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Abstract— Bearing faults are by far the biggest single source of 
motor failures. Both fast Fourier (frequency based) and wavelet 
(time-scale based) transforms are used commonly in analyzing raw 
vibration or current data to detect bearing faults. A hybrid 
method, Empirical Wavelet Transform (EWT), is used in this 
study to provide better accuracy in detecting faults from bearing 
vibration data.  In the proposed method, the raw vibration data is 
processed by fast Fourier transform. Then, the Fourier spectrum 
of the vibration signal is divided into segments adaptively with 
each segment containing part of the frequency band. Next, the 
wavelet transform is applied to all segments. Finally, inverse 
Fourier transform is utilized to obtain time domain signal with the 
frequency band of interest from EWT coefficients to detect bearing 
faults.   The bearing fault related segments are identified by 
comparing rms values of healthy bearing vibration signal segments 
with the same segments of faulty bearing. The main advantage of 
the proposed method is the possibility of extracting the segments 
of interest from the original vibration data for determining both 
fault type and severity.   

Keywords— empirical wavelet transform, Fourier transform, 
induction motors, bearing faults component,  

I. INTRODUCTION   

Rolling element bearings are used widely in induction motor 
design and their failure is the single biggest cause for expensive 
production shutdowns in manufacturing industry [1]. 
Considering the heavy reliance on induction machines by the 
industry, there is a great amount of research effort directed 
towards monitoring of bearing health. Motor vibration and 
motor current analysis are commonly used noninvasive methods 
in bearing condition monitoring [2]. Time-domain [3], 
frequency-domain [8-11], enhanced frequency [12-15], and 
time–scale analysis [16-21] are four main areas where signal 
processing techniques are used in extracting information related 
to the bearing condition.  

The use of Empirical Wavelet Transform (EWT) is proposed 
in this study to provide means for decomposing time domain 
vibration signal into segments with different frequency 
bandwidths. The fault related segments are determined by 
comparing the energy levels of healthy bearing vibration signal 
segments with the energy levels of faulty bearing segments. 
After determining the  fault related segments, selected segments 
can be used to reconstruct the signal. Then, the reconstructed 
signal can be fed to an adaptive 1D Convolutional Neural 

Network (CNN) classifier for feature extraction and more 
accurate pattern recognition with a simple structure [22-23]. 

II. BEARING FAULTS 

 Bearing faults are mechanical faults accounting for most 
motor failures. Table I presents the surveys conducted by the 
Electric Power Research Institute (EPRI), which surveyed 6312 
motors [24], and the survey conducted by the Motor Reliability 
Working Group of the IEEE-IAS, which surveyed 1141 motors 
[25].    

  

 It is obvious from the table that bearing related problems are 
the most common causes of motor failures. 

 Since bearing faults are the least expensive fault type to fix 
and at the same time the most difficult to detect, considerable 
amount of research is directed in this area. Typically, faulty 
bearings create characteristic frequencies in four different zones 
in the frequency spectrum: shaft speed zone, bearing defect 
frequency zone, bearing natural resonances zone, and high 
frequency zone [27].  

 The characteristic frequencies in the bearing defect 
frequency zone are determined from bearing geometry and shaft 
speed. The geometry of a typical ball bearing is depicted in 
Figure 1. 

 
Figure 1, Ball bearing geometry 

Table 1 – Percentage of failure by component [26] 

Failed Component Percentage Failures (%) 
IEE-IAS EPRI 

Bearings Related 44 41 
Windings Related 26 36 

Rotor Related 8 9 
Others 22 14 
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The characteristic vibration frequencies are calculated by the 
following equations [28]. 

The ball pass frequency outer (ring), BPFO, is given by 

𝐵𝑃𝐹𝑂 =
௡

ଶ
𝑓௥௠(1 −

஻஽

௉஽
𝑐𝑜𝑠𝜑)  (1) 

where the number of balls is n, the rotor speed in revolutions per 
second is frm, and the contact angle (zero for ball bearings) is φ. 

The ball pass frequency inner, BPFI,  is given by 

𝐵𝑃𝐹𝐼 =
௡

ଶ
𝑓௥௠(1 +

஻஽

௉஽
𝑐𝑜𝑠𝜑)  (2)

 

The ball spin frequency, BSF,  is given by           

𝐵𝑆𝐹 =
௉஽

ଶ஻஽
𝑓௥௠(1 − (

஻஽

௉஽
)ଶ𝑐𝑜𝑠ଶ𝜑)  

(3) 

 
The initial stage of a bearing fault is indicated by energy in 

both zones I and IV where the ladder zone contains high 
frequency components over 20 kHz.  In the second stage of the 
fault, zone III with bearing natural frequencies will have some 
energy with increased energy levels in zone IV. The third stage 
is identified with bearing defect related frequencies becoming 
apparent in zone II and increased energy levels in other three 
zones. In the final stage, the bearing defect frequencies become 
more pronounced and their harmonics also show up in the 
frequency spectrum. The frequency content for all four stages of 
the bearing failure is depicted in figure 2.   

 This paper focuses on the detection of bearing fault 
frequencies in zone II and zone III for the final two stages of a 
bearing fault. 

III. EMPIRICAL WAVELET TRANSFORM  

 In EWT, a signal is processed by fast Fourier transform 
(FFT) and the Fourier spectrum of the signal is divided into 
segments adaptively. Then, the scaling and wavelet functions are 
applied to the segments of interest.  

𝑋(𝑤) = ∑ 𝑥(𝑛)𝑒ି௜௡௪ஶ
௡ୀ଴   (4) 

where w is defined in [0,𝜋]. 

Then, the spectrum is divided into N successive parts and wl 
(l=1, 2, …,N) indicates the boundaries of the segment number. 
The empirical scaling,  ∅௟

෢ , and wavelet ,  
௟

ෞ  , functions are 
defined by equations 5 and 6 respectively. 

∅୪(w) =෣
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The detail and approximation coefficients are then given by 

𝑊௙
௘(𝑙, 𝑡) = < 𝑓, ψ௟ >= 𝐹ିଵൣ𝑓(𝑤)

௟
(𝑤)෣ ൧        (7) 

and 

𝑊௙
௘(0, 𝑡) = < 𝑓, ø௟ >= 𝐹ିଵൣ𝑓(𝑤)∅௟(𝑤)෣ ൧    (8) 

where F-1 denotes inverse Fourier transform. The empirical 
mode signal fk(t) of the vibration signal can be found by 

𝑓଴(𝑡) = 𝑊௙
௘(0, 𝑡) ∗ ∅௟(𝑡)   (9) 

and 

𝑓௞(𝑡) = 𝑊௙
௘(𝑘, 𝑡) ∗ 

௞
(𝑡)   (10) 

The original vibration signal is then can be obtained by 

𝑓(𝑡) = ∑ 𝑓௞(𝑡)௅
௞ୀ଴    (11) 

 

Figure 2, Bearing damage stages 
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IV. DATA PROCESSING 

IMS bearing dataset from NASA Prognostic Data Repository 
is used to test the performance of the proposed method [29]. In 
the test setup, the shaft is driven by a belt coupled to a motor at 
constant speed of 2000 rpm throughout the data collection 
process. The debris collected by magnetic plug is used to 
indicate the degradation in bearing health. In this case, the 
vibration data were collected at sampling rate of 20 kHz. The 
sampling was continuous but records of 20,480 data points were 
stored in a file once in every 5 or 10 minutes and stored in a file. 
Inner race, outer race, and roller element defects occurred in 
different bearings during data collection. 

The empirical wavelet transform is applied to the data 
collected from accelerometer mounted on bearing 4 which 
develops an outer race defect. Rexnord ZA-2115 double row 
bearings with 16 rollers in each row are used in the test rig. 
Rexnord ZA-2115 double row bearings have a pitch diameter of 
2.815 in., roller diameter of 0.331 in., and a tapered contact angle 
of 15.17o. Then, the equation 1 would yield the outer race 
fundamental vibration frequency of 236 Hz at rotational speed 
of 2000 rpm.  

Here, the Fourier spectrum of the signal is split into bands 
adaptively based on energy content. EWT boundaries for a faulty 
bearing are depicted in figure 3. 

 

Figure 3, EWT boundaries of faulty bearing 
 

After applying EWT and inverse Fourier transform, the 
contibution of each segment to the original time domain signal 
are determined. Calculating rms values for each segment and 
comparing rms values for faulty and healthy segments, the 
segments of interest can be selected.  

Since we are interested only in two zones (II and III), two 
segments with biggest energy difference are selected from each 
zone. Segments three and five were selected for zone I whereas 
segments twentytwo and twentythree are chosen for zone III.  
The corresponding frequency bands are 600-734 Hz, 1114-1191 
Hz, 4485-4759 Hz, and 4759-4961 Hz respectively. The 
contribution of segment five (1114-1191 Hz) in time domain for 
both cases are depicted in figure 4. The segments and segment 
sizes are determined using faulty set of data. 

 
Figure 4, Time domain contribution of segment five 

 
   The Fourier spectrum for both cases are plotted in figure 5 to 
verify that the increase in rms levels of segment five is due to 
bearing fault related frequencies. Here, the peak is around 1180 
Hz, the fifth harmonic of the outer race defect frequency, for the 
faulty case. 

 
Figure 5, Frequency domain contribution of segment five 

 
     Similarly, contribution of segment twentytwo (4485-4759 
Hz) in time domain for both cases are depicted in figure 6. 

 
     Figure 6, Time domain contribution of segment twentytwo 
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    The final stage of the analysis involves taking inverse Fourier 
transform of the empirical wavelet coefficients for the segments 
of the interest and calculating rms values of resulting signals to 
detect bearing faults. The rms values of segments three, five, 
twentytwo, and twentythree are given in table 2 for both healthy 
and faulty bearing cases.  
 

    
    There is increase in energy levels in all segments for the 
faulty case compared to the energy levels of the healthy case. 
Usually about 50% increase in energy levels of healthy baseline 
data can signal fault conditions. The considerable amount of 
increase in rms values for segments 22 and 23 indicate advanced 
stages of fault detected. 

V. CONCLUSION 

   Empirical Wavelet Transform (EWT), is used in this study to 
provide better accuracy in detecting faults from raw vibration 
data.  The main advantage of the proposed method is the 
possibility of extracting only the segments of interest from the 
original vibration signal.   In the proposed method, the raw 
vibration data is processed by fast Fourier transform for both 
faulty and healthy bearings. Then, the Fourier spectrum of the 
vibration signal is divided into segments adaptively. Segments 
three, five, twentytwo and twentythree are selected for analysis 
since they correspond to zone II and zone III frequencies. Next, 
the wavelet transform is applied to all segments of interest and  
inverse Fourier transform is utilized to obtain time domain 
contributions of those segments. Finally, rms values of time 
domain signals are computed to find increases due to bearing 
faults. The results showed that the fault condition can be detected 
by the proposed method. Furthermore, the rms values of the 
selected segments can be used as features for neural networks or 
time domain components of segments may be fed directly to 1D 
CNN for detection and classification. 

  The segment sizes and locations may depend on both the fault 
type and the bearing geometry. The optimal set of segments and 
segment sizes may be determined if bearing geometry is 
available. Our future work will focus on determining such a set 
of segments with fixed sizes. 
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