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Abstract—This paper explores the limits of human localization
of sound sources when listening with non-individual Head-
Related Transfer Functions (HRTFs), by simulating perfor-
mances of a localization task in the mid-sagittal plane. Computa-
tional simulations are performed with the CIPIC HRTF database
using two different auditory models which mimic human hearing
processing from a functional point of view. Our methodology
investigates the opportunity of using virtual experiments instead
of time- and resource- demanding psychoacoustic tests, which
could also lead to potentially unreliable results. Four different
perceptual metrics were implemented in order to identify relevant
differences between auditory models in a selection problem of
best-available non-individual HRTFs. Results report a high corre-
lation between the two models denoting an overall similar trend,
however, we discuss discrepancies in the predictions which should
be carefully considered for the applicability of our methodology
to the HRTF selection problem.

I. INTRODUCTION

Spatial hearing defines the perceptual ability to localize
sound sources in space. In particular, mammals – and thus
humans – continuously analyze the acoustic scene retrieving
and monitoring surrounding source positions. This process is
performed based on the two-channel binaural sound stream
which is filtered by subject physicality: sound waves diffract
and interact with torso, head and external ears, causing
listener-dependent temporal and spectral transformations [1].
The resulting effects provide meaningful cues about sound
source locations in an egocentric view. Binaural cues heavily
influence azimuth and lateral localization that is evaluated
mostly by mean of interaural time difference (ITD), and
interaural level difference (ILD).

On the other hand, spectral cues are primary cues for ele-
vation perception, and head-related transfer function (HRTF)
contains such relevant information; HRTF measurements sum-
marize the direction-dependent acoustic filtering of a free-field
point source due to the head, torso, and pinna [1]. Knowledge
of such a complex process is needed for the development of
accurate and realistic artificial sound spatialization in several
application domains, including immersive virtual and aug-
mented reality, gaming, 3DTV and cinema, etc.

HRTFs are deeply connected to listener anthropometry,
electing individual HRTFs the ground truth condition for
sound spatialization [2]. However, the acquisition process of
individual HRTF sets is time consuming, requires a complex
hardware setup, and the measurement protocol varies for each
laboratories leading to different results [3]. This unpractical
solution has driven the researchers to propose alternative
methods to provide a perceptually plausible HRTF set which
approximates individual variations of each listener. The most
common method uses a generic HRTF set, typically dummy-
head measurements [2]; otherwise, the selection approaches
employ some perceptually motivated metrics to provide the
most effective HRTF set taken from a database of pre-recorded
measurements [4], [5]; HRTF selection methods can dramat-
ically improve especially elevation perception, where human
localization abilities are known to be less accurate than in the
lateral plane [6].

In this paper, we analyze the best choice for HRTF selection
according to auditory model predictions, thus implementing
two series of virtual experiments able to compute perceptual
errors in two virtual worlds, i.e. in the theoretical frameworks
of the two auditory models. In order to perform such analysis,
we adopted a public available database,1 known as CIPIC
HRTF Database [7]. Hence, the selection problem is faced
by using a metric built upon two different auditory models
from Baumgartner et al. [8], [9], which enables the evaluation
of the the best non-individual HRTF set for all CIPIC subjects
in the dataset. The adopted models derive from a functional
model, proposed by Langendijk and Bronkhorst [10], which
describes the processing sequence performed by the human
auditory system in localizing a static audio source. This is
achieved by simulating the transformations undergone by the
audio signal from the outer ear up to the cochlea in the form
of a deterministic process.

The main aim of our contribution is to compare predictions
in localization with non-individual HRTFs of both auditory
models, focusing on best-possible HRTF selections according

1http://sofacoustics.org/data/database/cipic/
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to these two simulated scenarios. Following a structural mod-
eling approach [11], sensitivities on localization performances
are analyzed in the mid-sagittal plane, both with and without
torso acoustic contribution.

II. MATERIALS

The virtual experiments were conducted by means of the
Auditory Modeling Toolbox (AMT)2 which includes the im-
plementations of both the auditory models by Baumgartner et
al., as well as the functions for directly working with HRTF
database wrapped into SOFA format.3 Figure 1 depicts the
work-flow of our methodology.

A. The CIPIC HRTF Database

This database consists on 45 HRTF sets measured on differ-
ent subjects, including the KEMAR mannequin. The dataset
comprises head-related impulse responses (HRIR) for 1250
directions for each ear and subject, measured at a sampling
rate of fs = 44.1kHz, with 16 bit resolution and length 4.5 ms.
HRTFs are derived from the Fourier transform of the HRIRs.
The database also includes some anthropometric measures of
the subjects.

In order to study the elevation error, the interval φ ∈
[−45◦, 45◦] in the mid-sagittal plane was considered: for
the remaining elevation angles the spectral details led to a
very poor localization performances even in real life condi-
tions [12]. The dataset was further reduced to 31 subjects by
discarding those with high predicted localization errors: this
was achieved by removing those subjects with less than three
elevation-dependent notches in the HRTF magnitude responses
(see Geronazzo et al. [12] for a detailed analysis of this issue).

B. Auditory models

The tools for inter-subject perceptual evaluation are
based on two auditory models for sound localization in
sagittal planes proposed by Baumgartner et al. [8], [9].
These models are implemented into the AMT with the
scripts baumgartner2013 and baumgartner2014, re-
spectively.

In particular, these models simulate virtual experiments
quantifying a perceptual metric on localization for station-
ary broadband auditory stimuli. These perceptual metrics,
originally introduced by Langendijk [10], compare the target
sound, processed to obtain an internal representation,4 with
an internal template, resulting in a probabilistic prediction
of polar angle response. The template encloses the process
in learning the correspondence between spectral features and
direction of arrival of an acoustic event [13]. The two models
share the same overall structure, where the latter extends the
former by covering the modeling of the cochlea and mimicking
human perception in more detail (see the following subsections

2http://amtoolbox.sourceforge.net
3www.sofaconventions.org
4The internal representation is intended to be the elaboration of the audio

stimulus with a mathematical description of the functions performed by the
human hearing system.

Fig. 1: Structure of the virtual experiments and model com-
parison.

for a more detailed description). For both models, the first step
consists in converting HRTF measurements into directional
transfer functions (DTFs), which incorporate directional cue
of listener acoustics. DTFs are computed for both template
and target, and are further processed to obtain the internal
representations: a gamma-tone filter bank with a frequency
spacing of one equivalent rectangular bandwidth (ERB) is thus
applied.

1) baumgartner2013: the model processes each fre-
quency band with a half-wave rectifier and a low-pass filter
simulating the inner hair cells. Each band is averaged in time
by means of the root-mean-square (RMS) amplitude, providing
an internal representation of the sound [6], [8].

Each combination of available elevation angles is com-
pared by computing the standard deviation (SD) of the inter-
spectral differences between internal representations of target
and template. A probabilistic approach is used to map this
into the predicted response probability: for each target angle,
template angle, and ear, the SD is mapped to a similarity
index (SI) using a Gaussian function. The SI represents the
response probability for the response angle, in degrees.a For
a Gaussian function with zero mean, its standard deviation
denotes the uncertainty (U), modeling the loss of precision
due to perceptual process [6].

Furthermore, a binaural weighted sum takes into account
the contribution of both ears, obtaining a binaural SI. For a
target angle, the binaural SI is computed for each template
angle, then a normalization phase allows the definition of the
probability mass vector (PMV) describing listener’s response
probability as a function of the response angle for a given
incoming sound.

2) baumgartner2014: the model computes the positive
spectral gradient from the DTF, relying on the role of the
dorsal cochlear nucleus (DCN) which is thought to be crucial
for sagittal-plane sound localization [14].

The comparison between template and target is performed
using the L1-norm of the positive spectral gradients responses.
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Since the sagittal-plane localization is considered to be a
monoaural process [15] the comparison is performed for each
ear, separately.

Furthermore, the model maps this distance into a similarity
index, as in baumgartner2013, with the aim of defining
human uncertainty in localizing sound sources. The mapping
is based upon a sigmoid psychometric function with the
following parameters: Γ, denoting the degree of selectivity,
and Sl denoting listener specific sensitivity.

Hence the binaural weighting is computed according to
variations on the perceived lateral location [16].

The sensori-motor mapping is also taken into account
simulating the cognitive and kinematic process that a subject
performs while pointing to a sound source location. The
authors model this component by manipulating the responses
using a Gaussian function with scatter parameter ε.Finally,
as in the 2013 model, the output has the final form of a
probability mass vector representing the prediction of the
response probability.

III. SIMULATIONS

In this work, we adopt the following approach: for both
models, we computed the localization errors, considering indi-
vidual and non-individual HRTF sets as target for all available
HRTF sets; we compared differences in the predictions pro-
duced by the two models in order to assess their equivalence
in a HRTF selection scenario. A graphical representation of
this methodology is depicted in Fig. 1.

We assigned to model parameters the same values for all
CIPIC subjects. For the 2013 model: uncertainty U = 2. This
value was obtained by averaging estimated real Us [6], thus
reproducing a realistic perceptual error. For the 2014 model:
degree of selectivity Γ = 6 dB, sensitivity S = 0.7, sensori-
motor scatter ε = 17◦. These were the default values proposed
for the model [9].

Additionally, the same simulations were repeated removing
the torso acoustic information: a 1 ms Hanning window
centered on the maximum temporal peak was applied to each
DTF. It has to be noted that torso does not produce any shadow
effect for the considered elevation angles [12].

A. Perceptual metrics

The perceptual error and differences between target and
response angles led us to define four metrics. Two of them
account for the absolute localization errors firstly introduced
by Middlebrooks [13] and further formalized by Geronazzo et
al. [12]: the Polar Error (PE) and the Quadrant Error (QE)
are defined for every response angle in [−45◦, 45◦] computing
the comparison between the corresponding template angles
with all available target angles. The PE metric accounts for
localization judgments occurring into the same hemifield of
the response angle, thus being an estimate for precision. The
QE metric accounts for all the localization judgments affected
by front-back confusions and the responses where the error

exceeded 90◦. The PE is defined for every j-th elevation
response close to the target position:

PEj =

√∑
i∈L(φi − φj)2pj [φj ]∑

i∈L pj [φi]
(1)

with L = {i ∈ N : 1 ≤ i ≤ Nφ, |φi − φj |mod 180◦ <
90◦}, where φi, φj represent the local response and the target
position respectively and pj [φi] denotes the probability mass
vector.

Instead the QE error is formalized as:

QEj =
∑
i∈NL

pj [φi] (2)

with NL = {i ∈ N : 1 ≤ i ≤ Nφ, |φi − φj | mod 180◦ ≥
90◦}, and for the j-th elevation response.

In addition, two more metrics are considered, which are
gathered from recent scientific literature [12]: the Front-Back
confusion rate (FB), and the Global Polar Error (GPE). The
FB error models the perceptual confusion when a frontal sound
source is localized by the listener back side and vice versa;
the GPE quantifies the absolute angular localization error
with front-back resolution. These metrics were considered in
order to further describe static listening conditions with non-
individual HRTF set which lead to significant perceptual dis-
tortion due to front-back confusion [2]. For the j-th elevation
response:

FBj =
∑
i∈C

pj [φi] (3)

with C = {i ∈ N : 1 ≤ i ≤ Nφ, φi > 120◦ ifφj ≥ 60◦∧φi ≤
60◦ ifφj > 120◦}. The GPE quantifies the absolute angular
localization error not accounting for front-back confusion. For
the j-th elevation response, the GPE is defined as:

GPEj =

∑
f∈F |φf − φj | (pj [φf ] + pj̄ [φf ])

+
∑
b∈B |φb − φj | (pj [φb] + pj̄ [φb])∑
f∈F pj [φf ] + pj̄ [φf ]

+
∑
b∈B pj [φb] + pj̄ [φb]

(4)

with F = {i ∈ N : 1 ≤ i ≤ Nφ, φi ≤ 90◦} and B = {i ∈ N :
1 ≤ i ≤ Nφ, φi > 90◦}, where the index j̄ has been called
the front-back index for to the j-th complementary angle.

Since all metrics are described for a single j-th elevation
response, their averages across all responses were taken as a
global assessment of each virtual localization experiment.

B. HRTF selection and model comparison

Each of the four metrics was applied to both models,
resulting in four all-against-all matrices, with row indexes
and column indexes spanning template sets and targets sets,
respectively.

Then, for each subject localization errors with individual
HRTF sets (i.e., error values on the diagonal for each matrix)
were compared to the best performance with non-individual
HRTF set. Such best performance was found by taking the
minimum difference between the template (the individual
HRTF set) and all the remaining targets (non-individual HRTF
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Fig. 2: Averaged values for the four proposed error metrics
with individual HRTFs vs. “best available” non-individual
HRTFs: (a) complete DTFs, and (b) DTFs with torso removed.
Asterisks and bars indicate, where present, a significant dif-
ference (*: p < 0.05, **: p < 0.01 , ***: p < 0.001 according
to the statistical test).

sets). To assess whether the best-available non-individual
HRTF set was comparable with individual one, a statistical test
was performed: PE and QE were evaluated with a t-test, while
a Wilcoxon matched-pair signed rank test was used for GPE
and FB, because they did not exhibit a normal distribution [12].

In the end this analysis provided, for each subject, two
best available non-individual HRTF sets (each predicted by
one of the two auditory models). The correlation between the
predictions of the two models for each subject (matrix rows)
were computed in order to quantitatively assess the extent to
which they can be equivalently employed in the context of a
HRTF selection procedure.

IV. RESULTS AND DISCUSSION

The results returned from the virtual experiments are re-
ported graphically in Fig. 2; table I reports row-wise correla-
tions that were averaged across all subjects for each metric.

At a first inspection, the predicted localization errors showed
similar results, in magnitude, when compared to human predic-
tion errors in elevation [6], [13], both using the individual and
non-individual HRTF sets. This suggested a good agreement

Metric Torso Windowing
avg std avg std

PE 0.995 0.001 0.996 0.001
QE 0.978 0.012 0.981 0.013

GPE 0.996 0.001 0.997 0.001
FB 0.969 0.020 0.976 0.019

TABLE I: Model correlations using the predicted metrics.
Column Torso reports results using full DTFs , while column
Windowing reports results for the DTFs filtered with a Hanning
window to remove torso reflections. Values were averaged on
all subjects.

with the reality. On the other hand, statistical tests exhibited
significant differences between individual and non-individual
listening conditions for the 2014 model. Such differences
were absent or weak in the 2013 model. This discrepancy in
the latter model could be attributed to the systemic greater
perceived error when the best non-individual HRTF set is
imposed.

Further insight can be gained by looking at the results when
acoustic contribution of the torso was removed through DTF
windowing. It can be noticed that the best non-individual
HRTF sets were more comparable, from a statistical point
of view, with the individual HRTF set, at least for the
baumgartner2013 model. For the 2014 model, this im-
proved similarities were probably related to an increased
magnitude of perception errors for both considered HRTF sets.

Despite differences in the average values of the error met-
rics (the 2014 model systematically produces larger errors),
and the different outcomes from statistical tests in terms of
significance, the models produced highly correlated results for
each subject (see Table I).This outcome was also confirmed by
the similar trend that the two models showed on ordered non-
individual HRTF (see Fig. 3). Moreover, from Fig. 3, it can be
noticed that the 2014 model returned lower variance than the
2013 model. The regression lines were computed, reporting no
noticeable difference in slopes: for full DTFs (Fig. 3.a) values
were 0.46, 0.54, whereas for DTFs with torso removed (Fig.
3.b) values were 0.44, 0.42, for the 2013 and 2014 models
respectively. These similar trends are interesting, since the two
models rely on very different assumptions to imitate the same
perceptual process.

Despite these high correlations and similar trends, we are
inclined to consider that the 2013 model’s outcomes could
be more fitted to reality. This consideration is supported by
the validation of the baumgartner2013 model through
a comparison with human subjects [6], while no similar
assessment has been performed for the latter model at the
time of writing.

It has to be stressed that 2014 model tended to select
the individual set as the best for the subjects in terms of
performances, while the 2013 model was inclined to select
a non-individual HRTF set that has similar performances
to the individual with both full DTFs and torso acoustics
removed. From the literature, Asano et al. [17] reported
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Fig. 3: Averaged polar errors with non-individual HRTF sets
based on rank position. The computation was performed on
sorted PE prediction in both models. (a) Complete DTFs, and
(b) DTFs with torso removed.

vertical localization performances of two expert listeners with
non-individual HRTFs as accurate as with individual sets. On
the other hand, the best performance in a localization task is
typically achieved when subjects use their individual HRTF
sets [13]: this behavior was probably empathized by the
introduction of the positive spectral gradients in the 2014
model although this conclusion was slightly supported by the
performed statistical tests.

V. CONCLUSIONS

This work explores differences in human perception of
sound source location by imposing non-individual HRTF lis-
tening for a localization task in the mid-sagittal plane. The
evaluation was performed on a subset of the CIPIC HRTF
database using two different auditory models. These models
mimic human hearing processing from a functional point of
view. This methodology is motivated by the opportunity of
using virtual experiments instead of time-demanding psychoa-
coustic tests, which require expensive and technologically
advanced setups with potentially unreliable results [3], [12].

Four different perceptual metrics were implemented in order
to identify relevant differences between auditory models in
the HRTF selection problem. Even though the outcomes from
our analysis reported a high correlation between models,
the baumgartner2014 exhibited a clearer distinction be-
tween individual and non-individual sets compared to the
baumgartner2013 that gave more relevance to macro-
scopic patterns rather than local details [17].

Finally by removing the torso reflections it was noticed
that predictions with best non-individual HRTF sets resulted
similar to individual ones.

The proposed methodology for the HRTF selection task
can be extended by introducing different lateral angles for the
localization evaluation. Further improvements can be achieved
through a different tuning of the individual parameters with
screening tests on spectral profiling, and by introducing sup-
plementary metrics based on the anthropometry of the subjects,
such as external ear shape [12].
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