2018 26th European Signal Processing Conference (EUSIPCO)

Effect of Random Sampling on Noisy Nonsparse
Signals in Time-Frequency Analysis

Isidora Stankovi¢
GIPSA Lab/Faculty of Electrical Engineering
University Grenoble Alpes/University of Montenegro
Grenoble, France/Podgorica, Montenegro
isidoras @ac.me

Abstract—The paper examines the exact error of randomly
sampled reconstructed nonsparse signals having a sparsity con-
straint. When signal is randomly sampled, it looses the property
of sparsity. It is considered that the signal is reconstructed
as sparse in the joint time-frequency domain. Under this as-
sumption, the signal can be reconstructed by a reduced set
of measurements. It is shown that the error can be calculated
from the unavailable samples and assumed sparsity. Unavailable
samples degrade the sparsity constraint. The error is examined
on nonstationary signals, with the short-time Fourier transform
acting as a representative domain of signal sparsity. The pre-
sented theory is verified on numerical examples.

Index Terms—compressive sensing, nonsparse signals, random
sampling, time-frequency analysis

I. INTRODUCTION

Nonstationary signals are dense in both time and frequency,
when considered separately. They can be localized in the time-
frequency domains. However, they could be located within
much smaller regions in the joint domain using appropriate
representations [1]-[6], with the short-time Fourier transform
(STFT) being the basic transformation. The signals are sparse
in the time-frequency domain if the number of nonzero coef-
ficients in this domain is much smaller than the total number
of coefficients.

According to the compressive sensing (CS) theory, sparse
signals can be reconstructed using less samples/measurements
than required by the sampling theorem [7]-[12]. Reducing the
number of measurements will introduce noise in the analysis
of the signals. The properties of the noise from [13], [14]
will be used to define reconstruction properties in the case of
randomly sampled STFT. If a nonsparse signal is reconstructed
with a reduced set of available samples, then the noise due
to the missing samples of nonreconstructed coefficients will
be considered as an additive input noise in the reconstructed
signal.

Because of its nonstationary nature, signals in time-
frequency domain are usually approximately sparse or non-
sparse. In the CS literature, only the general bounds for the
reconstruction error for nonsparse signals (reconstructed with
the sparsity assumption) are derived [9], [15]-[17]. In this
paper, we present an exact relation for the expected squared
error, reconstructed from a reduced set of signal samples,
under the sparsity constraint. The error depends on the number
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of available samples and the assumed sparsity. In order to be
more compatible with the practical problems, we will consider
that the signals are randomly sampled, i.e. not on the grid.
Also, signals with additive noise will be considered. Since the
signal is not on the grid, it looses the property of sparsity in the
transformation domain. The properties of uniform sampling
without noise are examined in [18]. The effects of random
sampling and noise are illustrated and checked on examples.

The paper is organized as follows. The theory of random
sampling in time-frequency analysis using the compressive
sensing framework will be explained in Section II. The influ-
ence of nonsparsity in randomly sampled signal will be shown
in Section III. Examples will be given in Section IV and the
conclusions are presented in Section V.

II. THEORETICAL BACKGROUND

A. Random sampling

Consider a general form of a multicomponent signal

c
x(t) = le(t), (1)
=1

with C' non-stationary components z;(t), [ = 1,2,...,C. The
signal is of a time-varying nature. Although not sparse in
the Fourier transform (FT) domain, it may be sparse in the
joint time-frequency domain. In this paper, we assume that
the signal is sparse in the STFT domain, which is defined as

Sn(t,Q) = /OO xz(t + T)U)(T)eijQTdT, 2)

where w(7) is the window function with duration 7', centered
at point ¢. The periodic extension of the product x(t+7)w(7),
for a given ¢ can be expanded in Fourier series as follows

N-1
1 .
z(t + T)w(r) = i Z Xy (k)e?2mR(=T/D/T — (3)
k=0

with series coefficients X;(k) being equal to the discrete FT
(DFT) coefficients if 2 (n+m)w(m) is used to denote z(nAt+
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mAt)w(mAt), and the specific sampling interval At = T/N

is assumed. In that case we may write
N [T ,
Xi(k) = ?/ z(t + 7)w(r)e 2 kT=T/2/T gr
0

N-1
= Z x(n+ m)w(m)e*j%km.
m=0
Note that X;(k) is calculated for fixed ¢, and it can be
interpreted as the STFT of the discrete-time signal z(n), that
is, X,,(k) = Sy(n,k). The function w(m) is the discrete
window of length V. In matrix form, the STFT is

SN(?’l) = WNHNX(’H,), (4)

where Sy(n) = [Sn(n,0),Sn(n,1),...,Sxv(n, N — 1)]7,
x(n) is the vector of the original signal samples within the
considered window, Wy is the DFT matrix of size N x N
with coefficients W (m, k) = exp (—j2rkm/N) and Hy is
the matrix with the window values at its diagonal.

The windowed signal &(n,m) = x(n + m)w(m), which is
K-sparse in the STFT domain, can be written as

m) = Z A;(n)

where A;(n) denotes the amplitude of ith signal component.
Now we will assume that the signal is sensed at random
positions. The new signal will be & (t,,, 7p,) with 0 < 7,,, < T.
The special case of uniform sampling, when sampling instants
tn, Tm are integer multiples of At, is considered in [18]. The
signal is written as

ej27r7nk:7-,/N, (5)

K
Z n)ed Frmbi (6)

with STFT vector being Sy (t,,) =

tn7 Tm

SN (tn, k).
B. Reduced set of samples

With the assumption of signal sparsity in the STFT domain,
it can be reconstructed with a reduced set of measurements
[7]-[12]. The reduced set of available samples is N4 < N.
The signal samples are positioned at ¢, + 7, € Ny =
{tn+T1,tn+TQ, R ,tn+TNA} S {t17t27. .. LLNt}. The STFT
coefficients Sy (¢, k) are reconstructed from the available set
of samples under the assumption that the signal is K -sparse,
i.e., that the vector Sy (¢,) has only K nonzero elements.

The available samples of the windowed signal are

Yn = [‘T(tn + 7'1)11)(7'1), () I(tn + TNA)w(TNA)]T (7

or in vector form

where A is the N4 x N partial inverse DFT matrix with rows
corresponding to the available samples positions.

A general goal of CS is reconstructing the missing samples
of the original sparse signal by minimizing the sparsity using
the available samples

min [|Sy(t,)]|, subject to y, = ASn(ty).
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The initial STFT is calculated using only the available samples

Na
SNo(tn, k) = D (tn, T )e I FmE 8)
m=1
or in vector form Syg(t,) = NAfy,,.

The mean and the variance of STFT when sampled ran-
domly are

KN
E{Sxo(ta, k)} = Y —FAi(ta)d(k — k), (9)
;(:1
var{Sno(tn, k)} Z | Ay (tn —0(k — ky)). (10)

where §(k) =1 only for k = 0 and §(k) = 0, elsewhere.

Time-varying signals are usually not strictly sparse in the
STFT domain. Also, randomness in sampling destroys the
sparsity in the signal. They are usually approximately sparse
on nonsparse. A signal is approximately sparse if the coeffi-
cients at positions k € K = {kq, ko, ..., ki } are significantly
larger than the other coefficients, and it is considered as
nonsparse if the coefficients at k ¢ K are of the same order
as the coefficients at k& € K.

C. Reconstruction algorithm

The reconstruction is done in an iterative way using the
orthogonal matching pursuit (OMP) algorithm [11]. The recon-
struction is based on estimating the positions of the nonzero
components and calculating the signal amplitudes at these
positions using the known measurements. The procedure is
described in a pseudo-code as follows

K=0, y,=yn
for i=1: K
Sno(tn) = NA'y,
b = arg{max[Swo(t)|}
K = KU {k}
Ax =A(K)
Sni(tn) = (AGAK) 'Ally,
s = AxSnk(tn)
Yr =¥n —Sr
end

Snr(tn) = SNk (tn).

Note that the error calculation does not depend on the
reconstruction algorithm used. The important fact is that, for a
successful reconstruction, the measurement matrix must satisfy
the conditions of the CS theory, which we assume in this paper.

III. INFLUENCE OF NONSPARSITY

In this paper, the assumption is that the signal is randomly
sampled. It is approximately sparse or nonsparse in time-
frequency transformation domain and it is reconstructed un-
der the assumption that it is K -sparse. That means that K
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components will be reconstructed and the remaining N — K
components will not be reconstructed. The nonreconstructed
part will behave as noise in the initial estimate. The noise,
influenced by the nonreconstructed part, will appear in the
reconstructed components with mean (9) and variance (10).

The reconstruction algorithm works as an amplifier by a
factor of N/N,4 to the original signal components in the
initial estimate at positions k& € K. It also eliminates the
influence of other components. Components, which are not
reconstructed, contribute to the noise in the initial estimate
with variance (N4/N?)|Sn(tn,k:)|?. In the reconstruction
process, this variance is scaled by a factor of (N/N )2, which
means that the final variance is then | Sy (t,, k;)|?/Na.

Since K components are reconstructed, the total energy of
noise in all reconstructed components is /K times greater than
the variance in one reconstructed component. There are N —
K nonreconstructed components, which means that the total
energy of error is

N
2 K 2
ISwic(tn) = Salta)lz = 57~ > 1Sn(tn ka)* (D
1=K+1
where Sy (t,) is the signal with the K highest
components in the original signal Sy(¢,), ie.

SNK(tn) = [SN(tn, kl), SN(tn, kz), ey SN(tn, kK)]T. The
signal Sy r(t,) represents the K reconstructed components.
Obviously, the error energy in the nonreconstructed coeffi-
cients is the sum of its energies, i.e.,
N
HSN(tn) - SNKO(tn)Hg = Z ‘SN(tn7 ki)|2
i=K+1

(12)

where S ko(t,) is the signal Sy (t,,) zero-padded to length
N such that Sy ko (tn) = Sy (tn) atk € Kand Syio(t,) =
0 at k ¢ K. Following these results, the energy of error in the
reconstruction is

K
IS (tn) = Swr(tn)ll; = - 1Sx(tn) = Sno(ta)l3

A. Additive Noise Influence on Nonsparse Signals

Let assume that we have not only a reduced set of measure-
ments but also that they are received as noisy

Yn tEn = ASN(tn)

We will assume the variance of noise ¢ to be o2. Noisy
measurements will result in a noisy initial estimate Syo(ty, k).
Variance in Sno(ty, k), caused by the measurements input
noise, is Ugwo(tn,k) = N AO’?. Since the initial estimate is
multiplied by N/N4 in the reconstruction, the noise variance
in the reconstructed component is

N\2 N?
Since the noise is the same in each reconstructed coeffi-

cient, the total mean squared error (MSE) in K reconstructed
coefficients is [14]

TABLE I
TOTAL ERROR OF NON-NOISY STFT, WITH VARIOUS VALUES OF
AVAILABLE SAMPLES N 4 AND SPARSITY LEVELS K

N4y = N/2 2N/3 3N/4
K Stat.  Theory Stat.  Theory Stat.  Theory
8 0.997 1.139 0.927 1.040 0.905 1.007
16 0.089 0.288 0.027 0.140 0.012 0.095
32 -0.541 —0.234 —0.586 —0.469 —0.594 —0.547
48 —-0.599 —0.193 —-0.639 —0.510 —0.647 —0.617

The error will then be calculated as

IS (tn) = Snr(tn)l5 =
K 2 NZ
— ||Sn(tn) — S tn K—o:. 14
N, 185 (tn) = Snrco(tn)lly + K 5o (14)
Numerical validation of presented error expression will be
done in the next section.

IV. EXAMPLES

Example 1: Let us consider a non-noisy signal with three
linear frequency modulated (LFM) components

x(t,) = 1.5exp (j1307t,, /N + j36mt2 /N? + jo1)
+exp (7307t /N + j167t2 /N? 4 joo)

+ exp (j380mt,, /N — j16mt2 /N2 + jp3)  (15)

sampled at 1280 random instances 0 < t; < to < ... <
t1280 < 1280. The STFT is calculated using a Hann window
of length N = 256 with a step in time of 32. Note that the
signal is not sparse in the DFT domain since its components
occupy almost the whole frequency range. The phases ¢1, 2
and 3 are random between 0 and 2.

For the comparison, we will use total error energy. That
is, we will consider the whole nonsparse signal, not only the
error in the K components. The total energies of errors are
then calculated as

B, = 10log (|Sx(tn) — Sxa(tn)|?)
K 2
B, = 10og (3= +1) [Sn(t) = Swiolt) 3 ). (17

(16)

where FE, is the statistical error, and FE; is the derived
(theoretical) error. Table I represents the average values in 100
realizations of error with varying sparsity K and number of
available samples N 4.

Example 2: Let us consider the signal (15) with some
additive noise. The available signal samples with noise are

2(tn) = z(tn) +(tn). (18)

We assume the same parameters as in Example 1, i.e. 0 <
t, < 1280, a Hann window of length N = 256 with step
32. The noise is zero-mean Gaussian noise with a standard
deviation of o, = 0.1. The randomly sampled STFT with all

ISnr(ts) — SNK(tn)||2 _ KN72062. (13) the measurements is shown in Fig. 1(left). We assume that the
’ 2 Ny number of available samples per window is N4 = 2N/3. The
ISBN 978-90-827970-1-5 © EURASIP 2018 487



2018 26th European Signal Processing Conference (EUSIPCO)

STFT with noisy
available samples

Full STFT

frequency index

time index time index
Fig. 1. Original STFT when randomly sampled (left); Initial estimate of the
STFT with 2N/3 noisy available samples per window (right)

TABLE 11
TOTAL ERROR OF NOISY STFT, WITH STANDARD DEVIATION OF NOISE
os = 0.1, AND VARIOUS VALUES OF N4 AND K

Ny =N/2 2N/3 3N/4
K Stat.  Theory Stat.  Theory Stat.  Theory
8 1.006 1.147 0.932 1.045 0.909 1.010
16 0.103 0.298 0.034 0.145 0.017 0.100
32 0498 —0.210 —0.562 —0.455 —0.573 —0.533
48 —0.480 —0.148 —0.572 —0.482 —0.589 —0.592

initial estimate of the STFT with only the noisy available sam-
ples is shown in Fig. 1(right). Illustration of the reconstructed
STFT with various assumed sparsities K = [8, 16,32, 48] is
shown in Fig. 2. Using eq. (16) for statistical error and

K N?
Et = 1010g <(N7A+1) ||SN(tn) — SNKO(tn)||§+KmU§)a

for theoretical error, Table II examines the total error values
in the reconstruction when K and N4 are varied. The values
are averaged over 100 realizations.

V. CONCLUSIONS

The exact error in the reconstruction of randomly sampled
nonsparse nonstationary signals is examined. Since the signal
is nonstationary, the signal is assumed to be sparse in the
joint time-frequency representation domain. The signal is
reconstructed by a reduced set of noisy available samples
defined by the compressive sensing framework. The theoretical
error agrees with the statistical error calculation.
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