The bigger the focal length, the higher will be
the magnification of an object. The relation between the focal
length and the magnification of the object is ruled by the thin
lens equation:

1

f
=

1

u
+

1

v
(1)

where f is the focal length, u is the distance between the lens
and the object and v is the distance between the focal length
and the image plane.

The angular field of view (AFOV) is defined as the maxi-
mum angular size of an object of interest that can be captured
by the camera. The object under inspection is supposed to be
at an infinite distance from the lens:

AFOV (◦) = 2 ∗ tan−1(
h

2f
) (2)

where h is the horizontal sensor size and f is the focal length
in millimeters. Common simulation tools natively offer the
FOV as a parameter to be set.

The described model is embedded in our simulation frame-
work to re-project the acquired environment onto the image
plane.

2) Aperture: the aperture of a camera regulates the amount
of light reaching the image sensor. The aperture size is usually
regulated by a device called diaphragm, which increases or
decreases the aperture size at a factor of two aperture area per
stop. The f -number (N ) of a camera lens corresponds to the
ratio between the focal length f and the diameter D of the
aperture:

N =
f

D
(3)

When modeling the aperture in synthetic images, we need
to take into account that a smaller value of N causes a wider
aperture size (we are allowing more lights to reach the sensor).
An higher value of f causes the camera aperture to become
narrower, thus allowing less light to reach the sensor.

3) Depth of Field: The depth of field is defined as the
distance between the nearest and the further object, located
in the zone of acceptable sharpness in a photo. The depth of
field is determined by three main factors: focal length, distance
of the object from the camera, and aperture.

The f -number controls how wide the depth of field will be
around the subject that the camera is capturing. The lower the
value, the shallower the total depth of field being captured;
the higher the value, the wider the total depth of field.

To model the depth of field, we use the full derivation of
formulas presented in [12].

4) Chromatic aberration: Chromatic aberration is the effect
caused by the inability of the lens to focus all the different
colors in the same point, as shown in Fig. 1.

Fig. 1. Chromatic aberration depends on the lens inability to focus the entire
color range in the same spot.

In order to simulate the chromatic aberration effect, we then
need to slightly separate the color spectrum at the edges and
corners of the image.

5) Lens radial distortion: Common lens distortions present
or can be approximated as having symmetries along the radial
axis. They are usually classified in three different classes:
barrel distortion, pincushion distortion, and a combination of
the previous two, the so-called mustache distortion.

Barrel distortion, as shown in Fig. 2.a, is characterized
by the decrease of the object magnification as the distance
from the optical axis increases. This distortion is sometimes
intentionally used to obtain the so called fish-eye effect.

Pincushion distortion, as shown in Fig. 2.b, is characterized
by the increase of the object magnification as the distance from
the optical axis decreases.

Mustache distortion, as shown in Fig. 2.c, presents a mixture
of the two previous distortions. A barrel-like distortion is
present toward the center of the image and it becomes a
pincushion-like distortion as the distance from the radial axis
increases.

The mathematical formulation to correct those distortions is
the Brown-Conrady model [13], [14], which has been used in
our implementation to test and correct the simulation model
we have implemented.

B. Camera sensor

The sensor is the element in a camera, which transforms
the incoming light rays into an electrical signal. The signal
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(a) Barrel distor-
tion

(b) Pincushion dis-
tortion

(c) Mustache dis-
tortion

Fig. 2. Common radial distortions patterns in real lenses.

is represented in our case by an image. Since we are trying
to reproduce a digital image, we have to understand how to
reproduce the characteristics and distortions of a digital sensor.
In a camera, the lens and the sensor influence parameters such
as the field of view. If the sensor is too small to capture
all the light convoyed by the lens, the effective field of
view is determined by the sensor. If the captured light does
not fill the whole senor area, the effective field of view is
determined by the lens. The image sensor format of a digital
camera determines the angle of view of a particular lens when
used with a particular sensor. The fundamental elements that
characterize a sensor are:

• sensor size (format)
• resolution
• dynamic range
• camera sensor noise
1) Sensor size: The sensor size (or sensor format) indicates

the shape and the size of the sensor capturing the light. It
determines how much light will be used to produce the final
image. It determines the final size and format of image that
can be captured with a camera device. The size of sensor
ultimately determines how much light it uses to create an
image. Increasing the sensor size causes the depth of field
to decrease, aperture being fixed.

2) Resolution: Resolution of a camera is the ability to
distinguish details in the image. It is usually limited by the
lens diffraction and by the sensor resolution.

Optical resolution describes the ability of an imaging system
to resolve detail in the object that is being imaged. Resolution
is usually measured in pixels.

In the simulation framework we are able to manually set
the resolution and resize the image as needed.

3) Dynamic Range: The dynamic range is defined as

DR = log
Nmax

Nf
(4)

where Nmax represents the maximum signal level that the
sensor can output, and Nf represents the noise floor at
minimum amplification. The noise floor is calculated as the
root mean square of the noise level in a black image. The
dynamic range measures the capability of a sensor to capture
the brightest and darkest spot in an image and the number of
levels in between.

Modeling the dynamic range of a sensor in a simulated
environment is achieved starting from the color distribution

of an object in a scene and applying some contrast stretch
techniques, as also commonly used in photography. Contrast
stretching is a technique, which aims at improving/modifying
the quality of an image by stretching or compressing the
intensity value of the different colors, such that it fits the
desired interval of values. In our methodology we are able to
set the lower and the upper limit of the stretched histogram,
in order to fit the color values of our virtual camera to the one
of a real device. Contrast stretch adaptation speed also allows
to reproduce common camera effects in videos when there is
a sudden change in lighting.

4) Camera sensor noise: Ideally, the camera sensor should
produce exactly one electron for each photon striking one of
his pixels. In practice, the process, which allows the camera
sensor to convert light into a proper image is affected by noise.
In captured images, noise can be seen as a granular color
variation on surfaces, which look uniform at a distance.

In [15], noise is segmented into spatio-temporal categories
to be measured. The final noisy image Ncap is defined as

Ncap = (I ∗ PRNU + SNph(I) + FPN+

+SNdark +Nread) ∗ND ∗Nfilt +NQ

(5)

where I is the sensor irradiance, PRNU is the photo response
non-uniformity, SNph is the photon shot noise, FPN is the
offset fixed-pattern noise, SNdark is the dark-current shot
noise, Nread is the readout noise, ND is the demosaicing
noise, Nfilt is the post image capture effect, and NQ is the
quantization noise.

The distribution of all sources at a given CCD-sampling
frequency is measured as an additive Gaussian distribution.

For the simulation, we are interested in reproducing the
noise intensity and overall distribution rather then exactly
calibrating the model to reproduce a specific camera brand or
type. This is achieved by adding a white Gaussian noise, which
can be modified in terms of mean value and standard deviation
to fit the requirements at hand. It allows the simulation of
typical scenarios, such as the noise in low light conditions
and bloom borders.

III. PAN-TILT-ZOOM CAMERA

In visual surveillance, the use of PTZ (Pan-Tilt and Zoom)
camera has been thoroughly investigated [8], [9], [1]. PTZ
cameras provide an effective way to increase the coverage
of a certain area thanks to their ability to move, either
by progressively scanning the environment or zooming in
to specific locations in presence of events of interest. In a
cooperative camera network, PTZ cameras have to be able to
dynamically detect and track the objects of interest [1], [7],
[2], guaranteeing a smooth handover across cameras.

Therefore, when modeling such cameras, we must deal with
the motion parametrization of each camera in the network, thus
acting on both the intrinsic and extrinsic camera parameters.

1) PTZ motion model: In this section we describe the
model used to replicate the movement of a PTZ camera in a
virtual environment. Different types of cameras are available
on the market, like mechanical PTZ and virtual PTZ. The term
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virtual implies that no physical sensor movement occurs; the
captured images, instead, are obtained by cropping from the
full resolution picture obtained by a high resolution image.
Generally, to model the motion of a PTZ camera we need to
replicate its three extrinsic parameters (pan, tilt and zoom),
assuming that the camera is anchored to a fixed location.

Also pan and tilt are subject to constraints, and the step
size for the variation must be defined to control the velocity
response of the camera at each time step. Dynamically chang-
ing the Field of View of the virtual PTZ allows for zoom
modeling, along with providing maximum and minimum range
for the FOV to vary.

2) PTZ tracking algorithms: The development of a real-
time object tracking algorithm to be applied on a PTZ camera,
must tackle a variety of problems, such as camera movement,
complex object motion, presence of other moving objects in
the video scene, and real-time processing requirements.

Algorithms satisfying these constraints can be divided into
two main classes: the ones relying on background segmenta-
tion [1], [7], and the ones that allow to track only specific
objects classes [2].

Algorithms exploiting the background segmentation have
to cope with the constant camera movement, requiring re-
initialization every time a camera displacement is triggered.

Other algorithms can track even in presence of camera mo-
tion, relying on common vision [16], and machine learning [3]
tools. However, the main drawback is the difficulty in dealing
with the real-time constraints and the related computational
costs, which is addressed in literature by either tracking only a
category of objects [3] or by developing customized hardware
[2].

In our test application we exploit a simple background
segmentation application to detect the object, which is then
tracked using a state of the art appearance-based tracking,
namely the cam-shift algorithm [17], as shown in Fig. 3.

(a) (b)

Fig. 3. On the original image we perform the background subtraction (a)
and blob detection (b). The histogram computed on the blob is then provided
as input to the cam-shift algorithm, which is able to track the target even in
presence of camera motion.

IV. RESULTS

To validate the simulation of the focal length, we use
the Camera Calibration Toolbox [18]. From the conducted
experiments we noticed that the simulated focal length differs
from the ground truth in millimeters of an average error of
4%.

We provide samples of computer generated images which
have been recorded using our camera model. In Fig. 4 we show
an example of the variation of the focal length on a sample
virtual image, without moving the camera. As can be seen, the
field of view angle decreases as the focal length increases.

In Fig. 5, we show a noise pattern which increases as
a multiplication factor. It is also possible to vary the noise
pattern depending on the channel of interest. As can be seen,
the noise pattern looks comparable with the noise generated
by camera sensors in presence of low illumination, introducing
artifacts and color aberrations.

In Fig. 6, we show different examples of distortions. To
validate the distortions applied, we applied rectification to
restore the undistorted images according to [19].

In Fig. 7, we show the effect of different values of contrast
stretching in the images.

Similarly to all the other elements that characterize a cam-
era, the developed mode also takes into account the depth of
field, which is a crucial parameter that can alter the perception
of objects in a visual scene, in terms of sharpness and level
of detail. A sample view to show the capabilities of handling
the depth of field is shown in Fig. 8.

(a) FL: 25 mm, FOV: 48.1◦ (b) FL: 40 mm, FOV: 31.2◦

Fig. 4. Example of images taken by a fixed camera (virtual) with an increasing
focal length. FL corresponds to the focal length and FOV is the field of view
angle.

(a) (b)

Fig. 5. Detail of a noiseless (a) and noisy (b) image affected by the camera
sensor noise.

V. USE CASE: CAMERA NETWORK

In camera network research, virtual vision for testing and
deploying network has long been a subject of research [8], [9].
Recent improvements in computer graphics have expanded the
possibilities of using game engines to tackle computer vision
tasks [10]. Deploying a network of cameras in a virtual envi-
ronment would provide researchers with a valid testbed for val-
idation and benchmarking purposes. Tracking algorithms can
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(a) Barrel distortion (b) Pincushion distortion (c) Mustache distortion

Fig. 6. Example of radial distortions applied in the simulation framework.

(a) (b) (c)

Fig. 7. Modifying the minimum and maximum value of color stretch it is
possible to change the appearance of the scene.

(a) f/22 (b) f/1.4

Fig. 8. Examples of synthetic depth of field effect. The images are captured
using a fixed camera and varying the aperture. The f -number is reported for
each image. The setting consists of a fixed camera with 3 checkerboards at a
distance of 1, 1.5, and 2 meters from the camera.

benefit of the ground truth knowledge, which does not need
to be manually annotated, and different tracking algorithms
can be tested on the very same scene. Also re-identification
and tracking of subjects across cameras is another area in
which the data recorded in the simulated environment can be
effectively exploited. Besides effectively tracking an object,
a network should be able to optimize the coverage of the
environment. Optimization of the camera deployment is the
first step to guarantee the best camera displacement [6]. In
case of PTZ cameras, at running time cameras must be able
to correctly perform hand-offs. While a camera is focused
on tracking a target, the other cameras should be able to
reconfigure, so as to guarantee the maximum coverage of the
space of interest. This paper represents the starting point for
the development of such validation frameworks, tackling the
problem of camera modeling in terms of distortions, noise,
and PTZ control, through the parametrization of such artifacts
within the simulation environment.

VI. CONCLUSIONS

In this paper we presented a framework for modeling camera
modeling in a simulation framework, highlighting the need

of properly handling the issues of noise and distortions. We
showed how smart camera networks and PTZ cameras re-
search would benefit from the application of the virtual vision
paradigm, relying on sophisticated 3D engines to replicated
real challenges in the synthetic domain. Future work will focus
on the development of a full framework to allow the testing
and evaluation of smart camera networks algorithm, allowing
researchers to test their own solutions, for tracking, layout
optimization and cooperation among cameras.
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