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Abstract—Wind energy experiences a significant growth during
the last decades but the industry is still challenged by premature
turbine component failures, which are quite expensive due to the
increase of turbines size. The core of wind turbine drivetrains
is a planetary gearbox and its rolling element bearings are
often responsible for machinery breakdowns. The failure signs
of an early bearing damage are usually weak compared to the
gear excitation and are hardly detected. As a result there is
a special need for advanced signal processing tools which can
detect accurately bearing faults. Cyclic Spectral Coherence (CSC)
appears to be a strong diagnostic tool but its interpretation
is complicated for a non-expert. In this paper a novel CSC
based methodology is proposed in order to extract an Improved
Envelope Spectrum exploiting a specific domain of the CSC map
optimally selected by a proposed criterion. The methodology is
tested and validated on a wind turbine gearbox benchmarking
dataset provided by the National Renewable Energy Laboratory
(NREL), USA.

Index Terms—Signal Processing, Cyclostationary Analysis,
Cyclic Spectral Coherence, Condition Monitoring, Fault detection

I. INTRODUCTION

Wind energy is an emerging market for power generation
but needs to become more cost effective in order to increase its
competitiveness as an extra advantage to the clean energy pro-
duction. This can be significantly succeeded by the increase of
the availability and the reliability using condition monitoring
methodologies. The National Renewable Energy Laboratory
(NREL), USA performed a round robin condition monitoring
measurement campaign [1], [2] on a wind turbine in order
to test the capabilities of existing vibration based detection
methods. In the last decade a plethora of methodologies have
been proposed focusing towards the accurate and early fault
detection and diagnosis with a minimum of false alarms
and missed detections. One of the most commonly used
methods is Envelope Analysis [3], where the vibration signal is
demodulated using often the Hilbert Transform. The signal is
usually filtered around an excited resonance of the machinery
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in order to increase the Signal-to-Noise Ratio (SNR). In order
to select accurately the filter bandwidth, a parameter is usually
optimised such as the Spectral Kurtosis, which leads to the
Kurtogram [4], and the Peak Energy Criterion [5]. Moreover
Antoni [6], [7] proposed the use of CSC as a method for the
spectral analysis of cyclostationary vibration signals emitted
by rolling element bearings. CSC can be accompanied by
different prewhitening [8] and Random/Periodic separation
algorithms [9]. The integration of CSC over all the frequency
band leads to the Enhanced Envelope Spectrum (EES). The
aim of this paper is the introduction of a new automated
methodology for the extraction of a filtered version of EES,
named the Improved Envelope Spectrum (IES), using a max-
imization criterion, focusing towards the enhancement of the
available diagnostic information. The structure of the paper
is as follows. The theory of the Cyclic Spectral Analysis is
briefly presented in Section II. The NREL wind turbine test
rig is presented in Section III. The methodology is applied in
Section IV and the results are analysed. The paper closes with
some conclusion in Section V.

II. CYCLIC SPECTRAL ANALYSIS

Cyclostationary signals, although they are not necessarily
periodic, are produced by a hidden periodic mechanism. The
cyclostationarity category includes stationary signals (assum-
ing an infinite period), non-stationary signals which exhibit
periodicity after passing through a non-linear transform and
periodic signals as a special case, describing practically a
series of mechanical signals generated by rotating and recip-
rocating machines. A signal is characterised as cyclostationary
of order n when its nth order statistics are periodic. A first-
order cyclostationary signal (CS1) presents a steady first-order
statistics, i.e the mean value in the ensemble average sense is
unaltered [6], [7], i.e its first-order moment or expected value
mx(t) is periodic with period T.

mx(t) = E{x(t)} = mx(t+ T ) (1)

In rotating machines, CS1 vibrations are periodic waveforms
(e.g. as generated by imbalances, misalignments, anisotropic
rotors, flexible coupling etc.) with possibly additive stationary
random noise. Similarly, a second-order cyclostationary signal
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(CS2) has an autocorrelation function which is a periodic
function of time:

Rxx(t, τ) = E{x(t− τ/2)x(t+ τ/2)} = Rxx(t+ T, τ) (2)

The symmetric-lag product convention has been followed
in this paper. When available for all values of t and τ ,
the autocorrelation function presented in (2) contains all the
information about a second-order cyclostationary signal and
the representation in the frequency domain usually provides
more insight into the structure of the signal. In rotating ma-
chines, CS2 vibrations are stochastic processes with periodic
amplitude or/and frequency modulation (e.g. as generated by
wear, friction forces, impacting forces, fluid motions, tur-
bulence, combustion forces, etc). Signals that are CS1 and
CS2 are referred to as wide-sense cyclostationary. Since the
autocorrelation function is a function of two variables, a two-
dimensional Fourier transform is performed, giving rise to the
so-called ”spectral correlation”:

Sxx(α, f) = lim
W→∞

1

W

∫
R

∫ W/2

−W/2
Rxx(t, τ)e

−j2π(fτ+αt)dtdτ

(3)
This involves two frequency variables with very different

physical meanings. Frequency f, as being the dual of time-
lag τ , indicates the frequency of the carrier signal. Frequency
α, as being the dual of time t, indicates the frequency of
the modulation and, accordingly, is usually named the ”cyclic
frequency” or the ”modulation frequency”. Hence, the spectral
correlation may be interpreted as giving the strength of the
elementary waves in signal x carried and modulated at all
possible combinations (α, f ). The autocorrelation function of
a second-order cyclostationary signal is transient in time-lag τ
and periodic in time t and as a result the corresponding spectral
correlation is continuous in f but discrete in α, returning a very
distinctive signature. Alternatively the spectral correlation can
be calculated as:

Sxx(α, f) = lim
T→∞

E{XT (f + α/2)X∗T (f − α/2)} (4)

where XT (f) stands for the Fourier transform of signal
x(t) over an interval of duration T. The 2D plan of Cyclic
Spectral Correlation is a powerful tool containing all the
available diagnostic information but often an expert is needed
to interpret it. On the other hand, the integral of the Spectral
Correlation over all frequencies f is the Fourier transform of
the expected value of the squared signal and as a result it
corresponds to the Spectrum of the Squared Envelope of the
signal:∫

Sxx(α, f)df =

∫∫
E{x(t+ τ/2)x∗(t− τ/2)}

(

∫
e−2jπftdf)e−j2παtdtdτ =∫∫

E{x(t+ τ/2)x∗(t− τ/2)}δ(τ)dτe−j2παtdt =∫
E{x(t)x∗(t)}e−j2παtdt = F{E{|x(t)|2}}

(5)

Moreover the Cyclic Spectral Coherence can be estimated
as a normalized version of the Cyclic Spectral Correlation with
its magnitude normalized within 0 and 1:

γxx(α, f) =
Sxx(α, f)√

Sxx(0, f)Sxx(0, f − α)
(6)

The Cyclic Spectral Coherence can be interpreted as the
Spectral Correlation of a whitened signal, which tends to
equalize regions with very different energy levels, magnifying
weak cyclostationary signals. The Squared Envelope Spec-
trum, measured in a given frequency band [f1, f2] can be also
defined as:

SSESxx = |
∫ f2

f1

γxx(α, f)df | (7)

Furthermore the Enhanced Envelope Spectrum (EES) can
be defined as:

SEESxx =

∫ f2

f1

|γxx(α, f)|df (8)

Fig. 1. Test gearbox nomenclature and bearing location.

The EES is expected to better enhance non-zero cyclic com-
ponents compared to the classical SES as the latter integrates
complex values and this can possibly converge towards zero
in the case of fast rotating phases. The Envelope Spectrum
can be estimated based on the integration simply over all
the frequency band [f1 = 0, f2 = fs/2] or over a specially
selected frequency band presenting a high SNR (fs is the
sampling frequency).

In this work a novel criterion is proposed in order to
optimally select the integration frequency band based on the
(diagnostic) Feature Optimisation. The spectral frequency (y
axis of the CSC map) is scanned sequentially with different
bandwidths [f1, f2]. For each bandwidth the Cyclic Spectral
Coherence is integrated in the specific limits band [f1, f2] and
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the Improved Envelope Spectrum is estimated. The sum of
the amplitude of the first three harmonics of each bearing
characteristic frequency (BPFO, BPFI, BSF, FTF) is estimated
and is used as a criterion for the quality of the envelope
of the signal. The integration at specific frequency bands is
equivalent to classical filtering and the maximisation of the
sum of the amplitudes of the three harmonics of the defect is
expected to provide an envelope spectrum with characteristic
and well distinguished peaks. The value of the criterion is
plotted as a function of the central frequency and finally the
limits can be estimated. The steps of the methodology are
briefly described in Fig. 2.

Fig. 2. Schematic of proposed methodology.

TABLE I
SHAFTS AND GEAR MESHING FREQUENCIES

Order (/HSS) Freq. (Hz)
Rotor 0.012 0.37
Planets 0.043 1.30
Sun shaft 0.070 2.10
Intermediate Shaft 0.250 7.50
Generator Shaft (HSS) 1.000 30.00
(GMF) Sun → IMS 5.750 172.00
(GMF) IMS → HSS 22.000 660.00
GMF: Gear Meshing Frequency, HSS: High Speed Shaft,
IMS: Intermediate Speed Shaft.

III. DESCRIPTION OF THE TEST RIG

The aim of this paper is the proposal of a methodology
for the accurate and early bearing fault detection and diag-
nosis. The methodology is tested and evaluated on a publicly
available wind turbine gearbox vibration condition monitoring
benchmarking dataset provided by the NREL after request,
which investigated the root causes and loading conditions
that result in the premature failure of wind turbine gear-
boxes through a consortium entitled the Gearbox Reliability
Collaborative (GRC). In the frames of this initiative, NREL
performed a benchmarking data campaign using the NREL
Dynamometer Test Facility (DTF). The test turbine is a stall-
controlled three bladed upwind turbine with a rated power
of 750 kW. The turbine operates at 1800 rpm. The complete
nacelle and drivetrain was installed in the NREL DTF and
hard fixed to the floor without the hub, rotor, yaw bearing or
yaw drives. The actual field controller was used to provide

start-up and system safety responses. Two gearboxes, one
”healthy” and one ”damaged” of the same design have been
tested under the GRC dynamometer and vibration data have
been collected by accelerometers along with high-speed shaft
RPM signals. The ”healthy” gearbox was only tested at the
dynamometer. The ”damaged” gearbox first was run in the
dynamometer and was later moved to a wind farm close to
NREL for field testing. During the field test, the gearbox
experienced two loss-of-oil events that damaged its internal
bearings and gear elements. The gearbox was brought back to
NREL and Condition Monitoring equipment was installed and
then retested under controlled loading conditions that would
not cause catastrophic failure of the gearbox. The two test
gearboxes were originally taken from the field and redesigned
with the specific configuration, rebuilt and instrumented. Both
gearboxes have an overall ratio of 1:81.482. Each gearbox is
composed of one low speed (LS) planetary stage (1:5.714) and
two parallel stages (1:3.565 and 1:4.000). The nomenclature
and the bearing location of the test gearboxes is presented in
Fig. 1, while the shaft rotating speeds and the gear meshing
frequencies can be found at Table I. Eight accelerometers
(AN3 - AN10) mounted on the casing of the gearbox have
been used to collect data with a sampling frequency equal to
40 kHz per channel.

TABLE II
CHARACTERISTIC BEARING FAULT FREQUENCIES

Bearing label Fault type Freq. (Hz) Sensor
HSS Downwind BPFI 345.3 AN7
HSS Downwind FTF 12.8 AN7
IMS Downwind BPFO 105.3 AN6
IMS Upwind BPFI 73.7 AN6
PLC Upwind BPFO 8.8 AN5
PLC: Planet Carrier, BPFI: Ball Pass Frequency Inner race,
BPFO: Ball Pass Frequency Outer race,
FTF: Fundamental Train Frequency.

IV. APPLICATION OF THE METHODOLOGY AND
RESULTS

The methodology presented in Section II has been tested and
evaluated on signals from the benchmarking dataset presented
in Section III. The ”damaged” gearbox experienced two oil-
loss events in the field and was later disassembled in order
to conduct a detailed failure analysis. A list of the bearing
fault types and their corresponding characteristic frequencies
occurred to the test rig is presented in Table III accompanied
by the number of the closest sensor to the defect. The signals
captured by the sensors close to each bearing are analysed in
order to detect the faults. A number of researchers participating
at the consortium have applied different methodologies [1]
in order to detect the bearing faults but in the initial blind
analysis they all failed in detecting the fault at the outer race
of the Planetary Carrier upwind bearing, which was caused by
fretting corrosion. The methodology has been applied on all
the signals but here for space reasons, the application on the
most difficult case is presented.
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(a)

(b)

Fig. 3. CSC (a) Healthy case, (b) Damaged case.

First the time signals captured by the sensor AN5 in the
healthy and the faulty conditions are processed and the CSC
2D maps are calculated. A zoom version in the bandwidth [0
Hz - 30 Hz] of the two CSC maps are presented at Fig. 3 (a)
and (b). The harmonics of the intermediate shaft are present
while a bearing characteristic frequency, demonstrating the
presence of a bearing fault, cannot be clearly identified. The
map contents all the diagnostic information but it is difficult
to be revealed especially by a non expert. Next the Enhanced
Envelope Spectrum is estimated by integrating over all the
frequency bandwidth for both the healthy and the damaged
case and are presented at Fig. 4 (a) and (b). The cyclic
frequencies equal to the harmonics of the existing BPFO defect
are marked with red dots. It is clear based on the figures
that a detection cannot be easily and accurately achieved.
Furthermore the Feature Optimisation criterion is applied and
the sum of the amplitude of the first three harmonics of the
defect is presented as a function of the central frequency
of the signal in Fig. 5. The y-axis has no units, as the
normalised amplitude is estimated based on the CSCoh map
and therefore is a non-dimensional value. A filter with the
central frequency fc and the bandwidth Bw selected by the
procedure are further applied on the spectral frequency (y
axis) and an Improved Envelope Spectrum is estimated by
the integration along the specific selected frequency band. The
Improved Envelope Spectrum is presented at Fig. 6. Analysing
the spectrum, the first three harmonics of the characteristic
frequency BPFO are clearly identified, which could not be
identified in the Enhanced Envelope Spectrum presented in

(a)

(b)

Fig. 4. EES (a) Healthy case, (b) Damaged case.

Fig. 4. This case is the most difficult one included in the
specific dataset as the shaft rotating speed of the bearing is
very low and as a result the signal which is emitted by the
impacts of the rolling elements on the defect is very weak.
The BPFO characteristic frequency of the Planetary Carrier
upwind bearing takes a value close to the 4th harmonic of the
sun shaft frequency which is equal to 8.4 Hz. On the other
hand based on the speed of the bearing as well as on the fact
that the sun shaft frequency appears as a clear peak at the
damaged EESFO next to the peak of the BPFO (thanks to the
high resolution of the method), it can be concluded that the
defect is accurately detected. The proposed methodology has
been applied on all the bearing signals provided by NREL and
all the defects have been successfully identified (but are not
presented in this paper for space reasons).

Ten (10) signals have been captured and processed for
each of the sensors mentioned in Table III. The methodology
proposed in this paper has been applied on all bearing sgnals
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provided by NREL and has been also compared with the state
of the art technique of Envelope Analysis. In this case, the
signals are firstly analysed using the well known Kurtogram
(Fast Kurtogram: FK) and based on the maximization of
Spectral Kurtosis a filter band is selected. Then the Squared
Envelope Spectrum (SES) is estimated. Often in order to
enhance the effectiveness of the method a pre whitening step is
applied, such as the Zero Cepstrum (ZK) method. The results
in terms of fault detection are presented in Table ??. The
proposed methodology achieves an average detection in 96
% of the cases detected accurately in the faults in the first
4 cases and failing in only 2/10 signals in the more difficult
case. On the other hand the Kurtogram seems to select each
time a wrong filter band failing to detect the fault. Based on
?? it can be concluded that EESFO achieves very good results
compared to other methods.

TABLE III
METHODS COMPARISON

Bearing label Fault type FK+SES ZC+FK+SES EESFO
HSS Downwind BPFI 100 % 50 % 100 %
HSS Downwind FTF 0 % 0 % 100 %
IMS Downwind BPFO 0 % 0 % 100 %
IMS Upwind BPFI 40 % 40 % 100 %
PLC Upwind BPFO 0 % 0 % 80 %
Average 28 % 18 % 96 %
PLC: Planet Carrier, BPFI: Ball Pass Frequency Inner race,
BPFO: Ball Pass Frequency Outer race,
FTF: Fundamental Train Frequency.

Fig. 5. Feature Optimisation Criterion.

V. CONCLUSIONS

A novel automated methodology for the extraction of the
Improved Envelope Spectrum has been proposed based on
the automated selection of an integration band, exploiting the
maximization of a specific criterion which in this case is
the sum of the amplitude of the first three harmonics of the
characteristic bearing frequencies. The methodology is based
on the Cyclic Spectral Coherence and has been tested and
evaluated on a wind turbine gearbox benchmarking dataset

Fig. 6. Improved Envelope Spectrum based on the optimum band selection.

providing excellent results even in the worst case, which has
been analysed in this paper. As future work, the authors are
currently working towards the extension of the methodology
in order to cover the case of time varying operating conditions
of complex mechanical and mechatronic systems, such as the
wind turbines and the gas turbines.

REFERENCES

[1] Sh. Sheng, “Wind Turbine Gearbox Condition Monitoring Round Robin
Study Vibration Analysis,” NREL/TP-5000-54530, 2012.

[2] Sh. Sheng, “Wind Turbine Gearbox Vibration Condition Monitoring
Benchmarking Datasets,” NREL/TP-5000-54530, 2012.

[3] R.B. Randall and J. Antoni, “Rolling element bearing diagnostics - A
tutorial,” Mechanical Systems and Signal Processing, vol. 25, pp. 485-
520, 2011.

[4] J. Antoni and R.B. Randall, “The spectral kurtosis: application to the
vibratory surveillance and diagnostics of rotating machines,” Mechanical
Systems and Signal Processing, vol. 20, pp. 308-331, 2006.

[5] K. Gryllias and I. Antoniadis, “A peak energy criterion (P.E.) for
the selection of resonance bands in complex shifted morlet wavelet
(CSMW) based demodulation of defective rolling element bearings
vibration response,” International Journal of Wavelets, Multiresolution
and Information Processing, vol. 7, 2009.

[6] J. Antoni, “Cyclic spectral analysis in practice,” Mechanical Systems
and Signal Processing, vol. 21, pp. 597-630, 2007.

[7] J. Antoni, G. Xin and N. Hamzaoui, “Fast computation of the spectral
correlation,” Mechanical Systems and Signal Processing, vol. 92, pp.
248-277, 2017.

[8] R. Borghesani, P. Pennacchi, R. Randall, N. Sawalhi and R. Ricci,
“Application of cepstrum pre-whitening for the diagnosis of bearing
faults under variable speed conditions,” Mechanical Systems and Signal
Processing, vol. 36, pp. 370-384, 2013.

[9] R.B. Randall and N. Sawalhi, “Use of cepstrum to remove selected
discrete frequency components from a time signal,” Spring New York,
New York, NY, pp. 451-461, 2011.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 394


