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Abstract—An electrolarynx (EL) is a widely used device to
mechanically generate excitation signals, making it possible
for laryngectomees to produce EL speech without vocal fold
vibrations. Although EL speech sounds relatively intelligible, is
significantly less natural than normal speech owing to its mechan-
ical excitation signals. To address this issue, a statistical voice
conversion (VC) technique based on Gaussian mixture models
(GMMs) has been applied to EL speech enhancement. In this
technique, input EL speech is converted into target normal speech
by converting spectral features of the EL speech into spectral and
excitation parameters of normal speech using GMMs. Although
this technique makes it possible to significantly improve the
naturalness of EL speech, the enhanced EL speech is still far
from the target normal speech. To improve the performance of
statistical EL speech enhancement, in this paper, we propose an
EL-to-speech conversion method based on CLDNNs consisting of
convolutional layers, long short-term memory recurrent layers,
and fully connected deep neural network layers. Three CLDNNs
are trained, one to convert EL speech spectral features into
spectral and band-aperiodicity parameters, one to convert them
into unvoiced/voiced symbols, and one to convert them into
continuous F0 patterns. The experimental results demonstrate
that the proposed method significantly outperforms the conven-
tional method in terms of both objective evaluation metrics and
subjective evaluation scores.

Index Terms—electrolaryngeal speech, statistical voice conver-
sion, speech enhancement, deep neural network

I. INTRODUCTION

Speech communication plays an important role in human-to-
human communications. Speech signals uttered by a speaker
can convey not only linguistic information but also paralin-
guistic information, such as his/her individuality and emotions,
to listeners. In a speech production mechanism, two main
parts based on physical modeling of a human body are
considered, an excitation generation part and a resonance part.
In the excitation generation part, source excitation sounds
are generated by vibrations of the vocal folds. Then, in
the resonance part, they are convoluted with the acoustic
resonance characteristics of a vocal tract shape determined
by articulatory configurations. Therefore, speech disorders are
caused if part of the speech organs is injured. A typical cause
of speech disorders is a laryngectomy, which is surgery to
remove the larynx including the vocal folds to treat laryngeal
cancer, making a person lose the ability to produce source
excitation sounds. People who have undergone this surgery
are called laryngectomees.

To produce speech signals without using vocal fold vibra-
tions, a device called an electrolarynx (EL) is widely used

by laryngectomees to mechanically generate excitation signals
from outside of their bodies. These excitation signals are
conducted into the speakers’ oral cavity and articulated to
produce speech sounds. Although the produced speech called
electrolaryngeal speech (EL speech) is relatively intelligi-
ble [1], there are two main problems. First, to make EL speech
intelligible, the EL must generate quite loud excitation signals.
As a result, the excitation signals are easily emitted outside as
noise sounds, reducing the quality and intelligibility of the EL
speech. The other problem is unnatural sounds in EL speech
caused by the mechanically generated excitation signals. The
acoustic characteristics of EL speech are very different from
those of natural speech, for example, different spectral en-
velopes, different aperiodic components, no unvoiced sounds,
and unnaturally varying F0 patterns. Consequently, EL speech
sounds mechanical and artificial compared with natural speech.

To address these issues, two approaches have been pro-
posed. One approach is based on noise suppression [2] and
the other is based on statistical voice conversion (VC) [3].
The noise suppression approach focuses on reducing the
noise components leaked from the excitation signals generated
by the EL. Several techniques based on fundamental noise
suppression methods, such as spectral subtraction [4]–[6]
and Wiener filtering [7] have been proposed. Although these
techniques are effective for reducing the noise components
and making the EL speech more intelligible, the enhanced EL
speech suffers from musical noise caused by the processing
for noise suppression. Moreover, the improvements of EL
speech yielded by this approach are limited because most of
the acoustic characteristics of EL speech are not modified,
and therefore, those of the enhanced EL speech are still
very different from those of natural speech. On the other
hand, the VC-based approach directly modifies these acoustic
characteristics of EL speech, including spectral envelopes, ape-
riodicities, unvoiced/voiced information, and F0 patterns [8],
[9]. In this technique, acoustic features extracted from EL
speech are converted into those of target natural speech using
a conversion function trained with parallel data consisting of
utterance pairs of the EL speech and the target natural speech,
and converted speech signals are generated from the converted
acoustic features. It has been reported that the naturalness is
significantly improved by this approach [8], [9]. However, this
approach suffers from various errors, such as conversion and
modeling errors. Consequently, the converted speech (i.e., the
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enhanced EL speech) is still far from natural. Therefore, it is
desirable to develop a VC technique to convert EL speech to
more natural-sounding speech.

Recently, statistical VC techniques have been significantly
improved in the area of speaker individuality conversion [10].
As widely observed in areas of machine learning, deep learn-
ing (DL) methods are effective for improving the conversion
accuracy of the statistical VC techniques [11]–[17]. In conven-
tional EL speech enhancement, relatively traditional statistical
VC techniques based on Gaussian mixture models (GMMs)
and the maximum likelihood parameter generation (MLPG)
method [18] are used. Therefore, it is expected that the
performance of EL speech enhancement will be significantly
improved by applying the state-of-the-art DL methods.

In this paper, we propose an EL speech enhancement
technique based on CLDNNs [19] consisting of convolutional
layers, long short-term memory recurrent layers, and fully
connected layers. The convolutional layers are used to ef-
fectively extract useful information in the conversion from
a spectral sequence of the EL speech. The recurrent layers
are used to model the dynamic characteristics of speech
parameters. The fully connected layers are used to model
nonlinear mappings of speech features between the EL speech
and natural speech. We conduct both objective and subjective
evaluations to investigate the effectiveness of the proposed
method.

II. EL SPEECH ENHANCEMENT BY GMM-BASED VC

In the EL speech enhancement by GMM-based VC, a
segmental feature vector transformed from an input EL mel-
cepstrum sequence by principal component analysis (PCA) is
converted into acoustic features of target normal speech such
as unvoiced/voiced symbols, F0 patterns, aperiodicities, and
the mel-cepstrum using GMMs as conversion models. These
conversion models are separately trained using joint feature
vectors of the segmental feature vector and each target feature
vector. Finally, the converted speech is generated using a
vocoder with the converted acoustic features. In this section,
we describe the training process and conversion process.

A. Training process

In the training process, joint probability density functions of
acoustic features of the EL speech and target normal speech
are modeled with GMMs using their parallel data set. As the
acoustic features, we employ the segmental feature vector Xt

of the EL speech and the 2D-dimensional joint static and
delta feature vector Y t = [y⊤

t ,∆y⊤
t ]

⊤ of the normal speech
consisting of a D-dimensional static feature vector yt and its
dynamic feature vector ∆yt at frame t, where ⊤ denotes the
transpose of the vector. Each joint probability density modeled
by the GMM is given by

P (Xt,Y t|λ)

=
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where N (·;µ,Σ) denotes the normal distribution with mean
vector µ and covariance matrix Σ. The mixture component

2 CNN layers

3 Bi-GRU layers

2 FC layers

Inputs

Outputs 

1 Linear layer 

+

Concatenate

Fig. 1. Network architecture of CLDNN.

index is m. The total number of mixture components is M . λ
is a GMM parameter set consisting of the mixture-component
weight αm, mean vector µm, and covariance matrix Σm

of the mth mixture component. The GMM is trained using
joint vectors Xt and Y t in the parallel data set, which are
automatically aligned to each other by dynamic time warping
using mel-cepstrum distortion as a distance measure.

B. Conversion process
In the conversion process, the segmental feature vector

of the EL speech is converted into target acoustic features
based on MLPG with the GMMs [18]. In this research, GV
constraint [18] for the parameter generation is applied to the
estimation of mel-cepstrum as the target feature.

III. EL SPEECH ENHANCEMENT WITH CLDNN-BASED VC
To improve the naturalness and intelligibility of the en-

hanced speech, we employ CLDNNs as the conversion func-
tion in the EL speech enhancement. The CLDNN was orig-
inally proposed as an acoustic model in automatic speech
recognition, which enabled significant improvements in speech
recognition accuracy [19]. The original CLDNN consisted of
convolutional neural network (CNN) layers, long short-term
memory (LSTM) recurrent layers, and fully connected (FC)
layers with two skipped connections. Although the effective-
ness of the CLDNN has been confirmed in speech recognition,
it has never been applied to statistical VC tasks including EL
speech enhancement. As there are some differences between a
classification task in speech recognition and a regression task
in EL speech enhancement, it is worth applying the CLDNNs
to EL speech enhancement and investigate its effectiveness.

A. Network architecture
Figure 1 shows the network architecture of the CLDNN for

EL speech enhancement. For the inputs of the first CNN layer,
a one-dimensional feature vector at frame t is transformed
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Fig. 2. Conversion process of EL speech enhancement with CLDNN-based VC.

into a two-dimensional feature matrix by concatenating several
preceding and succeeding frames to capture contextual infor-
mation from the spectral envelope sequence of the EL speech,
which is essential to achieve the conversion from unnatural
speech features into natural speech features in EL speech
enhancement. Note that PCA is used in the conventional
method but the CNN is used in the proposed method. There-
fore, nonlinear and trainable feature extraction is achieved.
To add the original input feature vector at frame t through a
skipped connection, dimension reduction is performed using
a linear layer with outputs from the CNN layers. Then, the
resulting outputs are fed into the recurrent layers. For the
recurrent layers, we use bidirectional gated recurrent units (Bi-
GRUs) to reduce the number of parameters from that in the
original implementation of the LSTM. The outputs of the Bi-
GRU layers are concatenated into those of the CNN layers.
Finally, the resulting outputs are fed into the FC layers to be
transformed into the output feature vector.

B. Training and conversion processes
In the training process, three CLDNNs are trained. The mel-

cepstrum and aperiodicities, are modeled by a single CLDNN
by concatenating these acoustic features. For the prosodic
features, continuous F0 and unvoiced/voiced (U/V) symbols
are modeled separately because F0, consisting of continuous
values and unvoiced/voiced symbols, is difficult to model
directly.

Figure 2 shows the conversion process of the proposed
EL speech enhancement. In the conversion process, the mel-
cepstrum extracted from the EL speech is converted into U/V
symbols, a continuous F0, the mel-cepstrum, and aperiodicities
by separate CLDNNs. For F0, the estimated continuous F0

sequence is masked using the estimated U/V symbols. Finally,
the enhanced speech is generated by vocoding using these
acoustic features.

IV. EXPERIMENTAL EVALUATION

In this evaluation, we compared the conventional EL speech
enhancement based on GMM-based VC and the proposed EL
speech enhancement based on CLDNN-based VC.

A. Experimental conditions
We used 991 Japanese sentences. One healthy male

Japanese speaker uttered EL speech, which was recorded after

carefully learning how to use an EL to produce EL speech. He
also uttered normal speech as target natural speech by mimick-
ing the prosodic characteristics of his recorded EL speech. The
sampling frequency was set to 16 kHz. STRAIGHT [20] was
used to extract spectral envelopes, which were parameterized
to the 0-24th mel-cepstral coefficients as spectral features. As
the source excitation features, we used a log-scaled F0 value,
the U/V symbol, and aperiodic components in five frequency
bands, i.e., 0-1, 1-2, 2-4, 4-6, and 6-8 kHz, which were also
extracted using STRAIGHT [21]. The frame shift was 5 ms.
The MLSA filter [22] was used as the synthesis filter.

We set the number of training utterances to 64, 254, or 762,
and the other 229 utterances were used for the evaluation. In
the conventional method, the number of mixture components
for mel-cepstrum conversion was set to 16 for 64 and 254
training utterances and 32 for 762 training utterances, and the
number for aperiodicity estimation and F0 estimation was set
to 16. The other parameters in the conventional method were
set to the values in [1].

For the inputs of the first CNN layer, one-dimensional
feature vectors were extended by concatenating 10 preceding
and 10 succeeding feature vectors to obtain 21 × 25 two-
dimensional feature matrices. Two-dimensional convolutions
were performed in each CNN layer using 5 × 5 and 3 × 3
kernels and 2 and 0 zero paddings with batch normalization
and max pooling, respectively. The rectified linear unit was
used for the activation functions of the CNN layers. In the
Bi-GRU layers, the number of hidden units was set to 256
and 5% dropout was applied in each layer. For the FC
layers, the number of hidden units was set to 256 and the
sigmoid function was used as the activation function except
for the output layer. The mean squared error was used for the
loss functions except for the U/V symbols, and binary cross
entropy was used for the U/V decision. For the estimated U/V
symbols, we regarded predicted probabilities of over 0.5 as
corresponding to the voiced frames and the other values as
corresponding to unvoiced frames. All feature vectors except
for the U/V symbols were transformed so as to have zero mean
and unit variance in each dimension before CLDNN modeling.

The weight parameters were initialized using Xavier [23],
and the biases were initialized to zero. The learning rate was
set to 0.05 for mel-cepstrum and aperiodic features and to
0.0005 for prosodic features (i.e., continuous F0 and U/V
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TABLE I
OBJECTIVE EVALUATIONS OF CONVERTED F0 .

Method Log F0 RMSE F0 correlation coefficient
GMM (64) 0.067 0.63
GMM (254) 0.058 0.69
GMM (762) 0.060 0.67
CLDNN (64) 0.062 0.64
CLDNN (254) 0.053 0.68
CLDNN (762) 0.057 0.73

TABLE II
CONFUSION MATRIX OF U/V DECISION FOR THE CONVENTIONAL

METHOD.

GMM (64) GMM (254) GMM (762)
Uest Vest Uest Vest Uest Vest

Utar 0.79 0.21 0.90 0.10 0.92 0.08
Vtar 0.04 0.96 0.13 0.87 0.10 0.90

TABLE III
CONFUSION MATRIX OF U/V DECISION FOR THE PROPOSED METHOD.

CLDNN (64) CLDNN (254) CLDNN (762)
Uest Vest Uest Vest Uest Vest

Utar 0.90 0.10 0.94 0.06 0.89 0.11
Vtar 0.08 0.92 0.10 0.90 0.03 0.97

TABLE IV
OBJECTIVE EVALUATIONS FOR SEGMENTAL FEATURES.

Method Band-aperiodicity RMSE [dB] Mel-CD [dB]
GMM (64) 4.03 7.40
GMM (254) 3.52 6.15
GMM (762) 3.35 5.57
CLDNN (64) 3.75 6.66
CLDNN (254) 3.27 5.66
CLDNN (762) 3.13 5.22

symbols). The mini-batch size for the segmental features (i.e.,
mel-cepstrum and aperiodicities) was 64 frames and that for
the prosodic features was 128 frames. Stochastic gradient
descent was used to optimize the network parameters. The
number of epochs was set to 50. 10% of the training data was
used as development data and the parameters achieving the
minimum development loss were used for the evaluation.

B. Objective evaluations

As objective evaluations, we compared objective measures
of the converted acoustic features based on the root mean
square error (RMSE), correlation coefficients, confusion ma-
trix, and mel-cepstrum distortion (Mel-CD). For the converted
F0, the RMSE of the logarithmic F0, the correlation co-
efficient, and the confusion matrix for U/V symbols were
compared. Note that the RMSE and correlation coefficients
were calculated only using voiced frames. For the segmental
features, the RMSE and Mel-CD were evaluated. The Mel-CD
is calculated as

Mel-CD [dB] =
10

ln 10

√√√√2

24∑
d=0

(
mc

(X)
d −mc

(Y )
d

)2
, (2)

where mc
(X)
d and mc

(Y )
d represent the dth-dimensional com-

ponent of the converted mel-cepstrum and that of the target
mel-cepstrum, respectively.

Table I gives the logarithmic F0 RMSE and F0 correlation
coefficients between the converted and target F0. Note that as
we used normal voices with unnatural F0 patterns similar to
those of EL speech as the target natural speech, these results
do not directly demonstrate the prosodic naturalness of the
enhanced EL speech. However, it is still possible to compare
the conversion accuracy between the two methods and examine
its tendency with increasing of the amount of training data.
Tables II and III show the confusion matrices of the estimated
U/V symbols and target U/V symbols for the conventional
and proposed methods, respectively. With increasing number
of training utterances, the U/V decision accuracy tends to
increase for both methods. CLDNN (762) achieves the best
accuracy, and even when using few training utterances, and
CLDNN (64) achieves similar accuracy to GMM (762). These
results demonstrated that U/V estimation by the proposed
method is better than that by the conventional method.

Table IV gives RMSEs of the converted band aperiodicities
and Mel-CDs. For the segmental features, the proposed method
obviously outperforms the conventional method when using
not only a large number of training utterances but also a small
number of training utterances. Moreover, because CLDNN
(254) achieves similar performance to GMM (762), it can be
concluded that the proposed method is capable of significantly
reducing the amount of training data while maintaining com-
parable conversion performance to the conventional method.

C. Subjective evaluations

For the subjective evaluations, two preference tests were
conducted. In the first test, the naturalness of the enhanced EL
speech was evaluated using a mean opinion score (MOS). The
enhanced speech samples generated by the conventional and
proposed methods and analysis/synthesis of the target natural
speech as a reference were presented to subjects in random
order. The subjects rated the naturalness of the presented
speech using a five-point scale with “5” for excellent, “4” for
good, “3” for fair, “2” for poor, and “1” for very poor. The
number of sentences used in the evaluation for each subject
was 80. The number of subjects was six. In the second test, the
perceptual speech intelligibility of the enhanced speech was
evaluated in the same manner as the naturalness. Note that this
score was different from the intelligibility score determined
by conducting a manual dictation test, but it still showed how
easily the linguistic contents of a speech sample can be listened
to.

Figure 3 shows the experimental results for the naturalness
of the enhanced speech. The proposed method makes it
possible to achieve significant improvements in the naturalness
not only for a large amount of training data (i.e., 762 training
utterances) but also a small amount of training data (i.e., 64
training utterances).

Figure 4 shows the experimental results for the perceptual
speech intelligibility of the enhanced speech. Although the
difference between the conventional method and proposed
method is small when the number of training utterances is
small, the proposed method is capable of significantly improv-
ing the perceptual speech intelligibility when a large amount
of training data can be used. On the other hand, the difference
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Fig. 4. Results for perceptual speech intelligibility.

in the perceptual speech intelligibility between the enhanced
speech and the reference speech (i.e., analysis/synthesis) is
still large compared with that in the naturalness. Therefore, it
is still difficult to achieve high perceptual speech intelligibility
even when using the sophisticated conversion model based on
CLDNNs.

V. CONCLUSION

In this paper, we have proposed a speech enhancement
technique for electrolaryngeal (EL) speech by converting
EL speech into normal speech using CLDNNs consisting
of convolutional, long short-term memory recurrent, and
fully connected layers. Although the conventional EL speech
enhancement technique based on Gaussian mixture models
(GMMs) improves naturalness, its converted speech is still
far from normal speech. To address this issue, in this pa-
per, we have applied the CLDNNs proposed for automatic
speech recognition to EL speech enhancement. The results of
objective and subjective evaluations have demonstrated that
the proposed method is capable of converting EL speech into
normal speech with higher naturalness and perceptual speech
intelligibility than those obtained by the conventional method.
In future work, we will implement an EL speech enhancement
technique without using traditional vocoding framework to
avoid modeling errors of waveform signals by incorporating
the WaveNet vocoder [24] as a waveform generator.

ACKNOWLEDGMENTS

This work was supported in part by JSPS KAKENHI Grant-
in-Aid for JSPS Research Fellow Number 16J10726, and by
JST, PRESTO Grant Number JPMJPR1657.

REFERENCES

[1] K. Tanaka, T. Toda, G. Neubig, S. Sakti, and S. Nakamura, “A
hybrid approach to electrolaryngeal speech enhancement based on noise
reduction and statistical excitation generation,” IEICE Trans. Inf. Syst.,
vol. E97.D, no. 6, pp. 1429–1437, 2014.

[2] J. S. Lim and A. V. Oppenheim, “Enhancement and bandwidth
compression of noisy speech,” Proc. IEEE, vol. 67, no. 12, pp. 1586–
1604, 1979.

[3] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice conversion
through vector quantization,” J. Acoust. Soc. Jpn. (E), vol. 11, no. 2,
pp. 71–76, 1990.

[4] S. F. Boll, “Suppression of acoustic noise in speech using spectral
subtraction,” IEEE Trans. SAP, vol. 27, no. 2, pp. 113–120, 1979.

[5] B. L. Sim, Y. C. Tong, J. S. Chang, and C. Tan, “A parametric
formulation of the generalized spectral subtraction method,” IEEE Trans.
ASLP, vol. 6, no. 4, pp. 328–337, 1998.

[6] K. K. Wojcicki, B. J. Shannon, and K. K. Paliwal, “Spectral subtraction
with variance reduced noise spectrum estimates,” Proc. SST, 2006.

[7] Y. Ephraim and H. L. Van Trees, “A signal subspace approach for speech
enhancement,” IEEE Trans. SAP, vol. 3, no. 4, pp. 251–266, 1995.

[8] K. Nakamura, T. Toda, H. Saruwatari, and K. Shikano, “Speaking-
aid systems using GMM-based voice conversion for electrolaryngeal
speech,” Speech Commun., vol. 54, no. 1, pp. 134–146, 2012.

[9] H. Doi, K. Nakamura, T. Toda, H. Saruwatari, and K. Shikano, “An
evaluation of alaryngeal speech enhancement methods based on voice
conversion techniques,” Proc. ICASSP, pp. 5136–5139, May 2011.

[10] T. Toda, L.-H. Chen, D. Saito, F. Villavicencio, M. Wester, Z. Wu,
and J. Yamagishi, “The Voice Conversion Challenge 2016,” Proc.
INTERSPEECH, Sept. 2016.

[11] T. Nakashika, R. Takashima, T. Takiguchi, and Y. Ariki, “Voice
conversion in high-order eigen space using deep belief nets,” Proc.
INTERSPEECH, pp. 369–372, Aug. 2013.

[12] L.-H. Chen, Z.-H. Ling, L.-J. Liu, and L.-R. Dai, “Voice conver-
sion using deep neural networks with layer-wise generative training,”
IEEE/ACM Trans. ASLP, vol. 22, no. 12, pp. 1859–1872, Dec. 2014.

[13] L. Sun, S. Kang, K. Li, and H. Meng, “Voice conversion using deep
bidirectional long short-term memory based recurrent neural networks,”
Proc. ICASSP, pp. 4869–4873, Apr. 2015.

[14] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang, “Voice
conversion from non-parallel corpora using variational auto-encoder,”
Proc. APSIPA, pp. 1–6, Dec. 2016.

[15] I. McLoughlin, J. Li, Y. Song, and H. R. Sharifzadeh, “Speech
reconstruction using a deep partially supervised neural network,” IEEE
Healthcare Technol. Lett., vol. 4, no. 4, pp. 129–133, 2017.

[16] Y. Saito, S. Takamichi, and H. Saruwatari, “Statistical parametric speech
synthesis incorporating generative adversarial networks,” IEEE/ACM
Trans. ASLP, vol. 26, no. 1, pp. 84–96, Jan. 2018.

[17] K. Kobayashi, T. Hayashi, A. Tamamori, and T. Toda, “Statistical
voice conversion with WaveNet-based waveform generation,” Proc.
INTERSPEECH, pp. 1138–1142, Aug. 2017.

[18] T. Toda, A. W. Black, and K. Tokuda, “Voice conversion based on
maximum likelihood estimation of spectral parameter trajectory,” IEEE
Trans. ASLP, vol. 15, no. 8, pp. 2222–2235, Nov. 2007.

[19] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
long short-term memory, fully connected deep neural networks,” Proc.
ICASSP, pp. 4580–4584, Apr. 2015.

[20] H. Kawahara, I. Masuda-Katsuse, and A. Cheveigne, “Restructuring
speech representations using a pitch-adaptive time-frequency smoothing
and an instantaneous-frequency-based f0 extraction: Possible role of a
repetitive structure in sounds,” Speech Commun., vol. 27, no. 3-4, pp.
187–207, Apr. 1999.

[21] H. Kawahara, J. Estill, and O. Fujimura, “Aperiodicity extraction and
control using mixed mode excitation and group delay manipulation for
a high quality speech analysis, modification and system straight,” Proc.
MAVEBA, Sept. 2001.

[22] S. Imai, K. Sumita, and C. Furuichi, “Mel log spectrum approximation
(MLSA) filter for speech synthesis,” Electron. Commun. Jpn. (Part I:
Commun.), vol. 66, no. 2, pp. 10–18, 1983.

[23] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” Proc. AI & Statistics, vol. 9, pp. 249–256,
13–15 May 2010.

[24] A. Tamamori, T. Hayashi, K. Kobayashi, K. Takeda, and T. Toda,
“Speaker-dependent WaveNet vocoder,” Proc. INTERSPEECH, pp.
1118–1122, Aug. 2017.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2133


