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ABSTRACT
Every device equipped with a digital camera has a unique
identity. This phenomenon is essentially due to a system-
atic noise component of an imaging sensor, known as photo-
response non-uniformity (PRNU) noise. An imaging sensor
inadvertently introduces this noise pattern to all media cap-
tured by that imaging sensor. The procedure for extracting
PRNU noise has been well studied in the context of photo-
graphic images, however, its extension to video has so far
been neglected. In this work, considering H.264 coding stan-
dard, we describe a procedure to extract sensor fingerprint
from non-stabilized videos. The crux of our method is to re-
move a filtering procedure applied at the decoder to reduce
blockiness and to use macroblocks selectively when estimat-
ing PRNU noise pattern. Results show that our method has a
potential to improve matching performance significantly.

1. INTRODUCTION

It is now well established that photo-response non-
uniformity (PRNU) noise associated with an imaging sensor
can be used as a fingerprint to reliably identify an imaging
sensor. The validity of this modality in source camera attri-
bution is extensively studied and found to be reliable enough
to be accepted by courts. The majority of the studies in
this field, including the method for estimating and detecting
PRNU noise associated with a sensor, has mainly considered
photographic images as the application medium.

Most cameras do not save raw sensor data as it is ac-
quired. Therefore, PRNU noise pattern needs to be extracted
from the camera output media which is effectively a pro-
cessed and compressed version of the sensor readings. The
processing steps in a digital camera pipeline have important
implications on the robustness of camera fingerprint extrac-
tion and matching procedures. Not only it may reduce the
strength of the PRNU noise due to compression but it may
also introduce artifacts that yield spurious similarities be-
tween unrelated camera fingerprints.

In the context of image data, since most cameras save im-
ages in high-quality JPEG format, compression is not viewed
as a major hindrance. To cope with sensor-independent arti-
facts due to in-camera processing, PRNU noise estimate is
processed in two ways: First, by zeroing out the means of
its rows and columns to eliminate traces of color interpola-
tion process. And second, by performing Wiener filtering to
suppress blockiness effect due to JPEG coding which reveals
itself as a periodic pattern in the noise estimate at 8×8 block
boundaries.

Videos provide a wealth of data for camera attribution
as the number of frames that can be utilized for fingerprint
extraction is typically very high. However, this apparent
advantage is offset by some severe restrictions. A number
of works have already considered the problem of extracting

camera fingerprints from videos. These work mainly pro-
posed modifications over the existing procedure tailored for
photographic images. To eliminate the blockiness artifact
due to video coding, the initial work in this field [1] proposed
first cropping out noise components at macroblock bound-
aries and then applying the filtering procedure to eliminate
other periodic components. Focusing on video compression
authors in [2] investigated how fingerprint matching accu-
racy varies with with the type of codec, video quality, and
video resolution. They observed the non-linear relation be-
tween the quality of a video and the matching statistic. In [3],
authors proposed using only one type of frames, so called I
frames, in a video sequence, and [4] considered deploying an
additional MACE filter for more reliable extraction of camera
fingerprints. Later work, [5, 6], also considered codecs’ abil-
ity to compensate for missing data under lossy transmission
scenarios by identifying extrapolated block data and exclud-
ing them from fingerprint extraction.

Essentially, the operation of a camera during video cap-
turing is quite different than when taking a photo. At the
acquisition level, in addition to usual color processing steps,
cameras use a different portion of the sensor and offer some
form of image stabilization to reduce blur due to camera
shake. When done electronically, stabilization may introduce
very complex geometric transformations to successive video
frames impairing the fingerprint extraction significantly. In
terms of encoding, the size of a raw video (sequence of im-
ages) is impractically large to store or transfer. Therefore,
video coders need to provide a very efficient representation
of the content. As compared to photos, this results with a far
more compressed media with additional artifacts.

In this work, by focusing on the video coding aspect,
we introduce the procedure to extract a camera fingerprint
from a video. Our approach is based on two key principles.
First, since compression is a major obstacle, we identify and
discard heavily compressed blocks and create a new set of
frames by stitching together remaining blocks. Second, by
intervening in the video decoding process, we remove or mi-
minize effects of the loop filter, the mechanism used by a
video codec to suppress hard blockiness effect. Our method
and results are based on the operation of H.264 codec which
is the most prevalent and popular video compression stan-
dard today.

The remainder of this paper is organized as follows. In
the next section, we briefly discuss critical steps of video
coding workflow from a perspective of how they affect the
inherent PRNU noise. Section 3 describes our method of
identifying macroblocks that will be used during fingerprint
extraction and the removal of the loop filter. Experimental
results and our conclusions are given in Sections 4 and 5,
respectively.
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2. H.264 VIDEO CODING STANDARD

The H.264 compression reduces temporal (inter-frame) and
spatial (intra-frame) correlations by means of predicting
frame regions using other visually similar regions. Instead of
storing or transferring similar frame regions multiple times,
the idea is to transfer a reference region once, then the next
time transfer some prediction parameters to the receiver to let
it predict the relevant region using the reference region and
the prediction parameters.

In H.264, which is a descendent of older block based
compression standards MPEG1/2 and H.263, frames are di-
vided into blocks in a way similar to JPEG coding. Those
blocks have a size of 16 × 16 pixels and are called mac-
roblocks. During coding, macroblocks can be further divided
into sub-macroblocks as small as 4×4 pixels as the basic en-
coding unit. Figure 1 shows a sample partitioning of a frame
into macroblocks and sub-macroblocks.

Figure 1: A sample partitioning of a frame into macroblocks
and sub-macroblocks obtained using Elecard software tool.

In JPEG, blocks are coded in a self contained manner.
That is, they are not predicted from other blocks, and this
is a major difference with video coding. In H.264, a mac-
roblock can be predicted from adjacent macroblocks of the
same frame which makes the block an intra-coded block, or,
it can be predicted from macroblocks of previous and/or fu-
ture frames, which makes it an inter-coded block. The differ-
ence between the prediction and current macroblock is called
residual, and the residuals are the data that are compressed
and transferred along side the prediction parameters.

In a video sequence, frames can have three different
types, namely, I,B, and P frames. An I frame can have only
intra-coded blocks. That is, an I frame is temporally inde-
pendent and self contained. It can be likened to a JPEG im-
age in this sense. However, they are quite different in many
aspects including variable block sizes, use of prediction, inte-
ger transformation based on DCT, variable quantization, and
deployment of a loop filter. The macroblocks in P frame
can use previous I or P frame macroblocks to find the best
prediction. A B frame is similar to a P frame in its coding.
Moreover, it can use future I and P frames when predicting a
macroblock.

Similarly, macroblocks can have I, P or B types. An
I macroblock is intra-coded, where P macroblock is pre-
dicted using a past frame’s macroblock and B macroblock is
predicted using macroblocks of two different frames. That
means a B frame can incorporate I, P or B macroblocks
whereas an I frame can only have I type macroblocks.
Frames in a video follow a specific sequence of I, P and B
frames, e.g., IBBPBBPBB, called group of pictures (GOP).

Each GOP starts with an I frame and includes only one I
frame. The same GOP pattern repeats throughout the video.

During video coding, a frame is divided into blocks of
various sizes. Prediction block of each macroblock is created
using either intra or inter prediction. The difference between
prediction block and the mackroblock itself s called residual
macroblock. A residual macroblock can have negative num-
bers. A good prediction yields a residual macroblock with
small absolute values. Similar to the JPEG compression, the
residual macroblock is transformed into frequency domain
and quantized. However, instead of DCT, an integer trans-
formation is applied. The transformed and quantized matrix
is zig-zag scanned, entropy coded and stored or transferred.
By default, the transformation is applied to 4×4 blocks, but
depending on the selected coding configuration 8× 8 sized
blocks can also be used.

From the standpoint of extracting a camera fingerprint,
the most critical steps of video coding are the quantization
and the loop filtering. These steps are elaborated in the fol-
lowing sections.

2.1 Quantization
With H.264 coding the transform and quantization steps are
designed to minimize computational complexity so that de-
vices using limited-precision integer arithmetic can perform
coding. For this purpose instead of using discrete cosine
transform (DCT), which is used in JPEG, H.264 uses an inte-
ger transform. Moreover, some parts of the integer transform
is combined with quantization into a single step as follows.
Integer transform uses a scaled integer approximation of a
DCT transform matrix. However, unlike a DCT matrix, an
integer transformation matrix is not orthogonal. For orthog-
onalization, it is multiplied by a normalization or a scaling
matrix. Later, the transformed matrix is divided by a quan-
tization step, Qstep. Instead of having a multiplication for
scaling and then a division for quantization, H.264 standard
offers merging these two operations into one multiplication
step which can be very fast when it is realized in hardware.

Therefore, in H.264 standard the actual quantization step
size cannot be directly selected by the user. It can be con-
trolled indirectly as a function of a quantization parameter
(QP). In practice, user decides on the bit-rate of coded video
and the QP is changed accordingly so that the intended rate
can be achieved. Therefore, unlike a single quantization table
as deployed in JPEG, quantization parameters may change
from block to block when coding a frame. Also in contrast
to JPEG, a uniform quantizer step is applied to every coeffi-
cient in a 4×4 or 8×8 block by default. However, frequency
dependent quantization can also be performed for different
compression profiles.

2.2 Loop Filtering
Block-wise quantization performed during encoding yields a
blockiness effect on the output images, H.264 decoder uses
loop filters to compensate this effect by applying a low pass
filter to smooth the block boundaries. The filter is applied up
to 3 pixels from the boundary of 4× 4 blocks. The strength
of the filter and the number pixels affected from filtering de-
pends on several constraints such as being at the boundary of
a macroblock, current QP, and the gradient of image samples
across the boundary.

It must be noted that the loop filter is also deployed dur-
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ing encoding to allow encoder to consider the effect of the
loop filter at the decoder. This is because decoder recon-
structs each macroblock by adding a residual signal to a ref-
erence block identified by the encoder. At the decoder, how-
ever, all the previously reconstructed blocks would have been
filtered. As a result, to mimic this behavior, encoder needs to
perform prediction assuming filtered block data rather than
using original macroblocks. The only exception to this is
intra-frame prediction where only unfiltered blocks are used.

3. FINGERPRINT EXTRACTION

To be able to extract a camera fingerprint from a video one
needs to deal with compression and loop filtering. Since loop
filter is deployed at the decoder and is potentially applied to
all 4× 4 blocks, it must be handled first. In all frames, I
macroblocks are coded using intra-frame prediction; hence,
bypassing the loop filter during decoding will prevent fur-
ther weakening of the PRNU noise. However for P and B
type macroblocks since encoder performs prediction assum-
ing filtered blocks, simply removing the loop filter at the de-
coder will not yield a correct reconstruction. To compen-
sate for this behavior, decoding process must be modified to
reconstruct both a filtered and non-filtered version of each
macroblock. Filtered macroblocks must be used for recon-
structing future macroblocks, and non-filtered ones need to
be used for fingerprint extraction.

Since videos are typically coded at low bit-rates, com-
pression poses the main challenge to camera fingerprint ex-
traction. Two factors help in dealing with irreversible loss
of data. First is that encoder determines the quantization pa-
rameter of each block independently, and the second is due
to the large number of blocks available for fingerprint extrac-
tion. Therefore, our main goal is to identify blocks that can
be utilized for PRNU noise extraction.

Quantization is essentially performed by dividing trans-
form coefficients by Qstep which is determined in terms of the
quantization parameter QP that takes values in the range 1 to
50. The relation between the two parameters are such that a
value of QP = 4 is approximately equivalent Qstep = 1, and
for each 6 higher values of QP, the corresponding values in
Qstep value doubles. Due to this exponential relation, a linear
increase in QP will result with an exponential reduction in
the quality of images and the reliability of the PRNU noise.

To determine the relation between the choice of QP and
the quality of PRNU noise, we utilized 550 photographic im-
ages. These images were captured by the same camera at six
different scenes by moving the camera very smoothly. All
images had a resolution of 12 megapixels and were originally
saved in JPEG lossless format. These images are coded into
H.264 videos each time using a different and fixed quanti-
zation parameter for all blocks, yielding a total of 50 videos.
That is, for each video during H.264 coding QP for all blocks
is set to a fixed value, and the GOP size is fixed to 10 frames
for all videos. The camera fingerprint was generated inde-
pendently using a separate set of photos. The PRNU noise
estimates extracted from video frames are matched with this
known camera fingerprint by computing the the peak to cor-
relation energy (PCE). Figures 2 and 3 display the change in
Peak Signal to Noise Ratio (PSNR) and PCE as a function
of QP. As it can be seen in these figures, compression with
QP = 24 or above significantly eliminates the PRNU noise
in a video frame.

Figure 2: Change in PSNR with respect to QP.

Figure 3: Change in PCE with respect to QP.

The procedure for PRNU noise estimation is known to
depend on the underlying content due to assumed noise
model. Studies done on still images revealed that image
regions with low and very high intensity values as well as
high frequency signal content are less favorable for extrac-
tion [7–9]. To test how these observation apply to video cod-
ing, we cropped out 35,200 blocks of size 520× 390 pix-
els by dividing each video frame into 64 equal sized blocks.
Figure 4 displays how how PCE varies with average block
intensity for the case when encoding was performed under
the setting QP = 10.

Figure 4: Change in PCE with respect to average intensity
computed over blocks of size 520x390 pixels under compres-
sion with QP = 10.

Another factor that affects the PRNU noise estimation
is the texture of the underlying image content which can be
roughly related to the variance of image blocks. Measure-
ments performed on our test videos show that unless variance
of a block is above a value 400−500 there won’t be notice-
able reductions in the measured PCE values. Further, mea-
suring variances of 16× 16 macroblocks in encoded video
frames, we found that 90% of them have a variance less than
10. Therefore, we deduce that only macroblocks with abnor-
mally high variances should be excluded from noise estima-
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tion, for all other macroblocks variance should not be taken
as a major determinant of PCE.

Overall, given an H.264 encoded video, macroblocks that
should be used for estimating PRNU noise can be identified
and sorted on the basis of used quantization parameter and
the average macroblock intensity. To more reliably quantify
the relation between PCE, QP, and the average block inten-
sity, we used 12 videos compressed at varying QP values
(5,10,15,18,21,24,27,30,35,40,45,50). Similar to Fig. 4,
we extracted 35,200 blocks from each video, measured their
average intensity, and computed the PCE of each block with
original camera fingerprint. Figure 5 shows the resulting
three-dimensional curve. Although the blocks here are much
larger that macroblocks in a video frame, this can guide in
identifying the correct macroblocks needed for obtaining a
reliable estimate of PRNU noise.

Figure 5: Change in PCE with respect to average intensity
computed over blocks of size 520x390 pixels under compres-
sion with varying QP values.

4. EXPERIMENTAL RESULTS

We provide results on how the removal of loop filter and the
use of select macroblocks for noise estimation improve the
quality of estimated PRNU noise in comparison to direct ap-
plication of the conventional procedure [7] to video frames.
In our tests, we use videos converted from the same 550 pho-
tographic images at various compression levels. In all cases,
we computed the PCE between the obtained PRNU noise
estimates and the actual camera fingerprint obtained inde-
pendently using another set of images following the standard
procedure.

4.1 Impact of Removing Loop Filter
To determine performance impact of loop filtering, we con-
sider three test cases. The first case forms the baseline where
PRNU noise extraction procedure completely disregards the
loop filter. In the second case, the video is encoded as in
the first case but rather than using the H.264 decoder we
used a modified version that removes the loop filter in the
uncompressed video frames. Lastly, we completely elimi-
nated application of loop filter both at the encoder and de-
coder, thereby leaving quantization related data loss as the
main culprit for a reduced performance. This last case will

yield the best achievable performance and will help us eval-
uate effectiveness of our method.

Tables 1 and 2 provide corresponding results for the tests
where average PCE values for decoded I, P, and B frames
are calculated separately for two videos compressed at dif-
ferent bitrates. In both cases, I frames yield the best noise
estimate, followed by P and B frames. This is because I
frames are compressed less than P and B frames and B frames
are compressed the most. More critically, results show that
removal of loop filter at the decoder improves PCE values
by 30− 60% depending on the frame type. However, at the
same time, removing the loop filter at the decoder is not as
effective for P and B frames as not using the loop filter at
all. (Since I frames are subject to intra-frame prediction, re-
moval of loop filter at the decoder is sufficient.) We believe
this difference arises because when encoder performs predic-
tion assuming decoder will perform loop filtering, resulting
residuals include more high frequency content making them
more susceptible to compression induced data loss. Hence, a
more accurate reconstruction of PRNU noise pattern is pos-
sible when loop filtering is not deployed.

Table 1: Influence of Removing Loop Filter On a Video
Compressed at 50 mbits/sec

Loop Filtering Test Cases I frames P frames B frames
Encoding and decoding 14165 3440 693
with loop filtering
Filter removed at decoder 18168 5397 1116
No filtering at encoder 18168 5501 1175
or decoder

Table 2: Influence of Removing Loop Filter On a Video
Compressed at 8 mbits/sec

Loop Filtering Test Cases I frames P frames B frames
Encoding and decoding 117 10 1.92
with loop filtering
Filter removed at decoder 230 17 3.09
No filtering at encoder 230 17.2 3.1
or decoder

To ensure removal of loop filter does not introduce a sys-
tematic artifact we also examined its influence on false pos-
itive matches. For this purpose we considered 23 camera
fingerprints and matched them with noise estimates obtained
from both the filter removed and non-removed videos. The
difference in resulting PCE values for all cameras were neg-
ligible. Hence, we assert that presence of loop filtering does
not contribute to false-positive matches.

4.2 Splicing Macroblocks
Given it is possible to sort macroblocks in order of decreas-
ing reliability, we determine how much improvement can be
obtained by leaving out macroblocks that won’t contribute to
PRNU noise estimation significantly. For this, our method
first removes the loop filter in the video and proceeds to ex-
tract PRNU noise from full frames. However, rather than
matching the resulting noise estimates directly with the cam-
era fingerprint, we utilize the relation observed in Fig. 5 to
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re-arrange macroblocks with respect to their QP values and
macroblock intensities by splicing together new frames of
PRNU noise. In the newly generated frames, it is necessary
for macroblocks to preserve their position in their original
frames to prevent any geometric distorion. Essentially, to
maximize PCE, we fill up new frames by select PRNU noise
blocks from other frames. Resulting spliced-up frames are
then matched with the camera fingerprint.

To test the overall improvement, we created an H.264
video using 500 of the available photographic images with
5 mbps bitrate at 20 frames/sec. We must note here that
since each frame has 12 megapixels, coding at the bitrate of
5 mbps in fact corresponds to a low-quality video. Figure
6(a), shows the PCE values obtained by matching the PRNU
noise extracted from each frame with the camera fingerprint.
It can be seen that PCE values vary in the range 0−110 with
only seven frames yielding a PCE value above 60, the typi-
cal threshold value used to make a match decision. Similarly,
Fig. 6(b) shows computed PCE values when effects of loop
filter are removed at the decoder. We see that the range for
PCE values is extended to span 0−230 with 33 frames yield-
ing a PCE value above 60.

Finally, we spliced together 50 frames by choosing best
blocks in accordance with the relation shown in Fig. 5 from
all decoded video frames. Figure 7 shows resulting PCE val-
ues associated with spliced frames. As expected ordering of
PCE values exhibit a decreasing characteristic with the best
matching frame having a value above 470 and with 45 frames
yielding a PCE above 60. This result asserts that when ap-
plied to video fingerprint verification, our method will make
more reliable decisions. In a similar manner, our method will
enable creation of a more reliable camera fingerprint from a
video.

(a) (b)

Figure 6: PCE values corresponding to 500 frames of a (a)
loop filtered video and (b) loop filter removed video.

Figure 7: PCE values corresponding to 50 frames generated
by macroblock splicing from a loop filter removed video.

5. CONCLUSIONS

Extraction of a camera fingerprint from a video involves
many challenges. The change in the sensor’s acquisition be-
havior, the necessity for stabilization, and the need for very
effective compression are at the core of these challenges.
Therefore, the procedure for camera fingerprint extraction
from videos have to be designed with this focus. In this
work, we address the problem of extracting PRNU noise
from videos compressed using H.264 coding standard. The
method we described considering the video coding aspect
needs to be further enhanced to address the acquisition and
stabilization aspects.
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