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Abstract—L1-norm Principal-Component Analysis (L1-PCA)
has been shown to exhibit sturdy resistance against outliers
among the processed data. In this work, we propose L1-IPCA:
an algorithm for incremental L1-PCA, appropriate for big-data
and streaming-data applications. The proposed algorithm updates
the calculated L1-norm principal components as new data points
arrive, conducting a sequence of computationally efficient bit-
flipping iterations. Our experimental studies on subspace es-
timation, image conditioning, and video foreground extraction
illustrate that the proposed algorithm attains remarkable outlier
resistance at low computational cost.

Index Terms—Image/video processing, incremental PCA, L1-
norm PCA, outliers, online learning.

I. INTRODUCTION

Principal-component analysis (PCA) [1] is a data analysis
method with numerous applications in image/video processing,
computer vision, machine learning, and pattern recognition,
among many other fields [2], [3]. Broadly, PCA seeks a number
of orthogonal directions, known as principal components (PCs),
that define a subspace wherein data presence is maximized.
In its standard form, PCA quantifies data presence by the
squared L2-norm (sum of squared entries) of the subspace-
projected data points. Mathematically, given data matrix X =
[x1,x2, . . . ,xN ] ∈ RD×N with rank d ≤ min{D,N} and a
number of PCs K ≤ d, PCA is formulated as [4]

QL2 = argmax
Q∈RD×K

QTQ=IK

N∑
i=1

‖QTxi‖22, (1)

The great popularity of PCA can be partially attributed to its
low-cost and widely accessible solution by means of singular-
value decomposition (SVD) [5].

On the negative side, it is long observed that PCA is very
sensitive against faulty data points that lie far away from the
nominal measurements, known as outliers [6]. This sensitivity
of PCA is due to its reliance on the L2-norm, which places
quadratic emphasis on the magnitude of each data point, bene-
fiting peripheral/outlying ones. Regretfully, outliers are encoun-
tered in many real-world big-data applications due to various
causes, such as sensor malfunctions, sporadic interference, and
errors in data transcription and labeling. To counteract outliers,
an L1-norm-based reformulation of standard PCA has been
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proposed. Replacing the L2-norm in (1) by the L1-norm, L1-
PCA is formulated as [7]

QL1 = argmax
Q∈RD×K

QTQ=IK

N∑
i=1

‖QTxi‖1, (2)

where the L1-norm (sum of the absolute entries) ‖ · ‖1 is less
responsive to the high-valued entries of its argument. So far, L1-
PCA has demonstrated high outlier resistance in many signal
processing and machine learning applications. Early approxi-
mate solvers for (2), with cost similar to SVD, were presented
in [8]–[10]. In [7], authors offered the first exact solution to
L1-PCA in (2), with cost O(NdK−K+1) (for d constant with
respect to N ). Most recently, authors in [11] introduced a
state-of-the-art approximate algorithm for L1-PCA with cost
O(NDmin{N,D}+N2(K4+DK2)+NDK3) –comparable
to the cost of SVD for solving PCA in (1). Importantly, the
algorithm of [11] attains small (if any) performance degradation
in the metric of L1-PCA, outperforming many preexisting low-
cost counterparts.

At the same time, it is understood that many real-world appli-
cations call for incremental PCA solutions. This is, e.g., when
data-size N in (1) is too large for efficient batch processing
(big-data applications), or when the entire dataset is unavailable
initially and data points (columns of X) arrive in a streaming
fashion (e.g., in online video processing [12]–[14], or dynamic
face-ID [15]). Clearly, in the case of data streaming, it would
be computationally inefficient to append the new data points
next to the previously collected ones and update the PCs with
a new PCA/SVD on the augmented batch from scratch.

To analyze big and/or streaming data, an array of incremental
PCA algorithms have been proposed in literature [16]–[18]. The
majority of these algorithms perform well when the processed
data are corruption-free. However, relying to the L2-norm PCA
formulation of (1), most of these algorithms tend to be sensitive
against outliers amongst the processed data. Thus, the need rises
for incremental PCA calculators that also offer sturdy outlier
resistance. To this end, the first incremental L1-PCA solvers
in the literature were proposed in [19], [20], in the context of
video foreground extraction, and [21], in the context of visual
object tracking. Other works propose incremental robust-PCA
that considers the processed matrix to be summation of a low-
rank component of interest and a sparse component that models
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L1-BF Algorithm
Input: X ∈ RD×N , Binit ∈ {±1}N×K and K ≤ d = rank(X)

1: Bbf ← BF(X,Binit,K)

2: (U, ΣK×K , V)← SVD(XBbf)

3: Qbf ← UVT

Output: Qbf

Function: B← BF(XD×N ,BN×K ,K)

1: ω ← K||X[B]:,1||2
2: while true (or terminate at NK iterations)
3: for m ∈ {1, 2, . . . , N}, l ∈ {1, 2, . . . ,K}
4: am,l ← ||XB− 2Bm,lxmeT

l,k||∗
5: (n, p)← argmaxm,l am,l

6: if ω < an,p

7: Bn,p ← −Bn,p , ω ← an,p

8: else, break
9: Return B

Fig. 1: Pseudo-code of L1-BF algorithm [11] for the approximate
computation of K L1-PCs of X (MATLAB code available in [25]).

the outliers [12], [13], [22], [23]. Robust Grassman-manifold
tracking algorihtms [24] have also been proposed.

Inspired by the algorithms of [19]–[21], in this work we
propose L1-IPCA: an algorithm for incremental L1-PCA that
attains remarkable outlier resistance, high convergence speed,
and low computational cost. Our experimental studies on sub-
space estimation, video processing, and image conditioning il-
lustrate the superior performance and efficiency of the proposed
algorithm, compared with popular alternatives.

II. BRIEF REVIEW OF EXACT AND APPROXIMATE BATCH
L1-PCA

A. Exact L1-PCA

In [7] it was shown that if

Bopt = argmax
B∈{±1}N×K

||XB||∗, (3)

where nuclear norm ||.||∗ returns the sum of the singular values
of its matrix argument, and XBopt

SVD
= UΣVT, then QL1 = UVT

is the optimal solution to the L1-PCA problem in (2). That is,
L1-PCA can be equivalently reformulated as a combinatorial
optimization problem, searching for an optimal antipodal binary
matrix Bopt ∈ {±1}N×K that solves (3). In [7] it was shown
that the cost for solving (3), and therefore L1-PCA in (2), is
O(2NK) in general and O(NdK−K+1) when d is a constant
with respect to N .

B. L1-PCA via Bit-flipping

In order to compute the K L1-PCs of X ∈ RD×N with
reduced computational cost, authors in [11] proposed L1-BF: a
suboptimal algorithm that approximates Bopt ∈ {±1}N×K by
an antipodal binary matrix Bbf ∈ {±1}N×K obtained through
a sequence of bit-flipping (BF) iterations. Specifically, L1-BF
initializes at an arbitrary Binit ∈ {±1}N×K (or smarter initial-
ization for faster convergence) and executes a sequence of BF

iterations, such that the metric in (3) increases monotonically.
That is, at the t-th iteration, L1-BF browses all bits that are
not flipped since initialization and identifies the single bit that,
when flipped, offers the highest increase in the metric of (3) as

(n, p) = argmax
(m,l)∈{1,2,...,N}×{1,2,...,K}

||XB(t)−2B(t)
m,lxmeTl,K ||∗, (4)

where xm is the m-th column of data matrix X and el,K denotes
the l-th column of the size-K identity matrix. Then, L1-BF
flips (n, p)-th bit by setting B(t+1) = B(t) − 2B

(t)
n,pen,NeTp,K .

Iterations terminate and Bbf is returned when the metric in (3)
cannot further increase by any single bit flip. Finally, Bbf is
used to approximate the K L1-PCs of X as

Qbf = UVT , (5)

where XBbf
SVD
= UΣVT. L1-BF constitutes an important build-

ing block of the algorithm proposed in this work. Therefore,
we offer a pseudocode for L1-BF in Fig. 1.

III. PROPOSED ALGORITHM FOR INCREMENTAL L1-PCA
The proposed algorithm strives to approximate incrementally

the outlier-free PCs of a given data matrix X ∈ RD×N . We
commence by collecting few data points in the small batch
matrix X

(0)
B ∈ RD×NB with rank(X(0)

B ) ≥ K. Then, we
compute/approximate the K L1-PCs of X

(0)
B , Q

(0)
bf ∈ RD×K ,

by means of the L1-BF procedure of Fig. 1. Subsequently, all
other columns of X are processed one-by-one in a streaming
fashion.

When the new point x
(t)
in = [X]:,NB+t, t = 1, 2, . . . , N−NB

arrives for processing, it is first subjected to an L1-PCA-
informed reliability evaluation [26]–[28]. Specifically, the reli-
ability of x

(t)
in is quantified as the normalized magnitude of its

projection onto the already available L1-PCs Q
(t−1)
bf ∈ RD×K ,

r(x
(t)
in ) =

||Q(t−1)T
bf x

(t)
in ||22

||x(t)
in ||22

. (6)

We observe that 0 ≤ r(x
(t)
in ) ≤ 1. Clearly, high reliability,

close to 1, indicates that x
(t)
in is coherent with the previously

calculated Q
(t−1)
bf . Subsequently, the calculated reliability is

compared with a predefined threshold τ . If r(x(t)
in ) ≤ τ , then

x
(t)
in is considered to be a possible outlier with respect to Q

(t−1)
bf

and, therefore, it is discarded. If, on the other hand, r(x(t)
in ) > τ ,

then x
(t)
in is admitted for processing towards updating the L1-

PCs in Q
(t−1)
bf . Specifically, the updated Q

(t)
bf is set to the L1-

PCs of the augmented batch

Y(t) = [X
(t−1)
B , x

(t)
in ] ∈ RD×(NB+1). (7)

Instead of calculating the L1-PCs of Y(t) from scratch,
the proposed algorithm incrementally adapts the previously
computed L1-PCs in Q

(t−1)
bf , towards both complexity savings

and performance enhancement. Specifically, in this adaptation
step, we first calculate

Binit(t) = sgn(Y(t)TQ
(t−1)
bf ). (8)
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Then we run L1-BF iterations on Y(t), initialized at Binit(t) ,
as demonstrated in the L1-BF update (L1-BFU) routine of Fig.
2. Upon convergence (or termination –see line 2 of function
BF in Fig. 1), L1-BFU returns the new, incrementally updated
L1-PCs, Q

(t)
bf .

After Q
(t)
bf is computed, the reliability of each point in the

current augmented batch Y(t) is re-evaluated as

r([Y(t)]:,j) =
||Q(t)T

bf [Y(t)]:,j ||22
||[Y(t)]:,j ||22

, (9)

j = 1, 2, . . . , NB + 1. To maintain constant memory/storage
and computational demands, we remove from the augmented
batch Y(t) the column (data point) that attains the lowest
reliability with respect to the updated L1-PCs in Q

(t)
bf . That

is, we calculate

j∗ = argmin
j∈{1,2,...,NB+1}

r([Y(t)]:,j) (10)

and then update the batch as

X
(t)
B = [Y(t)]:,1:j∗−1,j∗+1:NB+1. (11)

Thus, the size of the carried over batch X
(t)
B is maintained

constant across t, equal to D ×NB .
The proposed algorithm can be viewed as a modified ver-

sion of the incremental L1-PCA calculator proposed in [19].
Specifically, L1-IPCA differs from the algorithm of [19] in
two main ways. First, in contrast to [19], L1-IPCA applies
an L1-informed reliability pre-check by means of which it
rejects incoming points that appear to be outliers. This fea-
ture adds a very effective second layer of defense against
faulty/corrupted data points, which leads to superior subspace
estimation with fewer data points processed. Second, L1-IPCA
attains significantly reduced computational cost, by initializing
the BF iterations at the Binit(t) of (8), instead of the exhaustively
derived initialization of [19].

IV. EXPERIMENTAL STUDIES

A. Subspace Estimation

In this first study, we evaluate the performance of the
proposed algorithm on synthetic data. We set D = 5 and
define s ∈ R(D=5)×1, with ‖s‖2 = 1, and the nominal data
distribution N (05, αssT ), for some α > 0. We draw N = 250
points from this nominal distribution and form data matrix
X ∈ R5×250, verifying that rank(X) = D = 5. Next, we
define z ∈ R5×1, with ‖z‖2 = 1 and arccos(zT s) = 78°,
and the outlier distribution N (05, βzzT ), with β

α = 30 (i.e.,
outliers have 30 times higher variance than nominal points). We
replace few of the columns of data matrix X with points from
the outlier distribution. Then, we set NB = 20, τ = 0.55, and
K = 1 and run the proposed incremental L1-PCA algorithm,
seeking to identify the nominal data basis s. We consider that
1 out of the 20 points in X

(0)
B and 3 out of the remaining

230 points in X are outliers. The performance of our algorithm

Proposed L1-IPCA
Input: X ∈ RD×N , K ≤ rank(X) and τ

1: XB = [X]:,1:NB (NB such that rank(XB) ≥ K)
2: Binit ← arbitrary
3: Qbf ← L1-BF(XB ,B

init,K)

4: for t = 1, 2, . . . , N −NB

5: xin = [X]:,NB+t

6: (Qbf,XB)← L1-BFU (XB ,xin,K,Qbf, τ)

Output: Qbf

Function: (Qbf,XB)← L1-BFU (XB ,xin,K,Qbf, τ )
1: rin = reliability(xin,Qbf)

2: if rin > τ

3: Y ← [XB ,xin]

4: Binit ← sgn(YTQbf)

5: Qbf ← L1-BF(Y,Binit,K)

6: r← reliability(Y,Qbf)

7: j∗ ← argminj∈{1,2,...,NB+1}rj

8: XB ← [Y]:,[1:j∗−1, j∗+1:NB+1]

9: Return Qbf, XB

Function: r← reliability (A,Q)

1: for j = 1, 2, . . . , N = size(A, 2)

2: a← [A]:,j

3: rj ← ||QT a||22
||a||22

4: Return r = [r1, r2, . . . , rN ]T

Fig. 2: Proposed L1-IPCA algorithm for incremental L1-PCA.

is evaluated by means of the standard subspace dissimilarity
metric

e(t) = 1− ||s
Tq(t)||22
||q(t)||22

(12)

where q(t) ∈ R5×1 is the incrementally calculated L1-PC after
the t-th update measurement is processed. Ideally, we want e(t)

to be as close to zero as possible. We repeat the experiment
1000 times and plot in Fig. 3a the average e(t) versus update
measurement index t. Together with the proposed algorithm,
we plot the performance (on the exact same data) of ISVD
[17], SVD (SVD anew on the entire [X]:,1:t, for every t), the
GRASTA algorithm of [24], the method of [18], and the incre-
mental L1-PCA of [21]. We observe that [17], [18], and SVD
start at relatively high average dissimilarity due to the presence
of one outlier in the first 20 points and the outlier-sensitivity
of their L2-norm initialization. Their performance improves
as they process nominal points and deteriorates instantly each
time they process an outlier (depicted by dotted vertical lines).
GRASTA [24] starts at an intermediate point due to its arbitrary
initialization and adapts well until an outlier appears, when
it also deviates immediately from the nominal subspace. The
algorithm of [21] starts from a low dissimilarity point, as it
is initialized on outlier-resistant L1-PCs (calculated by means
of L1-BF on X

(0)
B ), and adapts well until an outlier occurs.

Then it momentarily deviates and recovers quickly when new
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Fig. 3a: Subspace dissimilarity versus update measurement index
(K = 1, D = 5, N = 250, and NB = 20).
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Fig. 3b: Cumulative time versus update measurement for K = 1 (D =
5, N = 250 and NB = 20).

nominal points arrive. The proposed method also starts from
a low subspace dissimilarity point and then it stays robust
against outliers while it converges fast to the lowest subspace
dissimilarity across the board.

In Fig. 3b, we plot the average time needed by each algorithm
for PC adaptation, versus the update measurement index t. We
observe that all methods display similar average computation
time. GRASTA [24], ISVD [17] and [18] display consistently
low computation time, while the computation time of batch
SVD increases with the number of measurements processed.
The proposed algorithm is slightly faster than the method of
[21]. Interestingly, the average computation time of L1-IPCA
drops significantly at the indices that correspond to the three
outliers, as they are rejected by means of the L1-PCA-informed
pre-check and they trigger no PC-update processing.

B. Image Conditioning

In this experiment, we perform image conditioning by means
of L1-IPCA. Specifically, we first select 13 images of a person’s
face from the PICS database [29], captured under varying illu-

(a) (b) (c)

(d) (e)

Fig. 4: (a) Original face image with glare. Image conditioned with (b)
ISVD [17], (c) the method of [18], (d) GRASTA [24], and (e) the
proposed L1-IPCA.

mination conditions and exhibiting glare and shadow artifacts.
Then, we crop all images to 200× 200 pixels, vectorize them,
and arrange them as columns of data matrix X ∈ R40000×13.
Our goal is to extract the background image (face) by means of
L1-PCA, eliminating glare and shadow artifacts as foreground
outliers.

We set NB = K = 4 and τ = 0.975 and apply the L1-IPCA
method to obtain, after all 13 images are processed, the L1-PCs
Qbf. To remove undesired illumination artifacts, each vectorized
image xi = [X]:,i is projected on Qbf as QbfQ

T
bfxi. Our

image conditioning results are presented in Fig. 4. The proposed
method is compared with ISVD [17], GRASTA [24], and the
method of [18]. We observe that [17], [18] retains most of the
glare and shadows in the original face image. GRASTA [24]
performs comparatively better glare rejection. Our algorithm
appears to outperform all alternatives, eliminating glare and
limiting significantly the shadows.

C. Dynamic Video Foreground Extraction

Video foreground extraction finds important applications in,
e.g., security surveillance, human-computer interaction, and
traffic monitoring [30], [31]. The static background of each
frame comprises the principal subspace whereas moving objects
(e.g., people, vehicles) in the foreground constitute numerical
outliers. In this experiment, we use a video of N = 438
202 × 269 frames, included in the popular CAVIAR database
[32]. Each video frame is vectorized and arranged as a column
of data matrix X ∈ R54338×438. We set NB = 5, K = 5, and
τ = 0.985 and run the proposed algorithm on X to calculate
incrementally its L1-PCs in Qbf ∈ RD×K . Then, the static
video background in the i-th frame xi = [X]:,i is identified
by the projection QbfQ

T
bfxi. Accordingly, the foreground of

the frame is extracted as xi − QbfQ
T
bfxi. The calculated

background and foreground components of the 200-th frame
of the processed video are presented in Fig. 5. The results of
the proposed L1-IPCA are compared with those of ISVD [17],
the method of [18], and GRASTA [24]. The methods of [16]–
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5: (a) 200-th frame of the processed video. Background extracted
by (b) ISVD [17], (c) method of [18], (d) GRASTA [24], and (e)
proposed L1-IPCA. Foreground extracted by (f) ISVD [17], (g) method
of [18], (h) GRASTA [24], and (i) proposed L1-IPCA.

[18] exhibit, in different extents, visible ghostly appearances of
the man in the background component. However, the proposed
algorithm manages to identify successfully the background and,
accordingly, extract a significantly more precise foreground
(both the man and his shadow, with accurately fitted outline),
compared to its counterparts.

V. CONCLUSIONS

We presented L1-IPCA: an algorithm for incremental L1-
PCA, appropriate for big-data and streaming applications. The
proposed algorithm first conducts an L1-PCA-informed reli-
ability check to every newly collected point. Then, reliable
new points are processed for updating the computed L1-PCs
through computationally efficient bit-flipping iterations. Our ex-
perimental studies on subspace estimation, image conditioning,
and video foreground extraction demonstrated that L1-IPCA
attains sturdy outlier resistance, converges fast to the nominal
subspace, and has low computational cost.
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