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Abstract—Scene classification based on acoustic information
is a challenging task due to various factors such as the non-
stationary nature of the environment and multiple overlapping
acoustic events. In this paper, we address the acoustic scene
classification problem using SoundNet, a deep convolution neu-
ral network, pre-trained on raw audio signals. We propose a
classification strategy by combining scores from each layer. This
is based on the hypothesis that layers of the deep convolutional
network learn complementary information and combining this
layer-wise information provides better classification than the
features extracted from an individual layer. In addition, we
also propose a pooling strategy to reduce the dimensionality
of features extracted from different layers of SoundNet. Our
experiments on DCASE 2016 acoustic scene classification dataset
reveals the effectiveness of this layer-wise ensemble approach.
The proposed approach provides a relative improvement of
approx. 30.85% over the classification accuracy provided by the
best individual layer of SoundNet.

I. INTRODUCTION

Acoustic scene classification (ASC) aims task to categorize
the recording environment using sound information. An acous-
tic scene classification system specifically works on audio
signals containing multiple acoustic events and associates a
semantic label to the audio stream. In comparison to sensors
used to capture the visual scene, the sensors capturing the
acoustic scene have no restriction on the field of view. In
the real world the task is more challenging owing to the
dynamic nature of the sound, non-stationary environment,
high interclass correlation and high intraclass variability. The
growth of research in this area is motivated by many real-
life applications e.g. in context-aware services [l], robotic
navigation systems [2], intelligent wearable device [3], audio
archive management [4], assistive technology etc.

Traditional methods in ASC rely on time-based and fre-
quency based audio descriptors such as zero crossing rate,
energy, spectral roll-off etc., Time-frequency based represen-
tation such as Mel-frequency cepstral coefficients, Mel-energy
coefficients have also been proposed, which are the state of the
art in several speech recognition tasks [5]. Many of the entries
in the IEEE Audio and Acoustic Signal Processing (AASP)
challenge termed Detection and Classification of Acoustic
Scenes and Events (DCASE) 2013 use these descriptors to
train generative models. However, these descriptors fail to
model complex acoustic scenes due to the unstructured nature
of sound. In this regard, Chu et.al. [6] proposed time-frequency
based descriptors using Gabor atoms which can model the
complexity of the signal in a better way.
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In recent years, learning based techniques such as dictionary
learning [7] and deep learning [8] are being used to represent
the audio for ASC. Also, fusion based techniques are being
applied to capture multichannel and information from various
feature representations. Shefali et.al. [9] analysed the effect of
combining the channel information as well as various features,
and found significant improvement in performance. State of
the art methods for the DCASE 2016 challenge employ both
learning and fusion based strategies. Many of these approaches
work with the spectrogram (2D representation) of the audio
signal (which is 1D) [10].

However, only a few methods have been explored to
learn directly from the raw audio signal. Yusuf Aytar et.al.
[11] proposed a deep convolution neural network (SoundNet)
which has learnt audio representation of natural sounds using
transfer learning from visual knowledge. They analysed the
performance of different layers of the SoundNet to validate
which layer features can provide more discrimination, using
DCASE 2013 (10 environmental sounds) and ESC50 (50
environment sounds) datasets. The middle layer features of
the SoundNet are generally shown to perform well. However,
there is no guarantee that a particular layer can always be used
as a generic feature extractor across different datasets.

In this paper, with the SoundNet as a feature extractor,
our contribution is as follows: (1) we propose a score-level
ensemble framework, which combines the classification scores
obtained from different classification models. These models
are trained using features from different layers. (2) To repre-
sent the features of a layer, we suggest a simplistic pooling
strategy which reduces the dimensionality and computes a
fixed-length representation of feature maps obtained from a
layer. (3) Various experiments are performed to gauge the
importance of the proposed ensemble strategy. We study the
performance using layer-wise features and their fusion, dif-
ferent classification methods, and different pooling strategies.
We demonstrate that the combination of the classifier scores
obtained using features at different layers provides significant
improvement.

In the next sections, we describe the procedure to classify
environmental sounds by representing the raw audio signal
using SoundNet. We provide the information about the dataset,
the extraction of features maps from different SoundNet layers,
and proposed framework. Finally, we present the experimental
evaluation and conclusion.
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II. EXPERIMENTAL DATASET AND FEATURE MAP
EXTRACTION

A. Experimental Dataset

We use the TUT ASC DCASE 2016 dataset [12] which
consists of 15 environmental sound classes with broad catego-
rizations as indoor (cafe, home, grocery store, library, metro
station), outdoor (urban park, residential area, beach, forest
path, city center, office) and vehicles (train, tram, car, bus).
Each stereo audio example is of 30-second length, and is
recorded at a sampling rate of 44.1 kHz. The dataset consists of
two subsets: a development dataset (1170 audio samples) and
an evaluation dataset (390 audio samples), which are recorded
at different locations.

B. Feature map extraction
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Fig. 1. SoundNet 8-layer architecture [11] showing the size of each feature
map and number of features maps for each layer corresponding to 30 seconds
audio sampled at 44.1 KHz. (a) X th convolution layer (convX) architecture,
p-convX is the layer before the ReLU layer (b) Layers used to extract feature
maps.

As mentioned in the previous section, the pre-trained net-
work SoundNet [11] is used as a feature extractor. SoundNet
uses 1-D convolution to produce 1-D feature maps. This is in
contrast to the typical convolutional neural network, which
usually works on the spectrogram, producing 2-D feature
maps. The 8-layer SoundNet architecture comprises pooling
and convolution layers as shown in Fig. 1. Here, Fig.1 (a)
shows the X' convolution layer architecture. convX denotes
the output of the X" convolution layer and p-convX is the
output obtained just before the ReLU activation function.
Fig.1 (b) shows the different layers used to extract the feature
maps. Here CX, PX is the X*" convolution and pooling layer
respectively. poolX, convX, p-convX are the feature maps
extracted from PX, CX with ReLU and CX without ReLU
respectively. It comprises a total of 15 hidden layers from
which feature maps are being extracted.

To extract the features maps from layers, we apply the
whole raw audio waveform (30 seconds) by averaging stereo
channels into a single channel as an input to the pre-trained
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SoundNet. The raw audio signal sampled at 44.1 kHz will
produce a 1323000-dimensional input vector. The number of
feature maps and their dimensionality for each layer is also
shown in Fig.1(b).

III. PROPOSED FRAMEWORK

The dimensionality of the 1-D feature maps obtained from
each layer is high and also dependent upon the input signal
length. A pooling strategy is used to reduce the dimensionality
and to convert the feature map into a scalar value using the
sum or max operator. These scalar values from all feature
maps are concatenated to form a fixed-length vector for each
audio signal. For a feature map, the sum operator finds the
summation, while the max operator computes the maximum
value across the feature map. As shown in Fig. 2, there are N
number of feature maps in a given layer. The pooling operator
computes a real value corresponding to each of the feature
maps, and results in an N-dimensional feature vector.

After obtaining the pooled feature vectors as described
above from the 15 hidden layers, layer-wise analysis is per-
formed. For each layer, a separate classifier model is trained
using the feature vectors from training examples. This results
in 15 different classifier models. In this work, support vector
machine (SVM) and minimum reconstruction error based clas-
sifiers are used. The layer-wise trained models are evaluated
with feature vectors of testing examples extracted from that
particular layer.
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Fig. 2. Layer-wise feature representation using sum or max operator. Each
feature map is mapped to a scalar value using sum or max operator.
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Based on the layer-wise analysis, we propose a fusion based
classification framework. The overall flow of the proposed
framework is shown in Fig. 3. The classification scores of
the 15 models trained using corresponding feature vectors of
the 15 hidden layers are combined. The fusion is carried out
in two ways: (i) majority voting (maj) of the labels and (ii)
maximum likelihood (ML) estimate of the fused scores, from
each classifier model. In case of majority voting, the final class
labels will be decided based on the majority vote of the labels
obtained from each classifier. In case of ML estimate, class-
wise scores obtained from each model, are linearly combined
to find the fused scores and the test example is assigned to
the class with the highest score.
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Fig. 3. Proposed score-level ensemble framework.

IV. EXPERIMENTAL EVALUATION

We perform 4-fold cross-validation (as specified in the
DCASE 2016 ASC task) with 75% of the development dataset
used for training and the rest of the dataset for validation.
The evaluation dataset is used only for testing. The feature
vectors are L2-normalized before training the SVM. The
hyper-parameters of the SVM are selected by cross-validation.
A non-linear SVM with polynomial kernel is found to be
superior as compared to a radial basis function kernel. The
degree of the polynomial is varied from 3 to 16 and is selected
using cross-validation for each layer.

We also compare the performance using sparse
representation-based (termed SRC) [13] and dictionary
learning with structured incoherence and shared features
based (termed DLSI) [14] classification techniques. In SRC,
the test sample is represented in a dictionary. The atoms of the
dictionary are all training samples. The representations of the
test sample would be high corresponding to the class-specific
base atoms. Assuming there are enough training samples per
class to represent the test sample, the resulting representations
would be sparse. In case of DLSI based classifier, dictionaries
are also learned from training samples (40 atoms per-class).
As compared to SRC dictionaries, atoms of DLSI dictionaries
provide structural incoherence among atoms. Also DLSI
method ignores the atoms which are similar among other
atoms of different classes while computing the reconstruction
error. In both cases, the class of the test sample is decided
based on the minimum reconstruction error.

A. Layer-wise analysis

Fig. 4 shows the layer-wise average accuracies obtained for
the max and the sum pooling operator with the non-linear
SVM as a classifier. The figure shows that the feature space
generated by the sum operator performs better as compared
to that of the max operator for all the layers. The rationale
behind this could be multiple sound events which are common
in many of the classes. For example, human speech is common
in cafe, bus, residential area etc. scenes. The max operator ig-
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Fig. 4. Layer-wise 4-fold average accuracy with max and sum operator for
validation dataset.
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Fig. 5.

nores the temporal information and chose only the event which
occurs with the highest magnitude at any time instant of the
signal. There is often a chance of choosing the common event
for different scenes. However, in case of the sum operator, the
signal is summed across time. This incorporate the common
events across time, leading to more discriminatory features as
compared to feature space generated by the max operator. For
rest of the experimentation, we use only the sum operator to
obtain the feature vector from the feature maps.

Fig. 5 shows the class-wise 4-fold average F-measure
for shallow (pooll), middle (conv3, conv4), and the deeper
(conv7) layer. Note that the features at different layers yield
different relative performance across classes. This gives an
indication that the feature space learned at different levels can
give different discriminatory information for a scene.

Fig. 6 shows average accuracies using different classifiers
namely linear SVM, SRC-based, DLSI-based and non-linear
SVM for the validation dataset. Individual layer feature vectors
provide a maximum accuracy of 70%. For all layers, we
observe that non-linear SVM outperforms other classifiers. For
shallow layers, non-linear SVM provides significant discrim-
ination as compared to other classifiers. For deeper layers,
the performance using non-linear SVM, DLSI and SRC are
more or less comparable. However, linear SVM is not able to
discriminate well except for the last layer with around 50%
accuracy. However, in general, this experiment indicates that
layer-wise features yield limited maximum performance.

Apart from this, the 8-layer SoundNet architecture as shown
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Fig. 6. Layer-wise average accuracies with different classifiers for validation

dataset.
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dataset.

Cumulative average accuracies using ML strategy for validation

in Fig. 1 is also trained in an end-to-end fashion. The very
last layer (C8) of the network is replaced by single fully
connected layer with 256 neurons (selected through cross-
validation) and classification layer with 15 classification units.
The performance of the network is around 47% without fine-
tuning of the network. This is owing to the low training
data. While fine-tuning of the network weights (before fully

connected layer) yields around 65% performance for validation
dataset.

B. Fusion Based Analysis

The proposed fusion based framework is evaluated for the
validation dataset and the evaluation dataset. First, the layer-
wise fusion of scores performance for validation dataset is
being analyzed. Fig. 7 shows the cumulative average accu-
racy using ML strategy with non-linear SVM classifier for
validation dataset. Here, CONVX represents that classification
scores of both convX and p-convX feature maps are being
considered, where X is the layer number. The cumulative
average accuracy is the accuracy obtained after fusion of
scores till that layer. The figure shows that fusion of different
layers improves the performance. The overall performance
degrades by 2% to 4% without incorporation of the feature
maps from the layers without ReLU.

The performance comparison (4-fold average accuracies)
between the fusion based framework and best individual
layer features, for the validation and evaluation datasets
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Fig. 8. Proposed framework performance comparison for validation dataset.
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Fig. 9. Proposed framework performance comparison for evaluation dataset.

are shown in Fig. 8 and Fig.9 respectively. The proposed
method is compared with different classifiers and classifi-
cation strategies,linear SVM with majority voting (denoted
as LinearSVM(maj)), linear SVM with maximum likelihood
(denoted as LinearSVM(ML)), SRC based classifier, DLSI
based classifier, non-linear SVM with majority (denoted as
Non-linearSVM(maj) and non-linear SVM with maximum
likelihood (denoted as Non-linearSVM(ML)).

The features from any single layer provide the perfor-
mance with no more than 70% and 72% accuracy for the
validation and evaluation datasets respectively. In comparison
to the best individual performance, the proposed framework
significantly outperforms for all classifiers and classification
strategies. With a non-linear SVM as a classifier and ML as
fusion strategy, a significant improvement of around 27% and
30.85% over best individual layer performance is observed for
validation and evaluation dataset respectively. Also the same
behaviour is observed for other classifiers as well. However,
with linear SVM as a classifier, the performance of the
proposed fusion framework is more or less comparable to the
best individual classifiers. Thus, we note that the fusion-based
strategy generalizes well among validation and evaluation data.

V. CONCLUSION

In this work, we proposed a fusion based framework to
incorporate the knowledge learned at the various depths of
the pre-trained deep convolution neural network SoundNet.
We applied a transformation to reduce the dimensions of the
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feature maps as well as concatenate them into a fixed-length
representation, for each layer. Our experiments demonstrate
that non-linear SVM, fused with ML strategy provides around
93% accuracy on the evaluation set of DCASE 2016 acoustic
scene classification dataset. The proposed framework provides
30.85% relative improvement in accuracy as compared to the
use of features from single layers. In the future, it would be
interesting to see the usefulness of the proposed framework
with fewer data as well as training the deep neural network
from scratch to incorporate the hidden layer information.
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