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Özlem Tuğfe Demir and T. Engin Tuncer

Electrical and Electronics Engineering Department, METU, Ankara, Turkey
{deozlem , etuncer}@metu.edu.tr

Abstract—In this paper, we consider beamformer design for
multi-group multicasting where a common message is transmitted
to the users in each group. We propose a novel effective
alternating direction method of multipliers (ADMM) formulation
in order to reduce the computational complexity of the existing
state-of-the-art algorithm for multi-group multicast beamforming
with per-antenna power constraints. The proposed approach
is advantageous for the scenarios where the dimension of the
channel matrix is less than the number of antennas at the base
station. This case is always valid when the number of users is less
than that of antennas, which is a practical situation in massive-
MIMO systems. Simulation results show that the proposed
method performs the same with significantly less computational
time compared to the benchmark algorithm.

Index Terms—Multi-group multicast beamforming, ADMM,
large arrays.

I. INTRODUCTION

Over the last decade, physical layer multicasting using
beamforming has become an important research area [1]-[5].
Multi-group multicast beamforming where distinct common
information signals are sent to multiple multicast groups is
first considered in [1] and later it is applied in different
scenarios [2]-[5]. Since the beamforming optimization is a
non-convex quadratically constrained quadratic programming
(QCQP) problem, the global optimum solution may not be
easily found. Recently, in [6], a general algorithmic framework
based on alternating direction method of multipliers (ADMM)
is proposed for QCQP problems. ADMM is known as a
powerful first-order method [7] and considered in other several
works [4], [8], [9]. Although the algorithm in [6] has superior
performance, it requires large number of auxiliary variables.
In [4], the authors proposed a special ADMM reformulation
for multi-group multicast beamforming problem with per-
antenna power constraints. This effective approach is shown
to maintain the same performance as existing benchmarks
with a reduced complexity. Hence, it is the current state-of-
the-art solution to the addressed problem and selected as the
benchmark algorithm.

In this paper, we propose a novel ADMM algorithm which
has a lower computational time compared to the one in [4]. Our
method is advantageous when the dimension of the subspace
spanned by the channel vectors of the users is less than the
number of antennas. In fact, this condition corresponds to
a very practical scenario in 5G where massive number of

antennas are used [10]. Besides, other case may result an
infeasible optimization problem due to severe interference.

The proposed method is based on a new reformulation of
the problem such that ADMM iterations are carried through
lower dimensional vectors. For this, the original beamformer
vectors are decomposed into the subspace of the channels
and its nullspace. The nullspace is only used in per-antenna
power updates. The steps of the new algorithm admit optimum
closed-form solutions. Furthermore, some rearrangements are
made in the steps and variables to further reduce its com-
putational complexity. Secondly, we tackle the original non-
convex problem directly instead of using both inner and outer
iterations as in [4]. ADMM is a powerful method and can
be applied safely for non-convex problems [6], [8], [9]. It also
can be shown that the ADMM algorithm converges KKT point
of the non-convex problem under certain conditions [6], [9].
Applying ADMM directly results a simplified algorithm with
reduced computational complexity. Simulation results show
that the same performance can be obtained by the proposed
algorithm with a significantly less computational time.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multicasting system comprising a base station
(BS) equipped with N transmit antennas and M multicast
groups of single-antenna users. The BS transmits a common
multicast message to the users in each group. Let Gm denote
the mth multicast group of users for all m ∈M = {1, ...,M}
and assume that there are K users in total. Each user is in
only one multicast group, i.e., Gm

⋂
Gm′ = ∅ for m 6= m′,

∀m,m′ ∈ M. Narrowband block-fading channel is consid-
ered. The signal transmitted from the antenna array of BS
is x =

∑M
m=1

wmsm where sm is the information signal
for the users in Gm and wm is the corresponding N × 1
complex beamformer weight vector for the mth multicast
group. It is assumed that the information signals {sm}Mm=1

are mutually uncorrelated each with zero mean and unit
variance, σ2

sm = 1. In this case, the total transmitted power is
Ptot =

∑M
m=1

wH
mwm. The received signal at the kth user is

given as,
yk = hHk x + nk, ∀k ∈ K (1)

where hk is the N × 1 complex channel vector between BS
and the kth user. K = {1, ...,K} is the index set of all
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the users. nk is the additive zero mean Gaussian noise at
the kth user’s antenna with variance σ2

k. nk is assumed to
be uncorrelated with the information signals. The received
signal-to-interference-plus-noise ratio (SINR) of the kth user
is expressed as,

SINRk =
|hHk wmk

|2∑
m′ 6=mk

|hHk wm′ |2 + σ2
k

, ∀k ∈ K (2)

where mk denotes the index of multicast group to which the
kth user belongs. In this paper, we consider quality-of-service
(QoS)-aware beamformer design where the aim is to minimize
the total transmitted power subject to receive-SINR and per-
antenna power constraints. The QoS-aware design problem can
be formulated as follows,

min
{wm}Mm=1

M∑
m=1

wH
mwm (3a)

s.t.
|hHk wmk

|2∑
m′ 6=mk

|hHk wm′ |2 + σ2
k

≥ γk, ∀k ∈ K (3b)

M∑
m=1

|wm,n|2 ≤ Pn, ∀n ∈ N (3c)

where γk is the minimum required SINR for the kth user
and Pn is the maximum allowable power at the nth transmit
antenna of BS. wm,n is the nth element of the vector wm

and N = {1, ..., N} is the index set for all the transmit
antennas. The problem in (3) is not convex and hence should
be handled appropriately for an effective and fast solution.
Recently, an efficient ADMM-based algorithm is proposed for
general QCQP problems by using consensus optimization and
decomposing the original problem into QCQP subproblems
with only one constraint [6]. Later in [4], an improved
technique is proposed for multi-group multicasting problem
in (3). As stated in [4], one of the main disadvantages of
consensus-ADMM algorithm in [6] is that it requires a local
copy of the optimization variables and a corresponding dual
vector variable for each constraint. In [4], a new ADMM
framework which requires less auxiliary variables is proposed
by introducing {{Γk,m = hHk wm}Kk=1}Mm=1 and expressing
the SINR constraints in (3b) in terms of them. This new
ADMM is applied for a sequence of convex subproblems
obtained by convex-concave procedure (CCP). The method
in [4] performs significantly better compared to [6] with
less computational complexity. In this paper, we reduce the
computational complexity more by an effective reformulation
of the problem. Our new algorithm directly deals with the
original problem instead of solving a sequence of subproblems
which requires both inner and outer loop iterations as in [4]. It
is shown that the efficiency is improved significantly in terms
of computational saving.

III. IMPROVED ADMM-BASED ALGORITHM FOR (3)

Note that all the ADMM updates are carried through N ×1
vectors for the algorithm in [6]. Similarly, N × 1 vectors are
used for the update of the main variables and per-antenna
power constraints in [4]. When the number of antennas, N ,

is very large, these updates become extremely costly due to
matrix inversions and multiplications. In this paper, we reduce
the complexity of the ADMM iterations by decomposing
beamformer vectors into the subspace spanned by the channel
vectors and its nullspace. For this method to be efficient, it
is required that the dimension of the subspace of the channel
vectors to be less than N . Let H denote the N × K matrix
which is formed by stacking all the channel vectors hk,
∀k ∈ K, as its columns, i.e., H = [h1 h2 ... hK ]. If L
denotes the dimension of the column space of H, there are
two possible cases for L < N . In case the number of antennas,
N , is greater than the number of users, K, L is always less
than N . This is a very practical scenario in modern wireless
communications which involves massive antenna systems. For
the second case, i.e., N < K, L may not be less than N .
However, it is possible for the scenarios where some users are
clustered in close groups. In such a case, the corresponding
channel vectors are highly correlated and the rank of H gets
smaller. Now, let us consider the singular value decomposition
of H as follows,

H =
[
UA UB

] [ΣA 0
0 ΣB

] [
VH
A

VH
B

]
(4)

where ΣA and ΣB are the diagonal matrices whose elements
are the positive and zero singular values of H, respectively.
Let us express {wm}Mm=1 as wm = UAvA,m + vB,m where
vA,m ∈ CL and vB,m ∈ CN for m ∈ M are the newly
introduced auxiliary variables. vB,m is in the nullspace of UA,
i.e., UH

AvB,m = 0. The optimization problem in (3) can be
reformulated as follows,

min
{wm,vA,m,vB,m}Mm=1

M∑
m=1

wH
mwm (5a)

s.t.
|(ΣAVH

A )
H

k vA,mk
|2∑

m′ 6=mk
|(ΣAVH

A )
H

k vA,m′ |2 + σ2
k

≥ γk, ∀k ∈ K

(5b)
wm = UAvA,m + vB,m, ∀m ∈M (5c)

UH
AvB,m = 0, ∀m ∈M (5d)

M∑
m=1

|wm,n|2 ≤ Pn, ∀n ∈ N (5e)

where (ΣAVH
A )k denotes the kth column of ΣAVH

A . In
order to make the problem in (5) appropriate for ADMM
algorithm, we will define additional auxiliary variables Γk,m ,
(ΣAVH

A )
H

k vA,m, ∀k ∈ K,∀m ∈M using the same approach
in [4]. In addition, we introduce ṽA,m , UAvA,m and
ṽB,m , vB,m. The significance of these definitions will be
explained later. Using the new variables, the problem in (5)
can be expressed as follows,

min{
vA,m,ṽA,m,vB,m,ṽB,m,

{Γk,m}Kk=1

}M

m=1

M∑
m=1

(ṽHA,mṽA,m + ṽHB,mṽB,m)

(6a)

s.t. Γk,m = (ΣAVH
A )

H

k vA,m, ∀k ∈ K,∀m ∈M (6b)
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|Γk,mk
|2∑

m′ 6=mk
|Γk,m′ |2 + σ2

k

≥ γk, ∀k ∈ K (6c)

ṽA,m = UAvA,m, ∀m ∈M (6d)
ṽB,m = vB,m, ∀m ∈M (6e)

UH
A ṽB,m = 0, ∀m ∈M (6f)

UH
B ṽA,m = 0, ∀m ∈M (6g)

M∑
m=1

|ṽA,m,n + ṽB,m,n|2 ≤ Pn, ∀n ∈ N . (6h)

Note that the constraint in (6g) is redundant. However, the
inclusion of it will simplify the updates in ADMM algorithm.
Similar to [4], the variables in (6) can be split into two blocks,
{vA,m,vB,m}Mm=1 and {{Γk,m}Kk=1, ṽA,m, ṽB,m}Mm=1 such
that the updates of ADMM algorithm are separable. Now, the
steps of ADMM algorithm for the problem (6) in scaled-form
[7] can be given as follows,

{Γk,m}Mm=1 ← arg min
{Γk,m}Mm=1

M∑
m=1

|Γk,m−

(ΣAVH
A )

H

k vA,m + λk,m|2

s.t. |Γk,mk
|2 ≥ γk

∑
m′ 6=mk

|Γk,m′ |2 + γkσ
2
k

∀k ∈ K (7a)

{ṽA,m, ṽB,m}Mm=1 ← arg min
{ṽA,m,ṽB,m}Mm=1

M∑
m=1

(
ṽHA,mṽA,m

+ ṽHB,mṽB,m + ρ||ṽA,m −UAvA,m + zA,m||2

+ ρ||ṽB,m − vB,m + zB,m||2
)

s.t.
M∑
m=1

|ṽA,m,n + ṽB,m,n|2 ≤ Pn, ∀n ∈ N

UH
A ṽB,m = 0, UH

B ṽA,m = 0, ∀m ∈M (7b)

vA,m ← arg min
vA,m

K∑
k=1

|Γk,m − (ΣAVH
A )

H

k vA,m + λk,m|2

+ ||ṽA,m −UAvA,m + zA,m||2, ∀m ∈M (7c)

vB,m ← arg min
vB,m

||ṽB,m − vB,m + zB,m||2, ∀m ∈M (7d)

λk,m ← λk,m + Γk,m − (ΣAVH
A )

H

k vA,m,

∀k ∈ K, ∀m ∈M (7e)
zA,m ← zA,m + ṽA,m −UAvA,m, ∀m ∈M (7f)
zB,m ← zB,m + ṽB,m − vB,m, ∀m ∈M (7g)

where {{λk,m}Kk=1}Mm=1, {zA,m}Mm=1 and {zB,m}Mm=1 are the
scaled dual variables corresponding to the equality constraints
in (6b), (6d), and (6e), respectively. ρ > 0 is the penalty
parameter used in augmented Lagrangian [6], [7]. In the
following, we will present the closed form expressions for
the updates in (7a-d), respectively.

In [4], the solution of the optimization problem (7a) is found
as follows,

Γk,mk
←

{
ζk,mk

if φk(0) ≥ 0
ζk,mk

1−µ?
k

if φk(0) < 0
(8a)

Γk,m′ ←

{
ζk,m′ if φk(0) ≥ 0
ζk,m′

1+γkµ?
k

if φk(0) < 0
, ∀m′ 6= mk, (8b)

∀k ∈ K

where ζk,m , (ΣAVH
A )

H

k vA,m − λk,m is defined for ease of

notation. In (8a-b), φk(µ) =
|ζk,mk

|2

(1−µ)2 −γk
∑
m′ 6=mk

|ζk,m′ |2

(1+γkµ)2−
γkσ

2
k and µ?k is the unique solution of φk(µ) = 0 in 0 < µ < 1

in case φk(0) < 0. Note that µ?k can easily be found by solving
a quartic equation.

Now, let us consider the optimization problem in (7b). In
order to simplify (7b), let us assume that zA,m and zB,m are
initialized such that they lie in the column space of UA and
UB , respectively without loss of generality. Following (7f-g),
they continue to remain in the same subspaces if they are
initialized in this way. Assume also that initial value of vB,m
is selected from the column space of UB in accordance with
the constraints (6e-f). In this case, (7b) can be expressed as
follows,

min
{ṽA,m,ṽB,m}Mm=1

M∑
m=1

(ṽA,m + ṽB,m)H(ṽA,m + ṽB,m)

+ρ||ṽA,m + ṽB,m − (UAvA,m − zA,m + vB,m − zB,m)||2
(9a)

s.t.
M∑
m=1

|ṽA,m,n + ṽB,m,n|2 ≤ Pn, ∀n ∈ N (9b)

UH
A ṽB,m = 0, UH

B ṽA,m = 0, ∀m ∈M (9c)

Now, let us define w̃m , ṽA,m + ṽB,m. If we further define
z̃m , UAvA,m−zA,m+vB,m−zB,m for ease of notation, the
objective function in (9a) can be expressed as (1 + ρ)||w̃m −
ρ

1+ρ z̃m||2 + ρ
1+ρ ||z̃m||

2. The second term is constant and can
be removed. Note that ṽA,m and ṽB,m lie in the column space
of UA and UB , respectively. Hence, they can be expressed
in terms of new variables as ṽA,m = UAυA,m and ṽB,m =
UBυB,m. Using these variables, (9) can be reformulated as
follows,

min
{w̃m,υA,m,υB,m}Mm=1

M∑
m=1

∣∣∣∣w̃m −
ρ

1 + ρ
z̃m
∣∣∣∣2 (10a)

s.t.

M∑
m=1

|w̃m,n|2 ≤ Pn, ∀n ∈ N (10b)

υA,m = UH
A w̃m, υB,m = UH

B w̃m, ∀m ∈M (10c)

In the formulation (10), it is clearly seen that (10c) does
not have any affect on both the objective function and the
other constraints in (10b). Hence, the optimum solution is
found by solving (10a-b). (10c) is used to obtain the optimum
{ṽA,m, ṽB,m}Mm=1.
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Note that the problem (10a-b) can be decomposed into N
subproblems. If we define ŵn , [ w̃1,n w̃2,n ... w̃M,n ]T and
ẑn , ρ

1+ρ [ z̃1,n z̃2,n ... z̃M,n ]T , ∀n ∈ N , the nth subproblem
is given as follows,

min
ŵn

∣∣∣∣ŵn − ẑn
∣∣∣∣2 (11a)

s.t. ||ŵn||2 ≤ Pn. (11b)

Following [4], the optimum solution of (11) is given by ŵn =

min
{ √

Pn

||ẑn||2 , 1
}

ẑn. Using this and (10c), the optimum update
in (7b) is given as,

ŵn ← min

{ √
Pn

||ẑn||2
, 1

}
ẑn, ∀n ∈ N (12a)

w̃m ← [ ŵ1
m ŵ2

m ... ŵNm ]T , ∀m ∈M (12b)

ṽA,m ← UAUH
A w̃m, ∀m ∈M (12c)

ṽB,m ← UBUH
B w̃m, ∀m ∈M (12d)

Note that defining auxiliary variables ṽA,m in (6d) and ṽB,m
in (6e), ∀m ∈ M resulted the Euclidean projection problem
in (11) whose closed-form optimum solution exists.

The update in (7c) can easily be expressed as follows,

vA,m ←
(
IL + Σ2

A

)−1(
UH
A (ṽA,m + zA,m)

+

K∑
k=1

(ΣAVH
A )k(Γk,m + λk,m)

)
, ∀m ∈M (13)

Note that matrix inverse in (13) is computationally efficient
since the matrix inside the inverse operation is diagonal unlike
its counterpart in [4]. Similarly, the update in (7d) is given as
follows,

vB,m ← ṽB,m + zB,m, ∀m ∈M (14)

At this point, all the steps of ADMM algorithm are expressed
in closed-form. In the following part, we will arrange the
algorithm variables in order to reduce its computational com-
plexity.

First, let us consider the dual variable update in (7f). Here,
zA,m is a N×1 complex vector. In fact, it is possible to carry
out the update through a low dimensional dual vector. Let us
define um , UH

A zA,m ∀m ∈ M. Remember that zA,m lies
in the column space of UA if it is initialized properly. Hence,
we can write zA,m = UAum, ∀m ∈M. Using this and (12c),
the update in (7f) becomes

um ← um + UH
A w̃m − vA,m, ∀m ∈M (15)

Using the newly introduced dual variable, the update in (13)
can be expressed as follows,

vA,m ←
(
IL + Σ2

A

)−1(
UH
A w̃m + um

+
K∑
k=1

(ΣAVH
A )k(Γk,m + λk,m)

)
, ∀m ∈M (16)

Now, we can easily see that there is no need to compute ṽA,m.

Furthermore, as we show in the following part, there is also no
need for the dual variable zB,m in the iterations. Suppose z0

B,m

is the initial value of the dual variable zB,m. Then, we obtain
v1
B,m = ṽ1

B,m+ z0
B,m in the first iteration by (14). After that,

zB,m is updated by (7g) as z1
B,m = z0

B,m + ṽ1
B,m − v1

B,m =
z0
B,m+ṽ1

B,m−(ṽ1
B,m+z0

B,m) = 0. In the first iteration, zB,m
becomes 0 and it continues in this way. Hence, we can omit
this dual variable in the algorithm. Now, the simplified steps of
the ADMM algorithm are given below. Note that neither vB,m
nor ṽB,m are kept in memory. Instead, w̃j

m −UAUH
A w̃j

m is
used in place of vjB,m in (17c). The number of dual complex
variables in the counterpart algorithm in [4] is M(N + K)
whereas it is M(L+K) in the proposed one as can be seen in
(17f-g). Furthermore, in case N ≥ K, the number of complex
multiplications is approximately M(2NK+ min(N2, 2NK))
per ADMM iteration in [4]. Here, it is M(2NL+ 2KL+L)
which is usually smaller due to L ≤ min(N,K). When
the number of antennas is relatively large compared to that
of users, L � N , and the proposed algorithm becomes
significantly efficient in computational complexity.

Algorithm 1: ADMM for the Problem (6)

Initialization: Initialize w̃0
m ∼ CN (0, IN ), v0

A,m = UH
A w̃0

m,
λ0
k,m ← 0, ∀k ∈ K, u0

m ← 0, ∀m ∈ M. Set the iteration
number j ← 0 and the penalty parameter ρ.
Repeat

Γj+1
k,mk

←

ζ
j
k,mk

if φjk(0) ≥ 0
ζjk,mk

1−µ?
k

if φjk(0) < 0
(17a)

Γj+1
k,m′ ←

ζ
j
k,m′ if φjk(0) ≥ 0
ζj
k,m′

1+γkµ?
k

if φjk(0) < 0
, ∀m′ 6= mk, (17b)

∀k ∈ K
z̃j+1
m ← UA(vjA,m − ujm) + w̃j

m −UAUH
A w̃j

m (17c)

(ŵn)j+1 ← min

{ √
Pn

||(ẑn)j+1||2
, 1

}
(ẑn)j+1, ∀n ∈ N (17d)

vj+1
A,m ←

(
IL + Σ2

A

)−1(
UH
A w̃j+1

m + ujm

+
K∑
k=1

(ΣAVH
A )k(Γj+1

k,m + λjk,m)
)
, ∀m ∈M (17e)

λj+1
k,m ← λjk,m + Γj+1

k,m − (ΣAVH
A )

H

k vj+1
A,m,

∀k ∈ K, ∀m ∈M (17f)

uj+1
m ← ujm + UH

A w̃j+1
m − vj+1

A,m, ∀m ∈M (17g)

Set j ← j + 1.
Until convergence criterion is met.

IV. SIMULATION RESULTS

The number of antennas is set as N = 100 and power limit
for each antenna is Pn = −10 dBW throughout the simula-
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tions. The channel vectors for all the users are assumed to be
independent and zero-mean unit variance complex Gaussian
vectors. The noise variance is σ2

k = 1, ∀k. The target SNR for
each user is γk = 10 dB. Note that an initialization procedure
is employed by iterating ADMM steps for a feasibility problem
without considering the objective function in (6a). A similar
implementation is also done in [4]. The penalty parameter for
both the proposed method and the one in [4] is selected as
ρ = 0.2. In the figures, each point presents the results for the
average of randomly generated 100 channels and PM stands
for the proposed method. We compare PM with the benchmark
algorithm in [4].

In Fig. 1, the number of users per multicast group is kept
constant at K/M = 10 and the number of multicast groups,
M , is varied. The left side of the y-axis represents transmit
power in dBW while the right side is for computational time
of the ADMM algorithms in seconds. As shown in Fig. 1, the
transmit power is nearly the same for both methods. However,
PM is significantly efficient in terms of computational time.
The gap between two methods increases dramatically with M
and PM reduces the complexity by 11 fold for M = 6.

In the second experiment, the number of multicast groups
is set as M = 5 and the number of users per multicast
group is changed from K/M = 8 to K/M = 13. Similarly,
the y axes represents the transmit power and computational
time, respectively in Fig. 2. Although the gap is small, PM
results less transmit power compared [4]. Again, PM provides
a significant amount of computational saving approaching 18
fold decrease when K/M = 13.

From both figures, it is observed that PM provides at least
the same performance in terms of transmit power while it
is computationally more efficient. In particular, the reduction
in computational time is striking when the problem size
increases.

Fig. 1. Transmit power and computational time versus number of multicast
groups, M for K/M = 10.

V. CONCLUSION

We propose a novel ADMM based algorithm for the multi-
group multicast beamforming problem with per-antenna power
constraints. This new ADMM form decomposes the vector

Fig. 2. Transmit power and computational time versus number of users per
multicast group, K/M for M = 5.

variables into smaller size by exploiting the fact that only
a lower dimension subspace of design space is required for
SINR updates. Furthermore, it takes the advantage of subprob-
lems with each of them having optimum closed-form solution.
After presenting the steps of the ADMM algorithm, we make
some arrangements for the updates and variables to further
reduce the computational complexity. The proposed method
provides significantly less computational time especially when
the number of multicast groups and users increases.
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