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Abstract—In recent years, advances in pattern recognition
and data analytics have spurred the development of a plethora
of machine learning algorithms and tools. However, as each
algorithm exhibits different behavior for different types of data,
one is motivated to judiciously fuse multiple algorithms in
order to find the “best” performing one, for a given dataset.
Ensemble learning aims to create such a high-performance meta-
learner, by combining the outputs from multiple algorithms. The
present work introduces a simple blind scheme for learning from
ensembles of classifiers. Blind refers to the combiner who has no
knowledge of the ground-truth labels that each classifier has been
trained on. While most current works presume that all classifiers
are independent, this work introduces a scheme that can handle
dependencies between classifiers. Preliminary tests on synthetic
data showcase the potential of the proposed approach.

Index Terms—Ensemble learning, multi-class classification,
unsupervised, dependent classifiers

I. INTRODUCTION

The vast amounts of data that are generated daily [5] have
resulted in the pressing need to efficiently extract information
from them. To this end, a large number of algorithms have
been developed by the machine learning, data mining, and
signal processing communities [1], [10]. However, no one
algorithm is suited for all tasks, as each relies on different
assumptions and thus behaves differently on different datasets.
Ensemble learning refers to the task of designing a meta-
learner by combining the results provided by multiple different
learners or annotators.1 In particular, ensemble classification
refers to fusing the results provided by different classi-
fiers. Such a setup emerges in diverse disciplines including
medicine [28], biology [20], economics [23], and distributed
detection [26], and has recently gained attention with the
advent of crowdsourcing [2], [11] as well as services such as
Amazon’s Mechanical Turk, CrowdFlower, and Clickworker,
to name a few.

Multiple approaches have been developed for supervised
ensemble learning [7], the most popular ones being random
forests [3] and boosting [8]. These methods use labels to
learn the optimal combination of annotator responses. In many
cases however, labeled data are not available to train the
combining meta-classifier, justifying the need for unsupervised
(or blind) ensemble methods. One such paradigm is provided
by crowdsourcing, where people are tasked with providing
classification labels. Probably the simplest scheme for blind
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1The terms annotator, learner, and classifier will be used interchangeably.

ensemble classification is majority voting, where the estimated
label of a datum is the one that most annotators agree upon.
This scheme, while relatively easy to implement, implicitly
presumes that all annotators are equally “reliable,” which is
a typically unrealistic assumption, both in crowdsourcing as
well as in ensemble learning setups. Other blind ensemble
methods aim to estimate the parameters that characterize the
annotators’ performance, namely the sensitivity and specificity
in binary classification problems, or the entries of the so-called
confusion matrix in multi-class settings. A joint maximum
likelihood (ML) estimator of the unknown labels and the
confusion matrices has been reported using the expectation-
maximization (EM) algorithm [6]. As the EM algorithm
does not guarantee convergence to the ML solution, recent
works pursue alternative estimation methods. Recently, [14]
advocated a spectral decomposition technique of the second-
order statistics of annotator responses for binary classification,
that yields the reliability parameters of annotators, when class
probabilities are unknown. In the multi-class setting, [16]
employs an iterative method that solves multiple binary classi-
fication problems. In addition, [15] and [29] utilize third-order
moments and orthogonal tensor decomposition to estimate the
unknown reliability parameters and then initialize the EM
algorithm of [6], while [25] and [24] use joint matrix and
joint tensor factorizations respectively.

All aforementioned approaches assume that annotators are
conditionally independent. However, this assumption may not
always hold. For example, dependencies between annotators
may arise if they are trained on very similar datasets. The
method of [14] for binary classification was extended in
[13] to handle dependencies between annotators, while [21]
introduced a deep learning framework for binary ensemble
classification when annotators are dependent.

The present work puts forth a novel scheme for multi-class
blind ensemble learning with dependent classifiers, built upon
simple concepts from probability, linear algebra and optimiza-
tion theory. The proposed scheme enables the assessment of
annotator reliability and judiciously fuses their responses, and
the presence of annotator dependencies markedly extends the
scope of our previous work in [24].
Notation: Unless otherwise noted, lowercase bold letters, x,
denote vectors, uppercase bold letters, X, represent matrices,
and calligraphic uppercase letters, X , stand for sets. The
(i, j)th entry of matrix X is denoted by [X]ij ; and its rank by
rank(X); X> denotes the transpose of matrix X; RD stands
for the D-dimensional real Euclidean space; ‖ · ‖ denotes the
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Fig. 1. Graphical representations of the probabilistic models employed for
blind ensemble learning with dependent classifiers.

`2-norm; and the vector outer product is denoted by ◦. Pr de-
notes probability, or the probability mass function; ∼ denotes
”distributed as,” and E[·] denotes expectation. Underlined
capital letters X denote tensors; while [[A,B,C]]K is used to
denote compactly a K-factor PARAFAC tensor [9], [22] with
factor matrices A = [a1, . . . ,aK ],B = [b1, . . . , bK ],C =
[c1, . . . , cK ], that is [[A,B,C]]K =

∑K
k=1 ak ◦ bk ◦ ck.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dataset consisting of N data (possibly vectors)
{xn}Nn=1 each belonging to one of K possible classes with
corresponding labels {yn}Nn=1, e.g. yn = k if xn belongs
to class k. The pairs {(xn, yn)} are drawn independently
from an unknown joint distribution P , and X and Y denote
random variables such that (X,Y ) ∼ P . Consider now M
annotators that observe {xn}Nn=1, and provide estimates of
labels. Let fm(xn) ∈ {1, . . . ,K} denote the label assigned
to datum xn by the m-th annotator. The task of unsupervised
ensemble classification is, given only the annotator responses
{fm(xn),m = 1, . . . ,M}Nn=1, to estimate the ground-truth
labels of the data {yn}.

Most prior works tackle the unsupervised ensemble clas-
sification task using the Dawid and Skene model [6]. Under
this model, responses of different annotators per datum, are
conditionally independent, given the ground-truth label Y of
the same datum X; that is

Pr (f1(X) = k1, . . . , fM (X) = kM |Y = k)

=
M∏

m=1

Pr (fm(X) = km|Y = k) .

This model, while convenient, fails to account for depen-
dencies between annotators. To circumvent this issue, the
present work puts forth a more general model that allows for
dependencies between annotators. In this model we consider
L groups of dependent annotators. Suppose that group ` has
M` annotators (

∑L
`=1M` = M ), and denote the annotator

responses of group ` to datum X as {f (`)m (X)}M`
m=1. The

dependencies within each group ` are captured using a hidden
variable h`(X) ∈ {1, . . . ,K}, conditioned on which the
responses of annotators within the group become independent,
that is

Pr
(
f
(`)
1 (X) = k1, . . . , f

(`)
M`

(X) = kM`
|h`(X) = k

)
=

M∏̀
m=1

Pr
(
f (`)m (X) = km|h`(X) = k

)
∀`. (1)

This suggests that, while dependent on the same hidden
variable, within each group annotators make independent
decisions. The hidden variables {h`(X)}L`=1 are also assumed
conditionally independent given the ground-truth label of the
datum Y , that is

Pr (h1(X) = k1, . . . , hL(X) = kL|Y = k)

=
L∏

`=1

Pr (h`(X) = k`|Y = k) . (2)

This model has been used successfully in [13] as well as in [4]
in the case of distributed detection. A graphical representation
of the proposed model is shown in Fig. 1.

Per group `, each annotator f (`)m can be characterized by the
so called confusion matrix Γ

(`)
m , whose (k, k′)-th entry is

[Γ(`)
m ]kk′ := Γ(`)

m (k, k′) = Pr
(
f (`)m (X) = k|h`(X) = k′

)
.

The K×K matrix Γ
(`)
m has non-negative entries that obey the

simplex constraint,
∑K

k=1 Pr
(
f
(`)
m (X) = k|h`(X) = k′

)
=

1, for k′ = 1, . . . ,K, hence columns of Γ
(`)
m sum up to 1,

Γ
(`)>

m 1 = 1 and Γ
(`)
m ≥ 0. Each column of Γ

(`)
m showcases

the average behavior of annotator m, and its probability
of following the value of the hidden variable h`(X), when
presented with a datum from each class. Collect the set of
constraints per matrix in the convex set C := {Γ ∈ RK×K :
Γ ≥ 0,Γ>1 = 1}, where essentially each column lies on a
probability simplex, and let Cp := {u ∈ RK : u ≥ 0,u>1 =
1} denote the simplex constraint set for a vector. Accordingly,
group ` can be characterized by a K × K confusion matrix
Φ` ∈ C for the hidden variable h`. For this matrix its (k, k′)-
th entry is [Φ`]kk′ := Φ`(k, k

′) = Pr (h`(X) = k|Y = k′) .
Before proceeding we make the following assumptions.

As1. The groups of dependent annotators are known.
As2. Within each group all annotators are better than random.
As3. The majority of hidden variables are better than random.

As1 is used to simplify the proposed algorithm, while As2
and As3 alleviate the permutation ambiguity introduced by the
iterative algorithm in Sec. III. For annotators that are better
than random, the largest elements of each column of their
confusion matrix will be those on the diagonal of Γ

(`)
m ; that is

[Γ
(`)
m ]kk ≥ [Γ

(`)
m ]k′k, for k′, k = 1, . . . ,K.

III. BLIND ENSEMBLE LEARNING WITH DEPENDENT
CLASSIFIERS

Building on the proposed model of the previous section,
this section puts forth a novel approach for blind ensemble
learning using dependent classifiers. Our method exploits the
hierarchical structure of the joint pmf [cf. Fig. 1] in a two
step approach: First, estimates of the hidden variables for all
groups and all data are obtained {ĥ`(xn)}L,N

`=1,n=1; then, the
estimates of the hidden variables are used to obtain an estimate
of data labels {ŷn}Nn=1.
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A. Maximum a posteriori hidden variable estimation

Given only annotator responses for all data, an approach
to estimating hidden variable values for each group, that
minimizes the probability of error, is maximum a posteriori
(MAP) [18] detection. In particular, for datum x the MAP
estimate of h`(x) is

ĥ`(x) = argmax
k∈{1,...,K}

log (L`(k, x) Pr(h`(x) = k)) (3)

where

L`(k, x) := Pr
(
f
(`)
1 (x) = k1, . . . , f

(`)
M`

(x) = kM`
|h`(x) = k

)
denotes the likelihood of x for group `. From (1) it holds that
L`(k, x) =

∏M`

m=1 Pr
(
f
(`)
m (x) = km|h`(x) = k

)
and thus the

MAP estimator for h`(x) can be rewritten as

ĥ`(x) = arg max
k∈{1,...,K}

log p
(`)
k +

M∑̀
m=1

log(Γ(`)
m (f `m(x), k)) (4)

where p
(`)
k = Pr(h`(X) = k). If all classes are considered

equiprobable, then (4) yields the ML estimator of h`(x). In
order to obtain the MAP or ML estimate of the hidden variable,
{Γ(`)

m }M`
m=1 and p(`) = [p

(`)
1 , . . . , p

(`)
K ]> must be available.

Interestingly, the next section will show that {Γ(`)
m }M`

m=1 and
p(`) can be recovered by the statistics of the responses from
annotators in group `.

B. Statistics of annotator responses

For the remainder of this subsection we focus on group
`. Consider each label represented by the annotators us-
ing the canonical K × 1 vector ek, meaning the k-th col-
umn of the K × K identity matrix I. Let f

(`)
m (X) de-

note the response of the m-th annotator in vector for-
mat. Since f

(`)
m (X) is just a vector representation of

f
(`)
m (X), we can write Pr

(
f
(`)
m (X) = k|h`(X) = k′

)
≡

Pr
(
f
(`)
m (X) = ek|h`(X) = k′

)
. With γ(`)

m,k denoting the k-

th column of Γ
(`)
m , it thus holds that

E[f (`)m (X)|h`(X) = k] =

K∑
k′=1

ek′ Pr
(
f (`)
m (X) = k′|h`(X) = k

)
= γ

(`)
m,k (5)

where the first equality comes from the definition of condi-
tional expectation, and the second one holds because ek’s are
columns of I. Using (5) and the law of total probability, the
mean vector response from annotator m, is hence given by

E[f (`)m (X)] =
K∑

k=1

E[f (`)m (X)|h`(X) = k]p
(`)
k = Γ(`)

m p
(`). (6)

The K × K cross-correlation matrix between the responses
of annotators m and m′ 6= m, namely R

(`)
mm′ :=

E[f
(`)
m (X)f

(`)
m′

>
(X)], can be expressed as

R
(`)
mm′ =

K∑
k=1

γ
(`)
m,kγ

(`)>

m′,kp
(`)
k = Γ(`)

m diag(p(`))Γ
(`)
m′

>

= Γ(`)
m P(`)Γ

(`)
m′

>
(7)

where P(`) := diag(p(`)) and we successively relied on
the law of total probability, (1), and (5). Accordingly, it
can be shown that the cross-correlation between annota-
tors m, m′ 6= m and m′′ 6= m,m′, Ψ

(`)
mm′m′′ :=

E
[
f
(`)
m (X) ◦ f

(`)
m′ (X) ◦ f

(`)
m′′

]
forms a K-factor PARAFAC ten-

sor [9]

Ψ
(`)
mm′m′′ =

K∑
k=1

p
(`)
k γ

(`)
m,k ◦ γ

(`)
m′,k ◦ γ

(`)
m′′,k (8)

= [[Γ(`)
m P(`),Γ

(`)
m′ ,Γ

(`)
m′′ ]]K .

Note here that the diagonal matrix P(`) can multiply any of
the factor matrices Γ

(`)
m ,Γ

(`)
m′ , or, Γ

(`)
m′′ .

Let µ(`)
m ,S

(`)
mm′ and T

(`)
mm′m′′ denote the sample counter-

parts of (6), (7) and (8) respectively. The law of large numbers
dictates that as N → ∞ these sample statistics converge to
their true values. The following subsection will introduce an
algorithm for recovering {Γ(`)

m }M`
m=1 and p(`), ` = 1, . . . , L

from the statistics of annotator responses.

C. Confusion matrix estimation algorithm

Having available first-, second-, and third-order statistics of
annotator responses for group `, {µ(`)

m }M`
m=1, {S(`)

mm′}M`

m,m′=1,
and {T (`)

mm′m′′}M`

m,m′,m′′=1, estimates of the confusion matri-
ces can be readily extracted from them [cf. (7),(8)]. This pro-
cedure can be cast as the following constrained optimization
problem

min
{Γ(`)

m ∈C}
M`
m=1

p(`)∈Cp

g`({Γ(`)
m }

M`
m=1,p

(`)) (9)

where

g`({Γ(`)
m },p(`)) :=

M∑̀
m=1

‖µ(`)
m − Γ(`)

m p
(`)‖22

+

M∑̀
m=1
m′>m

‖S(`)
mm′ − Γ(`)

m P(`)Γ
(`)
m′

>
‖2F

+

M∑̀
m=1

m′>m,m′′>m′

‖T (`)
mm′m′′ − [[Γ(`)

m P(`),Γ
(`)
m′ ,Γ

(`)
m′′ ]]K‖2F .

We will solve the non-convex optimization in (9) using the
alternating optimization method described in [24], which is
guaranteed to converge to a stationary point of g` [12]. As2 is
used here to address the permutation ambiguity that is induced
by the tensor decomposition of (9). Interested readers are
referred to [24] for algorithm and implementation details. Note
that this approach is reminiscent of the method of moment
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estimators [17]. After obtaining estimates {Γ̂(`)
m }M`

m=1, and
p̂(`), estimates of the hidden variable {ĥ`(xn)}Nn=1 can be
obtained using the ML/MAP estimator described in (4); that
is for n = 1, . . . , N ,

ĥ`(x) = arg max
k∈{1,...,K}

log p̂
(`)
k +

M∑̀
m=1

log(Γ̂(`)
m (f `m(x), k)). (10)

Upon obtaining hidden variable estimates for all groups and
data {ĥ`(xn)}L,N

`=1,n=1, label estimates for all data {ŷn}Nn=1

can be obtained. Similar to Sec. III-B, estimates of the hidden
variables are represented in vector form as {ĥ`(xn)}L,N

`=1,n=1.
Then, it can be shown that the mean hidden variable of group
`, the K × K cross-correlation between hidden variables `
and `′ 6= `, R``′ := E[h`(X)h>`′ (X)], and the third-order
K×K×K cross-correlation between hidden variables `, `′ 6= `
and `′′ 6= `′, `, Ψ``′`′′ := E [h`(X) ◦ h`′(X) ◦ h`′′(X)] are

E[h`(X)] = Φ`π

R``′ = Φ`ΠΦ>`′ (11)
Ψ``′`′′ = [[Φ`Π,Φ`′ ,Φ`′′ ]]K

respectively, where π := [Pr(Y = 1), . . . ,Pr(Y = K)]> de-
notes the vector of class prior probabilities and Π = diag(π).
Afterwards, we solve a moment matching problem similar
to (9) to compute estimates of the hidden variable confusion
matrices and prior probabilities

min
{Φ`∈C}L`=1

π∈Cp

g({Φ`}L`=1,π) (12)

where

g({Φ`},π) :=
L∑

`=1

‖µ` −Φ`π‖22 +
L∑

`=1
`′>`

‖S``′ −Φ`ΠΦ>`′‖2F

+

L∑
`=1

`′>`,`′′>`′

‖T ``′`′′ − [[Φ`Π,Φ`′ ,Φ`′′ ]]K‖2F

and µ`, S``′ , T ``′`′′ denote the sample counterparts of
E[h`(X)],R``′ and Ψ``′`′′ respectively. As with (9), As3 is
used here to address the permutation ambiguity introduced by
the tensor decomposition of (12). Finally, with the estimated
{Φ̂`}, and π at hand, estimates of data labels are obtained
through an ML/MAP detector

ŷ(x) = arg max
k∈{1,...,K}

log π̂k +
L∑

`=1

log(Φ̂`(h`(x), k)). (13)

The entire ensemble classification process is tabulated in
Alg. 1.

Remark 1. The estimates {ŷn} and {Φ̂`} provided by Alg. 1
can also be employed to initialize the EM algorithm of [6].

Remark 2. Even though for this work, annotator dependency
groups are presumed known, they can also be found using
clustering techniques [13], [27].

Algorithm 1 Blind Multi-class Ensemble Classifier

Input: Annotator responses {f (`)m (xn)}M`,N
m=1,n=1,∀`

Output: Estimates of data labels {ŷn}Nn=1;
1: for ` = 1, . . . , L do
2: Estimate p(`), {Γ(`)

m }M`
m=1 via (9).

3: Estimate ĥ`(xn) via (10) for n = 1, . . . , N .
4: end for
5: Estimate π, {Φ`}L`=1 via (12).
6: Estimate ŷn via (13) for n = 1, . . . , N .

IV. NUMERICAL TESTS

The performance of the proposed algorithm was evaluated
using synthetic datasets. Using both MAP and ML detection in
step 6, Alg. 1 is compared to majority voting (denoted as MV),
the method of [16] (denoted as KOS), as well as the methods
presented in [29] that initialize the EM algorithm (denoted
as EM+MV for the method that uses majority voting for
initialization and EM+Spectral for the method that uses tensor
decomposition for initialization). The metric utilized in all
experiments is the classification error rate (ER), defined as the
percentage of misclassified data, where ER = 100% indicates
that all N data have been misclassified, and ER = 0%
indicates perfect classification accuracy. All results represent
averages over 10 independent Monte Carlo runs, using MAT-
LAB [19]. For the synthetic data tests, N ground-truth labels
{yn}Nn=1, each corresponding to one out of K possible classes,
were generated i.i.d. at random according to π, that is yn ∼ π,
for n = 1, . . . , N . Afterwards, annotators were grouped into
L groups and Φ` and {Γ(`)

m }M`
m=1 per group ` were generated

at random, such that Φ` ∈ C,Γ(`)
m ∈ C, for all m = 1, . . . ,M`.

Then annotator responses are generated as follows: if yn = k,
then the hidden variable h`(xn) will be generated randomly
according to the k-th column of Φ`, denoted as φ`,k; that
is h`(xn) ∼ φ`,k. Finally, if h`(xn) = k′ the response of
annotator m in group ` will be generated randomly according
to γ(`)

m,k′ , that is f (`)m (xn) ∼ γ(`)
m,k′ .

Fig. 2 shows the classification ER for a synthetic dataset
with K = 4, M = 100 annotators belonging in
L = 10 groups, with M` = 10 for ` = 1, . . . , 10,
for varying N . Here data were generated with π =
[0.2951, 0.3281, 0.0460, 0.3308]>. In addition, 7 hidden vari-
able confusion matrices {Φ`} were generated to be better
than random, while 3 were generated with completely random
confusion matrices. In all groups, all annotator confusion
matrices were generated to be better than random. Clearly,
the proposed scheme (denoted as Alg. 1 MAP and Alg. 1
ML) outperforms majority voting, as well as the remaining
methods that are designed to operate under full conditional
independence. As N increases the ER of Alg. 1 decreases.
This makes sense since as N increases, the sample statistics
approach their ensemble counterparts [cf. Sec. III-B], enabling
more accurate estimation of the confusion matrices. Fig. 3
shows the same experiment, but for fixed N = 106, and
varying number of annotators M . Again, Alg. 1 markedly
outperforms the competing alternatives, and its performance
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Fig. 2. Classification ER for a synthetic dataset with K = 4, M = 100,
and L = 10.
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Fig. 3. Classification ER for a synthetic dataset with K = 4, N = 106 and
L = 10.

increases with M . This result suggests that more annotators
are preferable, when their dependencies are taken into account.

V. CONCLUSIONS

This paper introduced a novel approach to blind multi-class
ensemble and crowdsourced classification that relies solely on
the annotator responses to assess their quality and combine
their answers, while also taking into account dependencies
between them. Future research will focus on extensive nu-
merical tests with real datasets, theoretical analysis of the
proposed scheme, as well as algorithms that can infer groups
of dependent annotators, along with distributed and online
implementations.
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